1
|
Wan L, Huang R, Zhou Y, Guo J, Jiao Y, Gao J. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. TOXICS 2024; 12:759. [PMID: 39453179 PMCID: PMC11511219 DOI: 10.3390/toxics12100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Antibiotics can affect the photosynthetic system of Microcystis, potentially altering the balance of carbon and nitrogen, which may influence the synthesis of different microcystin (MC) congeners. However, the regulatory mechanisms by which antibiotics affect the synthesis of various MC congeners in Microcystis remain unknown. In this study, the effects of ciprofloxacin (CIP) on the growth, carbon and nitrogen balance, amino acid composition, mcyB gene expression, and production of different MC congeners were investigated in two toxin-producing strains of Microcystis aeruginosa. The results show that CIP exposure significantly inhibited the growth of both strains, achieving an inhibition rate of 71.75% in FACHB-315 and 41.13% in FACHB-915 at 8 μg/L CIP by the end of the cultivation. The intracellular C:N ratio in FACHB-315 increased by 51.47%, while no significant change was observed in FACHB-915. The levels of leucine, tyrosine, and arginine, as identified and quantified by UPLC-MS/MS, were significantly altered at higher CIP concentrations, leading to a reduction in leucine percentage and a notable increase in tyrosine in both strains, which contributed to a reduction in MC-LR proportion and an increase in MC-RR and MC-YR proportion. Additionally, the expression of the mcyB gene was upregulated by as much as 5.57 times, indicating that antibiotic stress could enhance MC synthesis at the genetic level, contributing to the increased toxicity of cyanobacteria. These findings emphasize the significant role of CIP in the biochemical processes of M. aeruginosa, particularly in MC synthesis and composition, providing valuable insights into the ecological risks posed by antibiotics and harmful cyanobacteria.
Collapse
Affiliation(s)
- Liang Wan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Rong Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhou
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Jiahao Guo
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yiying Jiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Jian Gao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Wang M, Bian W, Qi X, He D, Lu H, Yang L. Cycles of solar ultraviolet radiation favor periodic expansions of cyanobacterial blooms in global lakes. WATER RESEARCH 2024; 255:121471. [PMID: 38503183 DOI: 10.1016/j.watres.2024.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Global warming and eutrophication are known to increase the prevalence of cyanobacterial blooms, posing a severe threat to the ecological stability and sustainability of water bodies. The long-term (over an annual time frame) effect of UV radiation on cyanobacterial blooms in lakes are rarely discussed though the substantial effects of high-intensity UV radiation on the growth inhibition of marine phytoplankton were studied. Here, we employed the datasets on surface solar UV radiation, nitrogen and phosphorus concentrations, and the annual scales and frequencies of cyanobacterial blooms in lakes across long-term spatial scales to probe the relationship of UV radiation with cyanobacterial blooms. The results indicated that enhanced solar UV radiation may unintentionally stimulate cyanobacterial growth and favor the expansions of cyanobacterial blooms in lakes around the world. The fluctuating UV radiation significantly affects the annual scales of cyanobacterial blooms in both eutrophic and oligotrophic lakes. Solar UV radiation enhances the positive impact of rising phosphorus levels on cyanobacterial blooms because UV radiation prompts the synthesis of polyphosphate in cyanobacteria cells, which helps cyanobacteria to alleviate the stress of UV light. The scales of cyanobacterial blooms are significantly impacted by solar UV radiation intensities as opposed to the annual frequency of cyanobacterial blooms. Furthermore, solar UV radiation fluctuation with a 9-year period over a 14-year main cycles significantly affects the periodicities of cyanobacterial blooms in global lakes, which provides a basis for predicting the peak value of the scales of cyanobacterial blooms in lakes. These findings opened up new avenues of inquiry into the mechanism and management strategies of cyanobacterial blooms in lakes worldwide.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenbin Bian
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Di He
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hao Lu
- Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Research Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Luo C, Chen C, Xian X, Cai WF, Yu X, Ye C. The secondary outbreak risk and mechanisms of Microcystis aeruginosa after H 2O 2 treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134196. [PMID: 38603907 DOI: 10.1016/j.jhazmat.2024.134196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The secondary outbreak of cyanobacteria after algicide treatment has been a serious problem to water ecosystems. Hydrogen peroxide (H2O2) is an algaecide widely used in practice, but similar re-bloom problems are inevitably encountered. Our work found that Microcystis aeruginosa (M. aeruginosa) temporarily hibernates after H2O2 treatment, but there is still a risk of secondary outbreaks. Interestingly, the dormant period was as long as 20 and 28 days in 5 mg L-1 and 20 mg L-1 H2O2 treatment groups, respectively, but the photosynthetic activity was both restored much earlier (within 14 days). Subsequently, a quantitative imaging flow cytometry-based method was constructed and confirmed that the re-bloom had undergone two stages including first recovery and then re-division. The expression of ftsZ and fabZ genes showed that M. aeruginosa had active transcription processes related to cell division protein and fatty acid synthesis during the dormancy stat. Furthermore, metabolomics suggested that the recovery of M. aeruginosa was mainly by activating folate and salicylic acid synthesis pathways, which promoted environmental stress resistance, DNA synthesis, and cell membrane repair. This study reported the comprehensive mechanisms of secondary outbreak of M. aeruginosa after H2O2 treatment. The findings suggest that optimizing the dosage and frequency of H2O2, as well as exploring the potential use of salicylic acid and folic acid inhibitors, could be promising directions for future algal control strategies.
Collapse
Affiliation(s)
- Chen Luo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenlan Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xuanxuan Xian
- Ecological &Environment Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361103. China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Yan F, Li M, Zang S, Xu Z, Bao M, Wu H. UV radiation and temperature increase alter the PSII function and defense mechanisms in a bloom-forming cyanobacterium Microcystis aeruginosa. Front Microbiol 2024; 15:1351796. [PMID: 38292251 PMCID: PMC10825000 DOI: 10.3389/fmicb.2024.1351796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The aim was to determine the response of a bloom-forming Microcystis aeruginosa to climatic changes. Cultures of M. aeruginosa FACHB 905 were grown at two temperatures (25°C, 30°C) and exposed to high photosynthetically active radiation (PAR: 400-700 nm) alone or combined with UVR (PAR + UVR: 295-700 nm) for specified times. It was found that increased temperature enhanced M. aeruginosa sensitivity to both PAR and PAR + UVR as shown by reduced PSII quantum yields (Fv/Fm) in comparison with that at growth temperature (25°C), the presence of UVR significantly exacerbated the photoinhibition. M. aeruginosa cells grown at high temperature exhibited lower PSII repair rate (Krec) and sustained nonphotochemical quenching (NPQs) induction during the radiation exposure, particularly for PAR + UVR. Although high temperature alone or worked with UVR induced higher SOD and CAT activity and promoted the removal rate of PsbA, it seemed not enough to prevent the damage effect from them showing by the increased value of photoinactivation rate constant (Kpi). In addition, the energetic cost of microcystin synthesis at high temperature probably led to reduced materials and energy available for PsbA turnover, thus may partly account for the lower Krec and the declination of photosynthetic activity in cells following PAR and PAR + UVR exposure. Our findings suggest that increased temperature modulates the sensitivity of M. aeruginosa to UVR by affecting the PSII repair and defense capacity, thus influencing competitiveness and abundance in the future water environment.
Collapse
Affiliation(s)
- Fang Yan
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Mingze Li
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Shasha Zang
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Menglin Bao
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai, China
- Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai, China
| |
Collapse
|
5
|
Zhou Y, Peng H, Jiang L, Wang X, Tang Y, Xiao L. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132729. [PMID: 37839377 DOI: 10.1016/j.jhazmat.2023.132729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
The outbreaks of cyanobacterial blooms have caused severe threat to aquatic ecosystem and public health. In this work, electrochemical technology with RuO2/IrO2/Ti (RIT) or/and Al as anode for cyanobacterial bloom control and simultaneous water purification were studied. Compared with RIT-Al and Al electrodes, RIT exhibited the highest effects on bloom algae inactivation and inhibition of algae regrowth. Live/dead analysis, SEM, intracellular reactive oxygen species (ROS) and antioxidant system activities revealed that RIT could disintegrate bloom flocs and damage embedded algal cells due to high intensity of oxidation. With the lysis of cyanobacterial bloom, high content of intracellular compounds containing organic carbon, nitrogen and phosphorus released, necessitating water quality restoration. In the subsequent water purification process, RIT-Al overtook RIT and Al in removal of organic and nutrient pollutants due to the complex effects of electro-oxidation, coagulation, co-precipitation, electro-nitrification and electro-denitrification. Therefore, sequential electro-oxidation and electro-oxidation-coagulation process was an effective method for control cyanobacteria bloom and simultaneous removal of DOM, microcystin-LR (MC-LR), nitrogen and phosphorus, which is a promising technology.
Collapse
Affiliation(s)
- Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Huijun Peng
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lijuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Xiaolin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
6
|
Li B, Li J, Gao J, Guo Z, Li J. Long-term tracking robust removal of Microcystis-dominated bloom and microcystin-pollution risk by luteolin continuous-release microsphere at different nitrogen levels-Mechanisms from proteomics and gene expression. CHEMOSPHERE 2023:139365. [PMID: 37392791 DOI: 10.1016/j.chemosphere.2023.139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Luteolin continuous-release microsphere (CRM) has promising algicidal effect against Microcystis, but how nitrogen (N) level impacted CRM effects on Microcystis growth and microcystins (MCs) pollution was never tracked along long term. This study revealed that luteolin CRM exerted long-term and robust inhibitory effects on Microcystis growth and MC-pollution by sharply decreasing extracellular and total MCs content at each N level, with growth inhibition ratio of 88.18-96.03%, 92.91-97.17% and 91.36-95.55% at 0.5, 5 and 50 mg/L N, respectively, during day 8-30. Further analyses revealed that CRM-stress inhibited transferase, GTPase and ATPase activities, ATP binding, metal ion binding, fatty acid biosynthesis, transmembrane transport and disrupted redox homeostasis to pose equally robust algicidal effect at each N level. At lower N level, CRM-stress tended to induce cellular metabolic mode towards stronger energy supply/acquisition but weaker energy production/consumption, while triggered a shift towards stronger energy production/storage but weaker energy acquisition/consumption as N level elevated, thus disturbing metabolic balance and strongly inhibiting Microcystis growth at each N level. Long-term robust algicidal effect of CRM against other common cyanobacteria besides Microcystis was evident in natural water. This study shed novel insights into inhibitory effects and mechanisms of luteolin CRM on Microcystis growth and MC-pollution in different N-level waters.
Collapse
Affiliation(s)
- Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Jiaqian Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| |
Collapse
|
7
|
Song Y, Li R, Song W, Tang Y, Sun S, Mao G. Microcystis spp. and phosphorus in aquatic environments: A comprehensive review on their physiological and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163136. [PMID: 37001662 DOI: 10.1016/j.scitotenv.2023.163136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms caused by eutrophication have become a major environmental problem in aquatic ecosystems worldwide over the last few decades. Phosphorus is a limiting nutrient that affects the growth of cyanobacteria and plays a role in dynamic changes in algal density and the formation of cyanobacterial blooms. Therefore, identifying the association between phosphorus sources and Microcystis, which is the most representative and harmful cyanobacteria, is essential for building an understanding of the ecological risks of cyanobacterial blooms. However, systematic reviews summarizing the relationships between Microcystis and phosphorus in aquatic environments are rare. Thus, this study provides a comprehensive overview of the physiological and ecological interactions between phosphorus sources and Microcystis in aquatic environments from the following perspectives: (i) the effects of phosphorus source and concentration on Microcystis growth, (ii) the impacts of phosphorus on the environmental behaviors of Microcystis, (iii) mechanisms of phosphorus-related metabolism in Microcystis, and (iv) role of Microcystis in the distribution of phosphorus sources within aquatic environments. In addition, relevant unsolved issues and essential future investigations (e.g., secondary ecological risks) have been highlighted and discussed. This review provides deeper insights into the relationship between phosphorus sources and Microcystis and can serve as a reference for the evaluation, monitoring, and effective control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Ruikai Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Wenjia Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yulu Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shuangyan Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Wu D, Deng L, Wang T, Du W, Yin Y, Guo H. Aging process does not necessarily enhance the toxicity of polystyrene microplastics to Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163608. [PMID: 37087009 DOI: 10.1016/j.scitotenv.2023.163608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastic (MP) pollution in aquatic systems has attracted increasing attention in recent years. MPs will inevitably encounter aging process in the environment. However, research on the effects of aged MPs on freshwater ecosystems remains limited. This study compared the properties of pristine and aged polystyrene (PS) MPs of different sizes (20 nm, 200 nm, 2000 nm) and determined the effects of aging on the toxicity of PS MPs to typical freshwater cyanobacteria, Microcystis aeruginosa. Aging process induced significant changes to the properties of the MPs, especially their microstructures and surface functional groups. Aging process also influenced zeta potential, which could further affect stability and toxicity of PS MPs. After 96 h exposure, increase of algal growth and photosynthetic activity was observed in the treatment of pristine 200 nm, aged 20 nm and aged 200 nm PS MPs. In addition, pristine 20 nm, pristine 200 nm, pristine 2000 nm, aged 20 nm and aged 200 nm PS MPs were adsorbed on algal cell surface, which could influence the cell permeability. Pristine PS MPs promoted microcystin synthesis and release, which could do harm to drinking water safety and freshwater ecosystems. However, there was no significant increase in aged PS MPs treatments. Furthermore, the increased 13C content of algal cells in all pristine PS MPs treatments indicated that M. aeruginosa assimilated more CO2 and generate more energy to resist the stress of pristine PS MPs when compared with aged PS MPs. These results indicate that aging process did not necessarily enhance the toxicity and biological risk of PS MPs to freshwater ecosystems. Findings of this study fill the knowledge gap in understanding the effects and risks of aged MPs on freshwater ecosystems.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Wiśniewska KA, Lewandowska AU, Śliwińska-Wilczewska S, Staniszewska M, Budzałek G. The Ability of Airborne Microalgae and Cyanobacteria to Survive and Transfer the Carcinogenic Benzo(a)pyrene in Coastal Regions. Cells 2023; 12:cells12071073. [PMID: 37048146 PMCID: PMC10093748 DOI: 10.3390/cells12071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Air pollution has been a significant problem threatening human health for years. One commonly reported air pollutant is benzo(a)pyrene, a dangerous compound with carcinogenic properties. Values which exceed normative values for benzo(a)pyrene concentration in the air are often noted in many regions of the world. Studies on the worldwide spread of COVID-19 since 2020, as well as avian flu, measles, and SARS, have proven that viruses and bacteria are more dangerous to human health when they occur in polluted air. Regarding cyanobacteria and microalgae, little is known about their relationship with benzo(a)pyrene. The question is whether these microorganisms can pose a threat when present in poor quality air. We initially assessed whether cyanobacteria and microalgae isolated from the atmosphere are sensitive to changes in PAH concentrations and whether they can accumulate or degrade PAHs. The presence of B(a)P has significantly affected both the quantity of cyanobacteria and microalgae cells as well as their chlorophyll a (chl a) content and their ability to fluorescence. For many cyanobacteria and microalgae, an increase in cell numbers was observed after the addition of B(a)P. Therefore, even slight air pollution with benzo(a)pyrene is likely to facilitate the growth of airborne cyanobacteria and microalgae. The results provided an assessment of the organisms that are most susceptible to cellular stress following exposure to benzo(a)pyrene, as well as the potential consequences for the environment. Additionally, the results indicated that green algae have the greatest potential for degrading PAHs, making their use a promising bioremediation approach. Kirchneriella sp. demonstrated the highest average degradation of B(a)P, with the above-mentioned research indicating it can even degrade up to 80% of B(a)P. The other studied green algae exhibited a lower, yet still significant, B(a)P degradation rate exceeding 50% when compared to cyanobacteria and diatoms.
Collapse
Affiliation(s)
- Kinga A. Wiśniewska
- Institute of Oceanography, Department of Chemical Oceanography and Marine Geology, University of Gdansk, Av. M. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anita U. Lewandowska
- Institute of Oceanography, Department of Chemical Oceanography and Marine Geology, University of Gdansk, Av. M. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Sylwia Śliwińska-Wilczewska
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1E2, Canada
- Institute of Oceanography, Division of Marine Ecosystems Functioning, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Institute of Oceanography, Department of Chemical Oceanography and Marine Geology, University of Gdansk, Av. M. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Gracjana Budzałek
- Institute of Oceanography, Division of Marine Ecosystems Functioning, University of Gdansk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
10
|
Zheng X, Zhang L, Jiang C, Li J, Li Y, Liu X, Li C, Wang Z, Zheng N, Fan Z. Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: Growth, microcystin production, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158906. [PMID: 36150599 DOI: 10.1016/j.scitotenv.2022.158906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
As plastic pollution continues to increase and plastic waste is shredded to form smaller plastic particles, there is growing concern about the potential impact of nanoplastics (NPs) on freshwater ecosystems. In this work, the effects of three surface-modified NPs, including polystyrene (PS), PS-NH2, and PS-COOH, on the growth, photosynthetic activity, oxidative damage, and microcystins (MCs) production/release of Microcystis aeruginosa (M. aeruginosa) were investigated. Results indicated that all three NPs significantly inhibited the growth of M. aeruginosa after a 96 h exposure, and the growth inhibition followed the order of PS-NH2 > PS > PS-COOH (p < 0.05). Meanwhile, all three NPs at the concentration of 100 mg/L significantly increased the content of intra-MCs (115 %, 147 %, and 121 % higher than the control, respectively) and extra-MCs (142 %, 175 %, and 151 % higher than the control, respectively) after a 96 h exposure (p < 0.05). Moreover, our findings also suggested that the potential mechanisms of surface-modified PS NPs on M. aeruginosa growth and MCs production/release were associated with physical constraints, photosynthetic activity obstruct, and oxidative damage. Our findings provided direct evidence for different kinds of surface modifications of PS NPs on freshwater algae and improve the understanding of the potential risk of NPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chao Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chengwei Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Nan Zheng
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Wang M, Zhan Y, Chen C, Chen M, Zhu J, Jiang X, Yang Y, Lv X, Yin P, Zhang W, Yang L. Amplified cyanobacterial bloom is derived by polyphosphate accumulation triggered by ultraviolet light. WATER RESEARCH 2022; 222:118837. [PMID: 35870388 DOI: 10.1016/j.watres.2022.118837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms appear more strongly, constantly and globally, yet the positive effect of surface solar ultraviolet radiation (UV) on cyanobacterial bloom in natural freshwater habitats is largely ignored. Here in-situ and laboratory studies were jointly designed to probe the mechanism of cyanobacterial bloom promoted by solar UV light. The results showed that solar UV light is a key trigger factor for the accumulation of total phosphorus, dissolved inorganic phosphorus and polyphosphate (polyP) in blooming cyanobacterial cells. The increase of UV dose induces polyP accumulation to result in the excessive phosphorus uptake of blooming cyanobacteria, which provides sufficient phosphorus for cyanobacterial growth in suitable environment. Solar UV light also can promote the contents of phycocyanin, allophycocyanin, and phycoerythrin, producing sufficient ATP by photosynthesis for polyP synthesis in cyanobacterial cells in lake enviroment. The frequent variations of UV irradiance exposure prompts cyanobacteria to absorb excessive phosphorus from suspended solid or sediment. Cyanobacterial intracellular phosphorus is accumulated for their growth. UV light promotes polyP accumulation in blooming cyanobacterial cells to avoid damage. The adsorption amount of phosphorus increases for exuberant growth and then more surface blooming cyanobacteria are exposed to UV light to absorb ample phosphorus. Thus, the positive feedback occurs in lake water bodies with abundant phosphorus. This amplified cycle of cyanobacterial density and phosphorus due to solar UV light in eutrophic water bodies is analogous to a triode to amplify visible photosynthesis by UV light as a base electric current in the energy flow process in lake environment, therefore, "Cyanobacterial Phosphorus Assimilation Ultraviolet Effect" is used to describe this phenomenon. A new explanation is provided for the continuing proliferating mechanism of cyanobacterial bloom. Besides, a new perspective appears on the outbreak of cyanobacterial blooms in natural eutrophic lake water bodies worldwide.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yixuan Zhan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Menggaoshan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yicheng Yang
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 32611, United States
| | - Xueyan Lv
- Jiangsu Environmental Monitoring Center, Nanjing 210036, PR China
| | - Peng Yin
- Water Resource Service center of Jiangsu Province, Nanjing 214029, PR China
| | - Wei Zhang
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Hellweger FL, Martin RM, Eigemann F, Smith DJ, Dick GJ, Wilhelm SW. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science 2022; 376:1001-1005. [PMID: 35617400 DOI: 10.1126/science.abm6791] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Robbie M Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Falk Eigemann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
13
|
Wu S, Ji X, Li X, Ye J, Xu W, Wang R, Hou M. Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and Microcystis aeruginosa in synthetic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3994-4007. [PMID: 34402007 DOI: 10.1007/s11356-021-15627-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The physiological impacts and interactions of antibiotic resistance gene (ARG) abundance, microcystin synthetase gene expression, graphene oxide (GO), and Microcystis aeruginosa in synthetic wastewater were investigated. The results demonstrated that the absolute abundance of sul1, sul2, tetW, and tetM in synthetic wastewater dramatically increased to 365.2%, 427.1%, 375.2%, and 231.7%, respectively, when the GO concentration was 0.01 mg/L. Even more interesting is that the sum gene copy numbers of mcyA-J also increased to 243.2%. The appearance of GO made the significant correlation exist between ARGs abundance and mcyA-J expression. Furthermore, M. aeruginosa displayed better photosynthetic performance and more MCs production at 0.01 mg/L GO. There were 65 pairs of positive correlations between the intracellular differential metabolites of M. aeruginosa and the abundance of sul1, sul2, tetM, and tetW with various GO concentrations. The GO will impact the metabolites and metabolic pathway in M. aeruginosa. The metabolic changes impacted the ARGs, microcystin synthetase genes, and physiological characters in algal cells. Furthermore, there were complex correlations among sul1, sul2, tetM, tetW, mcyA-J, MCs, photosynthetic performance parameters, and ROS. The different concentration of GO will aggravate the hazards of M. aeruginosa by promoting the expression of mcyA-J, producing more MCs; simultaneously, it may cause the spread of ARGs.
Collapse
Affiliation(s)
- Shichao Wu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Xin Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Rui Wang
- Shanghai Luming Biological Technology Co. Ltd, Shanghai, 201114, People's Republic of China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Chang Y, Sun L, Du F, Cui J, Liu X, Li N, Wang W, Li J, Yao D. Abundant Allelochemicals and the Inhibitory Mechanism of the Phenolic Acids in Water Dropwort for the Control of Microcystis aeruginosa Blooms. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122653. [PMID: 34961124 PMCID: PMC8707890 DOI: 10.3390/plants10122653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In recent years, with the frequent global occurrence of harmful algal blooms, the use of plant allelopathy to control algal blooms has attracted special and wide attention. This study validates the possibility of turning water dropwort into a biological resource to inhibit the growth of harmful Microcystis aeruginosa blooms via allelopathy. The results revealed that there were 33 types of allelopathic compounds in the water dropwort culture water, of which 15 were phenolic acids. Regarding water dropwort itself, 18 phenolic acids were discovered in all the organs of water dropwort via a targeted metabolomics analysis; they were found to be mainly synthesized in the leaves and then transported to the roots and then ultimately released into culture water where they inhibited M. aeruginosa growth. Next, three types of phenolic acids synthesized in water dropwort, i.e., benzoic, salicylic, and ferulic acids, were selected to clarify their inhibitory effects on the growth of M. aeruginosa and their mechanism(s) of action. It was found that the inhibitory effect of phenolic acids on the growth of M. aeruginosa increased with the increase of the exposure concentration, although the algae cells were more sensitive to benzoic acid than to salicylic and ferulic acids. Further study indicated that the inhibitory effects of the three phenolic acids on the growth of M. aeruginosa were largely due to the simultaneous action of reducing the number of cells, damaging the integrity of the cell membrane, inhibiting chlorophyll a (Chl-a) synthesis, decreasing the values of F0 and Fv/Fm, and increasing the activity of the antioxidant enzymes (SOD, POD, and CAT) of M. aeruginosa. Thus, the results of this study indicate that both culture water including the rich allelochemicals in water dropwort and biological algae inhibitors made from water dropwort could be used to control the growth of noxious algae in the future.
Collapse
Affiliation(s)
- Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Naiwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Wei Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (J.L.); (L.S.); (F.D.); (J.C.); (X.L.); (N.L.); (W.W.); (J.L.)
- Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Nanjing 210014, China
| |
Collapse
|
15
|
Huang C, Huang W, Xiong J, Wang S. Mechanism and excellent performance of graphite felt as anodes in electrochemical system for Microcystis aeruginosa and microcystin-LR removal with no pH limitation nor chemical addition. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Menezes I, Capelo-Neto J, Pestana CJ, Clemente A, Hui J, Irvine JTS, Nimal Gunaratne HQ, Robertson PKJ, Edwards C, Gillanders RN, Turnbull GA, Lawton LA. Comparison of UV-A photolytic and UV/TiO 2 photocatalytic effects on Microcystis aeruginosa PCC7813 and four microcystin analogues: A pilot scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113519. [PMID: 34411798 DOI: 10.1016/j.jenvman.2021.113519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/14/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use of UV-LEDs (365 nm) for photolysis and heterogeneous photocatalysis applying TiO2 coated glass beads under UV-LED illumination (365 nm) in a pilot scale reactor for the elimination of Microcystis aeruginosa PCC7813 and four microcystin analogues (MC-LR, -LY, -LW, -LF) with a view to deployment in drinking water reservoirs was investigated. UV-A (365 nm) photolysis was shown to be more effective than the UV/TiO2 photocatalytic system for the removal of Microcystis aeruginosa cells and microcystins. During photolysis, cell density significantly decreased over 5 days from an initial concentration of 5.8 × 106 cells mL-1 until few cells were left. Both intra- and extracellular microcystin concentrations were significantly reduced by 100 and 92 %, respectively, by day 5 of the UV treatment for all microcystin analogues. During UV/TiO2 treatment, there was great variability between replicates, making prediction of the effect on cyanobacterial cell and toxin behavior difficult.
Collapse
Affiliation(s)
- Indira Menezes
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Allan Clemente
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Jianing Hui
- School of Chemistry, University of St Andrews, St Andrews, United Kingdom
| | - John T S Irvine
- School of Chemistry, University of St Andrews, St Andrews, United Kingdom
| | - H Q Nimal Gunaratne
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, United Kingdom
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, United Kingdom
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Ross N Gillanders
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Graham A Turnbull
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
17
|
Li B, Li J, An G, Zhao C, Wang C. Long-term and strong suppression against Microcystis growth and microcystin-release by luteolin continuous-release microsphere: Optimal construction, characterization, effects and proteomic mechanisms. WATER RESEARCH 2021; 202:117448. [PMID: 34364065 DOI: 10.1016/j.watres.2021.117448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Microcystis-dominated cyanobacterial blooms (MCBs) severely threaten ecological health by causing hypoxia and releasing microcystins (MCs). Luteolin has potential as low-cost eco-safe algaecide against Microcystis, but to enhance sustainability of its algicidal effect and elucidate underlying mechanisms at proteomic level are urgently desirable. This study optimally constructed continuous-release microsphere (CRM) of luteolin with strong solidity and durability even after long-term immersion. Applying luteolin CRM, this study developed a long-term algicidal option to strongly inhibit Microcystis growth and MC-release until 49 days, with inhibition ratios of growth and MC-release (both ≥ 98%) and inhibitory effect-lasting time (nearly 50 days) of CRM superior to most former reports, and long-term strong inhibitory effects of CRM on Microcystis growth and MC-release kept stable at various nitrogen levels. Also, luteolin CRM rendered extracellular MCs content decrease to nearby acceptable threshold for drinking water. These signified a promising prospect of luteolin CRM in sustained effective control against toxigenic MCBs in waters of different eutrophic states. Comparative proteomic analysis showed that luteolin CRM significantly up-regulated photosynthesis and protein homestasis, but down-regulated other processes including stress response, MC-synthesis/release, glycolysis, amino acid synthesis, fatty acid synthesis/β-oxidation, tricarboxylic acid cycle, transcription, translation, transport, cell shaping and cell division. These implied that continuous stress of luteolin released from CRM induced Microcystis proteome towards a shift of higher energy storage but lower energy release/consumption, which largely disturbed its physiological metabolic processes and thus negatively impact its growth. Proteomics results shed newly deep insights on algicidal mechanisms of flavonoid in the form of CRM.
Collapse
Affiliation(s)
- Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Caihong Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Chengyu Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 2021; 97:6006873. [PMID: 33242088 DOI: 10.1093/femsec/fiaa243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.
Collapse
Affiliation(s)
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Endrews Delbaje
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Marli F Fiore
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil.,University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
20
|
Zheng X, Yuan Y, Li Y, Liu X, Wang X, Fan Z. Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13394-13403. [PMID: 33180284 DOI: 10.1007/s11356-020-10388-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Nanoplastics are widely distributed in freshwater environments, but few studies have addressed their effects on freshwater algae, especially on harmful algae. In this study, the effects of polystyrene (PS) nanoplastics on Microcystis aeruginosa (M. aeruginosa) growth, as well as microcystin (MC) production and release, were investigated over the whole growth period. The results show that PS nanoplastics caused a dose-dependent inhibitory effect on M. aeruginosa growth and a dose-dependent increase in the aggregation rate peaking at 60.16% and 46.34%, respectively, when the PS nanoplastic concentration was 100 mg/L. This caused significant growth of M. aeruginosa with a specific growth rate up to 0.41 d-1 (50 mg/L PS nanoplastics). After a brief period of rapid growth, the tested algal cells steadily grew. In addition, the increase in PS nanoplastics concentration promoted the production and release of MC. When the PS nanoplastic concentration was 100 mg/L, the content of the intracellular (intra-) and extracellular (extra-) MC increased to 199.1 and 166.5 μg/L, respectively, on day 26, which was 31.4% and 31.1% higher, respectively, than the control. Our results provide insights into the action mechanism of nanoplastics on harmful algae and the potential risks to freshwater environments.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yuan Yuan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yanyao Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Wei X, Zhu H, Xiong J, Huang W, Shi J, Wang S, Song H, Feng Q, Zhong K. Anti-algal activity of a fluorine-doped titanium oxide photocatalyst against Microcystis aeruginosa and its photocatalytic degradation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02873a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine-doped TiO2 was successfully synthesised and applied as algaecide. Studies on algae removal efficiencies and mechanisms illustrated that F-TiO2 was suitable for algae elimination in natural water bodies.
Collapse
Affiliation(s)
- Xuechun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Hongxiang Zhu
- Department of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Wenyu Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Ji Shi
- Department of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, China
| | - Shuangfei Wang
- Department of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning, Guangxi, China
| | - Qilin Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| | - Kai Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Yang Z, Zhang M, Yu Y, Shi X. Temperature triggers the annual cycle of Microcystis, comparable results from the laboratory and a large shallow lake. CHEMOSPHERE 2020; 260:127543. [PMID: 32659542 DOI: 10.1016/j.chemosphere.2020.127543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Microcystis development in most temperate lakes shows an annual cycle that is mainly triggered by water temperature and includes four stages. This study aims to identify the optimum growth temperature and the temperature thresholds for recruitment and overwintering in Microcystis in Lake Taihu, based on field data and experiments at the cellular and genetic level on Microcystis under a simulated temperature condition. The field investigation showed that the cyanobacterial biomass began to increase at 11-15 °C in spring, reached a peak at 20-30 °C and remained at a low level after the water temperature declined below 6 °C. The simulation experiment found that the recovery of gene expression, photosynthesis and growth in Microcystis cells occurred at 11-14 °C and increased to an appreciable level after the temperature exceeded 20 °C. Microcystis cells stopped growing and maintained low photosynthetic activity and gene expression when the temperature declined to 10 °C or lower. These results suggest that Microcystis in Lake Taihu begin recruitment at 11-14 °C in spring and grow vigorously at 20-30 °C, then overwinter at 10 °C or lower in winter.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Yang Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
23
|
Li J, Hu J, Cao L, Yuan Y. Growth, physiological responses and microcystin-production/-release dynamics of Microcystis aeruginosa exposed to various luteolin doses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110540. [PMID: 32251950 DOI: 10.1016/j.ecoenv.2020.110540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
By testing time-dependent IC50 of luteolin against Microcystis growth, this study revealed 6.5 mg/L as nearly IC50 value during prolonged stress until day 14, and explored chlorophyll-a (CLA) and phycobiliproteins (PBPs) contents, antioxidant responses and microcystin (MC)-production/-release dynamics at rising luteolin doses (0.5~2-fold IC50). Growth inhibition ratio (GIR) generally rose at rising luteolin dose, while at each dose GIR firstly increased and then leveled off or dropped. In early stage, CLA, allophycocyanin (APC), phycoerythrin (PE) and glutathione (GSH) contents, and superoxide dismutase (SOD) and catalase (CAT) activities, were increasingly stimulated at rising luteolin dose to enhance energy yield and antioxidant defense, but Microcystis was damaged more severely at rising dose, due to stress-repair imbalance. Such more severe damage in early stage, coupled with stronger PBPs-inhibition in mid-late stage, at rising dose could jointly account for rising GIR at rising dose. The CAT/GSH-stimulation persisting until late stage could alleviate cell damage in late stage, which explained for why GIR no longer increased in late stage at each luteolin dose. Besides, more MCs were produced and retained in cell to exert protective roles against luteolin-stress in early stage, but intracellular MCs decreased following inhibited MC-production by prolonged stress to decrease cell protectant. Extracellular MCs detection showed that less MCs amount existed in water phase than control along luteolin-stress, implying luteolin as eco-friendly algaecide with promising potential to remove MPM blooms and MC-risks. This is the first study to reveal the effect of various luteolin doses on MC-production/release and PBP-synthesis dynamics of Microcystis during prolonged stress. The findings shed novel views in anti-algal mechanisms of luteolin, and provided direct evidence for luteolin applied as safe agent to remediate Microcystis-dominant blooms.
Collapse
Affiliation(s)
- Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Jiaqi Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Linrong Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Yue Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Sun Y, Zhang X, Zhang L, Huang Y, Yang Z, Montagnes D. UVB Radiation Suppresses Antigrazer Morphological Defense in Scenedesmus obliquus by Inhibiting Algal Growth and Carbohydrate-Regulated Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4495-4503. [PMID: 32108484 DOI: 10.1021/acs.est.0c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet-B (UVB) radiation reaching the earth's surface is increasing due to stratospheric ozone depletion. How the elevated UVB affects the trophic interactions is critical for predicting the ecosystem functioning under this global-scale stressor. Usually, inducible defenses in phytoplankton stabilize community dynamics within aquatic environments. To assess the effects of elevated UVB on induced defense, we examined the changes in antigrazer colony formation in Scenedesmus obliquus under environmentally relevant UVB. S. obliquus exposed to Daphnia infochemicals consistently formed multicelled colonies, traits confirmed to be adaptive under predation risk. However, the suppressed photochemical activity and the metabolic cost from colony formation resulted in the severer reductions in algal growth by UVB under predation risk. The transcriptions of key enzyme-encoding genes, regulating the precursor synthesis during polysaccharide production, were also inhibited by UVB. Combination of the reduced production of daughter cells and the ability of daughter cells to remain attached, the antigrazing colony formation was interrupted, leading to the dominant morphs of algal population shifting from larger-sized colonies to smaller ones at raised UVB. The present study revealed that elevated UVB will not only reduce the phytoplankton growth but also increase their vulnerability to predation, probably leading to potential shifts in plankton food webs.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xingxing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - David Montagnes
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
25
|
Ren L, Wang P, Wang C, Paerl HW, Wang H. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113441. [PMID: 31672370 DOI: 10.1016/j.envpol.2019.113441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320-400 nm) and UV-B (280-320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.
Collapse
Affiliation(s)
- Lingxiao Ren
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China; College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hans W Paerl
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC, USA
| | - Huiya Wang
- College of Environmental Engineering, Nanjing Institute of Technology, 211167, Nanjing, PR China
| |
Collapse
|
26
|
Malanga G, Giannuzzi L, Hernando M. The possible role of microcystin (D-Leu 1 MC-LR) as an antioxidant on Microcystis aeruginosa (Cyanophyceae). In vitro and in vivo evidence. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108575. [PMID: 31326544 DOI: 10.1016/j.cbpc.2019.108575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/18/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022]
Abstract
Microcystins constitute a serious threat to the quality of drinking water worldwide. However, the eco-physiological role of them is not completely known and it is suggested that toxins can play a role in the antioxidant protection. The objective of this study was to evaluate the microcystin antioxidant capacity in vitro by Electronic Paramagnetic Resonance, highly specific for the different reactive oxygen species and in vivo by 7 days exposure of Microcystis aeruginosa to high (29 °C) temperature in addition to a 26 °C control condition. An effective in vitro antioxidant activity was observed for [D-Leu1]MC-LR against hydrosoluble radicals. As far as we know, this is the first in vitro record of the role of MC as antioxidant. In addition, a significant increase in cellular biomass was observed under 26 °C in cultures with [D-Leu1]MC-LR supplementation in coincidence with a significant decrease of reactive species. For cultures at 29 °C, the antioxidant role of toxins was inconclusive probably due to the presence of different reactive species generated during the experiment. Thus, MC could scavenge certain reactive species associated with the antioxidant role of CAT or the OH content by SOD activity (not measured) and then CAT activity could be lower in the presence of MC. Reinforcing our hypothesis, the [D-Leu1]MC-LR consumption after 7 days was significantly higher in cells with [D-Leu1]MC-LR supplementation in both 26 °C and 29 °C.When the production of reactive species was controlled by the scavenger activity of antioxidants plus MC, cells avoided the potential oxidative damage and started with exponential growth.
Collapse
Affiliation(s)
- G Malanga
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina
| | - L Giannuzzi
- CONICET, Godoy Cruz 2290, Buenos Aires, Argentina; Área de Toxicología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - M Hernando
- Departamento Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Wang X, Wang X, Song J, Li Y, Wang Z, Gao Y. A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Chen L, Wang Y, Shi L, Zhao J, Wang W. Identification of allelochemicals from pomegranate peel and their effects on Microcystis aeruginosa growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22389-22399. [PMID: 31154644 DOI: 10.1007/s11356-019-05507-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
This paper studied the inhibitory effect of pomegranate peel (PP) extract on the growth of Microcystis aeruginosa, the model of harmful algal blooms in aquatic environment. The allelochemicals were identified by HPLC-MS/MS from PP and tested by batch experiment through measurement of algal density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), superoxide dismutase (SOD), and malondialdehyde (MDA) contents. Results showed that both PP powder and PP extract had obvious inhibitory effect on M. aeruginosa growth. Quercetin and luteolin were identified as the allelochemicals to M. aeruginosa growth. However, the inhibitory capacity of luteolin was stronger than that of quercetin. The growth inhibition ratio of luteolin can reach up to 98.7 and 99.1% of the control on day 7 at the dosages of 7 and 10 mg/L, respectively. Moreover, the changes of Chl-a, Fv/Fm, SOD, and MDA in M. aeruginosa confirmed jointly that the allelochemicals cause inhibition of photosystem and oxidative damage to M. aeruginosa cells with the antioxidant defense system being activated, which leads to the aggravation of membrane lipid peroxidation. Thus, luteolin could be used as a promising algaecide for emergency handling of M. aeruginosa blooms. This study might provide a new direction in the management of eutrophication in the future.
Collapse
Affiliation(s)
- Linfeng Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lulu Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingchan Zhao
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Wenhuai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
29
|
Zhang M, Wang X, Tao J, Li S, Hao S, Zhu X, Hong Y. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:134-142. [PMID: 29621704 DOI: 10.1016/j.ecoenv.2018.03.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
The wide presence of polycyclic aromatic hydrocarbons (PAHs) in lakes necessitates a better understanding of cyanobacteria metabolites under the contamination of PAHs. The M. aeruginosa strain PCC7806 was selected to investigate the effects of naphthalene and pyrene on the physiological and biochemical reactions of cyanobacteria, including antioxidant defense system (superoxide dismutase, catalase), intracellular microcystin (MC) content, phycobiliprotein (phycocyanin, allophycocyanin) contents, and specific growth rate. Naphthalene and pyrene altered the growth of the M. aeruginosa strain, reduced the contents of phycocyanin and allophycocyanin, and stimulated the activities of antioxidant enzymes without lipid peroxidation. Remarkably, the intracellular MC content was significantly increased by 68.1% upon exposure of M. aeruginosa to 0.45 mg L-1 naphthalene, and increased by 51.5% and 77.9% upon exposure of M. aeruginosa to 0.45 mg L-1 pyrene and 1.35 mg L-1 pyrene, respectively (P<0.05). Moreover, significant correlations were observed between these physiological reactions, referring that a series of physiological and biochemical reactions in M. aeruginosa worked together against the PAH contamination. Considering that MCs are the most studied cyanobacterial toxins, our results clarified that the promoting MC production by PAH contamination cannot be neglected when making related risk assessments of eutrophic waters.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Xiucui Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100 PR China
| | - Jiayu Tao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuang Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shupeng Hao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuezhu Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yajun Hong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
30
|
Wang X, Wang X, Zhao J, Song J, Su C, Wang Z. Surface modified TiO 2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa. WATER RESEARCH 2018; 131:320-333. [PMID: 29306666 DOI: 10.1016/j.watres.2017.12.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Microcystis aeruginosa, as the most common cyanobacteria, often grows uncontrollably in eutrophic lakes with the accumulation of microcystin-LR (MC-LR) in water, which heavily pollutes water and hence imposes tremendous threat to aquatic animals and human beings. To remediate the harmful algae polluted water, here we synthesize a series of poly dimethyl diallyl ammonium chloride (PDDA) modified TiO2 floating photocatalysts, PDDA@NPT-EGC, and apply them as a visible light driven multifunctional material. The fabricated PDDA@NPT-EGC composites have a worm-like structure with PDDA particles distributed on their surfaces, and the concentration of PDDA can affect the agglomerative condition and distribution of PDDA particles and the photoelectric properties of catalysts. Among these catalysts, the PDDA@NPT-EGC with 0.2 wt% PDDA (0.2PDDA@NPT-EGC) shows the highest adsorption and photocatalytic activity. Compared with the NPT-EGC, the dark adsorption efficiency for the 0.2PDDA@NPT-EGC after 3 h increases from 70.4% to 88.9%, and the total removal efficiency after visible light irradiation for 2 h increases from 77.8% to 92.6%. In addition, the 0.2PDDA@NPT-EGC exhibits a removal efficiency of 96.55% for photocatalytic degradation of MC-LR after irradiation for 3 h. The Adda side chain of MC-LR molecule is found to degradate gradually in the photocatalytic degradation process, indicative of the elimination of biotoxicity for MC-LR molecule in the reaction. We demonstrate that the 0.2PDDA@NPT-EGC is remarkably competitive in both algae inactivation and MC-LR removal, which shall hold substantial promise in remediation of algae pollution in eutrophic waters.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; SZU-NUS Collaborative Innovation Center for Optoelectronics Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330 Portugal
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingke Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronics Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330 Portugal.
| |
Collapse
|
31
|
Responses of Microcystis Colonies of Different Sizes to Hydrogen Peroxide Stress. Toxins (Basel) 2017; 9:toxins9100306. [PMID: 28953232 PMCID: PMC5666353 DOI: 10.3390/toxins9100306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 11/16/2022] Open
Abstract
Microcystis blooms have become a ubiquitous phenomenon in freshwater ecosystems, and the size of Microcystis colonies varies widely throughout the year. In the present study, hydrogen peroxide (H2O2) was applied to test the effect of this algaecide on Microcystis colonies of different sizes and to evaluate the colonies’ antioxidant strategy. The results showed that Microcystis populations collapsed under treatment with 5 mg/L H2O2 at colony sizes smaller than 25 μm. A dosage of 20 mg/L H2O2 was necessary to efficiently control Microcystis colonies larger than 25 μm. The enzymatic and non-enzymatic antioxidant systems of different colonies exhibited various strategies to mitigate oxidative stress. In small colonies, superoxide dismutase (SOD) activity was readily stimulated and operated with catalase (CAT) activity to eliminate reactive oxygen species (ROS). In colonies larger than 25 μm, the antioxidant enzyme CAT and antioxidant substance glutathione (GSH) played major roles in mitigating oxidative stress at H2O2 concentrations below 20 mg/L. In addition, application of the algaecide led to the release of intracellular-microcystins (MCs), and oxidatively-driven MCs reached high concentrations when colony size was larger than 100 μm. Algaecide control measures should be implemented before the formation of large colonies to limit the algaecide dosage and MC release.
Collapse
|
32
|
Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Wang X, Wang X, Zhao J, Song J, Zhou L, Ma R, Wang J, Tong X, Chen Y. Efficient visible light-driven in situ photocatalytic destruction of harmful alga by worm-like N,P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) floating composites. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00133a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of N,P co-doped TiO2/expanded graphite carbon layer (NPT-EGC) composites for floating algaecides.
Collapse
Affiliation(s)
- Xin Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
- School of Civil and Environmental Engineering
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jingke Song
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Lijie Zhou
- Shenzhen Academy of Environmental Sciences
- Shenzhen 518001
- China
| | - Rongrong Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jiayi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Xin Tong
- School of Civil and Environmental Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| | - Yongsheng Chen
- School of Civil and Environmental Engineering
- Georgia Institute of Technology
- Atlanta 30332
- USA
| |
Collapse
|
34
|
Xie L, Rediske RR, Gillett ND, O'Keefe JP, Scull B, Xue Q. The impact of environmental parameters on microcystin production in dialysis bag experiments. Sci Rep 2016; 6:38722. [PMID: 27934931 PMCID: PMC5146672 DOI: 10.1038/srep38722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/10/2016] [Indexed: 12/03/2022] Open
Abstract
It is important to understand what environmental parameters may regulate microcystin (MC) production and congener type. To determine if environmental conditions in two hydraulically connected lakes can influence MC production and congener ratios, we incubated dialysis bags containing phytoplankton from mesotrophic/eutrophic Muskegon Lake into hypereutrophic Bear Lake (Michigan, USA) and vice versa. Strong cyanobacteria growth was observed in all dialysis bags with Bear Lake phytoplankton in July and August. Phytoplankton communities were dominated by Aphanizomenon aphanizomenoides, Microcystis wesenbergii, Limnothrix redekei. MC concentrations were correlated with M. wesenbergii and A. aphanizomenoides biovolume. MC concentrations in bags incubated in the Muskegon Lake with Bear Lake water were significantly higher than the other bags. The higher light intensity and total nitrogen concentration may have caused the increase of MC production. The MC-LR/MC-RR ratios varied with sample origin but not with lake of incubation, indicating that physical environmental factors (water temperature and turbidity) were not the reasons for different toxin production ratios. Differences in total phosphorus concentrations might be one reason for the dissimilarity of the MC-LR/MC-RR ratio between the two lakes. The higher light intensity and NO3-N concentration in Muskegon Lake are two factors contributing to an increase of MC production.
Collapse
Affiliation(s)
- Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Bejing Road, Nanjing 210008, China.,Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Richard R Rediske
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Nadia D Gillett
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - James P O'Keefe
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Brian Scull
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Bejing Road, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Chen C, Yang Z, Kong F, Zhang M, Yu Y, Shi X. Growth, physiochemical and antioxidant responses of overwintering benthic cyanobacteria to hydrogen peroxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:649-655. [PMID: 27352766 DOI: 10.1016/j.envpol.2016.06.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
The recruitment of overwintering benthic cyanobacteria from the sediment surface is important for the development of cyanobacterial blooms during warm spring seasons. Thus, controlling the growth of cyanobacteria at the benthic stage to inhibit their recruitment is vital to control or delay the formation of summer blooms. In this study, overwintering benthic cyanobacteria were exposed to ascending hydrogen peroxide (H2O2) concentrations (0, 1, 5, and 20 mg/L) in a simulated overwintering environment. Photosynthetic pigments, physiochemical features, and antioxidant responses were evaluated to determine the inhibitory effects of H2O2 on the growth of benthic cyanobacteria and to identify the potential mechanisms thereof. These H2O2-treated cyanobacteria were then collected through filtration and transferred to an optimum environment to evaluate their recovery capacity. The results showed that chlorophyll a and phycocyanin contents, photosynthetic yield, and esterase activity decreased significantly in H2O2 treated groups compared to the control. The activities of superoxide dismutase (SOD) and catalase (CAT) in benthic cyanobacteria were inhibited after 72 h exposure to H2O2, while the malondialdehyde (MDA) contents were stimulated at the same time. These results indicate that H2O2 can inhibit the growth of benthic cyanobacteria, and H2O2-induced oxidative damage might be one of the mechanisms involved. The recovery experiment showed that the impairment of benthic cyanobacteria was temporary at a low dose of 1 mg/L H2O2, but permanent damage was induced when H2O2 concentrations were increased to 5 and 20 mg/L. Overall, our results highlight that H2O2 is a potential cyanobacteria inhibitor and can be used to decreasing the biomass of overwintering cyanobacteria, and could further control the intensity of cyanobacteria during the growth seasons.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Fanxiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Yang Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
36
|
Li T, Bi Y, Liu J, Wu C. Effects of laser irradiation on a bloom forming cyanobacterium Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20297-20306. [PMID: 27448813 DOI: 10.1007/s11356-016-7235-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Abstract
Effects of laser irradiation on photosystem II (PS II) photochemical efficiencies, growth, and other physiological responses of Microcystis aeruginosa were investigated in this study. Results indicate that laser irradiation (wavelengths 405, 450, 532, and 650 nm) could effectively inhibit maximal PS II quantum yield (Fv/Fm) and maximal electron transport rates (ETRmax) of M. aeruginosa, while saturating light levels (Ek) of M. aeruginosa did not change significantly. Among the four tested wavelengths, 650 nm laser (red light) showed the highest inhibitory efficiency. Following 650 nm laser irradiation, the growth of M. aeruginosa was significantly suppressed, and contents of cellular photosynthetic pigments (chlorophyll a, carotenoid, phycocyanin, and allophycocyanin) decreased as irradiation dose increased. Meanwhile, laser irradiation enhanced the enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) in M. aeruginosa cells. Lower irradiation doses did not change the intracellular microcystin contents, but higher dose irradiation (>1284 J cm-2) caused the release of microcystin into the culture medium. Transmission electron microscope examination showed that the ultrastructure of M. aeruginosa cells was destructed progressively following laser irradiation. Effects of laser irradiation on M. aeruginosa may be a combination of photochemical, electromagnetic, and thermal effects.
Collapse
Affiliation(s)
- Tiancui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road #7, Wuhan, 43001284, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jiantong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road #7, Wuhan, 43001284, People's Republic of China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road #7, Wuhan, 43001284, People's Republic of China.
| |
Collapse
|
37
|
Paerl HW, Otten TG, Joyner AR. Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 2016; 9:641-51. [PMID: 27418325 PMCID: PMC4993183 DOI: 10.1111/1751-7915.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over‐enrichment as nuisance “blooms.” Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high‐level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Timothy G Otten
- Bend Genetics, LLC, 87 Scripps Drive, Ste. 301, Sacramento, CA, USA
| | - Alan R Joyner
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| |
Collapse
|
38
|
Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. HARMFUL ALGAE 2016; 55:97-111. [PMID: 28073551 DOI: 10.1016/j.hal.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
Many degraded waterbodies around the world are subject to strong proliferations of cyanobacteria - notorious for their toxicity, high biomass build-up and negative impacts on aquatic food webs - the presence of which puts serious limits on the human use of affected water bodies. Cyanobacterial blooms are largely regarded as trophic dead ends since they are a relatively poor food source for zooplankton. As a consequence, their population dynamics are generally attributed to changes in abiotic conditions (bottom-up control). Blooms however generally contain a vast and diverse community of micro-organisms of which some have shown devastating effects on cyanobacterial biomass. For Microcystis, one of the most common bloom-forming cyanobacteria worldwide, a high number of micro-organisms (about 120 taxa) including viruses, bacteria, microfungi, different groups of heterotrophic protists, other cyanobacteria and several eukaryotic microalgal groups are currently known to negatively affect its growth by infection and predation or by the production of allelopathic compounds. Although many of these specifically target Microcystis, sharp declines of Microcystis biomass in nature are only rarely assigned to these antagonistic microbiota. The commonly found strain specificity of their interactions may largely preclude strong antagonistic effects on Microcystis population levels but may however induce compositional shifts that can change ecological properties such as bloom toxicity. These highly specific interactions may form the basis of a continuous arms race (co-evolution) between Microcystis and its antagonists which potentially limits the possibilities for (micro)biological bloom control.
Collapse
Affiliation(s)
- Jeroen Van Wichelen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium.
| | - Pieter Vanormelingen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Geoffrey A Codd
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| |
Collapse
|
39
|
Noyma NP, Silva TP, Chiarini-Garcia H, Amado AM, Roland F, Melo RCN. Potential effects of UV radiation on photosynthetic structures of the bloom-forming cyanobacterium Cylindrospermopsis raciborskii CYRF-01. Front Microbiol 2015; 6:1202. [PMID: 26579108 PMCID: PMC4627488 DOI: 10.3389/fmicb.2015.01202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are aquatic photosynthetic microorganisms. While of enormous ecological importance, they have also been linked to human and animal illnesses around the world as a consequence of toxin production by some species. Cylindrospermopsis raciborskii, a filamentous nitrogen-fixing cyanobacterium, has attracted considerable attention due to its potential toxicity and ecophysiological adaptability. We investigated whether C. raciborskii could be affected by ultraviolet (UV) radiation. Non-axenic cultures of C. raciborskii were exposed to three UV treatments (UVA, UVB, or UVA + UVB) over a 6 h period, during which cell concentration, viability and ultrastructure were analyzed. UVA and UVA + UVB treatments showed significant negative effects on cell concentration (decreases of 56.4 and 64.3%, respectively). This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe. Over 90% of UVA + UVB- and UVA-treated cells died. UVB did not alter cell concentration, but reduced cell viability in almost 50% of organisms. Transmission electron microscopy (TEM) revealed a drastic loss of thylakoids, membranes in which cyanobacteria photosystems are localized, after all treatments. Moreover, other photosynthetic- and metabolic-related structures, such as accessory pigments and polyphosphate granules, were damaged. Quantitative TEM analyses revealed a 95.8% reduction in cell area occupied by thylakoids after UVA treatment, and reduction of 77.6 and 81.3% after UVB and UVA + UVB treatments, respectively. Results demonstrated clear alterations in viability and photosynthetic structures of C. raciborskii induced by various UV radiation fractions. This study facilitates our understanding of the subcellular organization of this cyanobacterium species, identifies specific intracellular targets of UVA and UVB radiation and reinforces the importance of UV radiation as an environmental stressor.
Collapse
Affiliation(s)
- Natália P Noyma
- Laboratory of Aquatic Ecology, Department of Biology, Federal University of Juiz de Fora Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora Juiz de Fora, Brazil
| | - Hélio Chiarini-Garcia
- Laboratory of Structural Biology and Reproduction, Department of Morphology, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - André M Amado
- Laboratory of Limnology, Department of Oceanography and Limnology, Federal University of Rio Grande do Norte Natal, Brazil
| | - Fábio Roland
- Laboratory of Aquatic Ecology, Department of Biology, Federal University of Juiz de Fora Juiz de Fora, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora Juiz de Fora, Brazil
| |
Collapse
|
40
|
Yang Z, Kong F. UV-B Exposure Affects the Biosynthesis of Microcystin in Toxic Microcystis aeruginosa Cells and Its Degradation in the Extracellular Space. Toxins (Basel) 2015; 7:4238-52. [PMID: 26492272 PMCID: PMC4626732 DOI: 10.3390/toxins7104238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by cyanobacteria that can be toxic to aquatic and terrestrial organisms. MC synthesis and degradation are thought to be influenced by several different physical and environmental parameters. In this study, the effects of different intensities of UV-B radiation on MC biosynthesis in Microcystis cells and on its extracellular degradation were investigated by mRNA analysis and degradation experiments. Exposure to UV-B at intensities of 1.02 and 1.45 W/m2 not only remarkably inhibited the growth of Microcystis, but also led to a decrease in the MC concentration. In addition, mcyD transcription was decreased under the same UV-B intensities. These results demonstrated that the effects of UV-B exposure on the biosynthesis of MCs in Microcystis cells could be attributed to the regulation of mcy gene transcription. Moreover, the MC concentration was decreased significantly after exposure to different intensities of UV-B radiation. Of the three MC variants (MC-LR, -RR and -YR, L, R and Y are abbreviations of leucine, arginine and tyrosine), MC-LR and MC-YR were sensitive to UV-B radiation, whereas MC-RR was not. In summary, our results showed that UV-B radiation had a negative effect on MC production in Microcystis cells and MC persistence in the extracellular space.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| | - Fanxiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|