1
|
Wang M, Yu L, Wang J, Qin L, Sun X, Liu J, Han Y, Chen S. Chemotaxis of rhizosphere Pseudomonas sp. induced by foliar spraying of lanthanum reduces cadmium uptake by pakchoi. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136625. [PMID: 39581036 DOI: 10.1016/j.jhazmat.2024.136625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Foliar application of rare earth micronutrient of lanthanum (La) exhibits great potential in reducing cadmium (Cd) uptake in crops, the underlying mechanisms controlling the interaction between Cd toxicity-relieved crops and soil microbiota are poorly understood. In this study, LaCl3 with the concentrations of 10 and 30 μM was sprayed on pakchoi (Brassica chinensis L.) planting on Cd contaminated solution and soil to determine the changes of root metabolites and rhizosphere bacterial communities. Compared to the control, Cd concentration in pakchoi leaves was significantly decreased by 30.9 % and 22.6 % with the high group under both hydroponic and pot culture by applying 30 μM LaCl3. Herein, the concrete evidence is provided that pakchoi plants in response to foliar-spraying La under soil or solution Cd toxicity can promote the root secretion of amino acids, resulting in a strong enrichment of nitrogen-related microorganisms. To probe this linkage, a Pseudomonas representative specie was isolated that had the ability of consuming alanine, the most oversecreted root exudate due to La application. Further results demonstrated that this strain had the capacities for alleviating Cd toxicity and enhancing crop growth by immobilizing Cd and secreting plant-beneficial metabolites. This study reveals a plant-extrudate-microbiome feedback loop for responding to La-relieved Cd toxicity in crops by the chemotaxis of rhizosphere Pseudomonas toward alanine secreted by pakchoi.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Han
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Shao S, Zhang R, Liu Q, Guo G. Acute toxicity of binary and ternary mixtures of La, Ce and Dy on Daphnia magna: Toxicity patterns depend on the ratios of the components and the concentration gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177305. [PMID: 39488277 DOI: 10.1016/j.scitotenv.2024.177305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Rare earth elements (REEs) have raised significant environmental contamination concerns, yet the combined toxicity of REE mixtures remains inadequately understood. In this study, acute toxicity of individual, binary and ternary mixtures of lanthanum (La), cerium (Ce), and dysprosium (Dy) on neonatal Daphnia magna was investigated. Dy exhibited the greatest toxicity on neonatal Daphnia magna, followed by La and Ce. The concentration addition (CA) model was superior to the independent action (IA) model for predicting the toxicity of binary mixtures. The CA model indicated additive effects for LaCe mixture and antagonistic effects for LaDy and CeDy mixtures. In contrast, IA model suggested synergistic interactions for LaCe and LaDy mixtures, with antagonistic effects for CeDy mixture when considering dissolved concentration and synergistic effects when considering free-ion concentration. The nonadditive interactions and deviation parameters from the prediction of binary mixture toxicity were assessed by using MixTox model. The ternary mixture of LaCeDy exhibited antagonistic effects on Daphnia magna, and IA model slightly outperformed CA model. Overall, the type of combined toxicity in REE mixtures is influenced by constituents in the mixture and concentration levels. These findings provide scientific basis for the toxicological assessment, risk evaluation and pollution control of REE mixtures. ENVIRONMENTAL IMPLICATION: Rare earth elements (REEs) level is increasing in water environment due to wide use and exploitation. However, currently, we know little about the difference of REEs toxicity and combined toxicity of mixture to aquatic organism, which limited the assessment of toxicity and hazard risk of REEs in natural water. Here, this study demonstrates the acute toxicity of individual, binary and ternary mixtures of lanthanum, cerium, and dysprosium on neonatal Daphnia magna according to the measured data and predicted model, identifying the influence factors for combined toxicity. This discovery offers new insights for the assessment and prediction of REEs toxicity.
Collapse
Affiliation(s)
- Shuai Shao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
| | - Ruiqing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China.
| | - Qifeng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China.
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Kaur P, Mahajan M, Gambhir H, Khan A, Khan MIR. Rare earth metallic elements in plants: assessing benefits, risks and mitigating strategies. PLANT CELL REPORTS 2024; 43:216. [PMID: 39145796 DOI: 10.1007/s00299-024-03305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Rare earth elements (REEs) comprises of a uniform group of lanthanides and scandium (Sc) and yttrium (Y) finding their key importance in agriculture sectors, electronic and defense industries, and renewable energy production. The immense application of REEs as plant growth promoters has led to their undesirable accumulation in the soil system raising concerns for REE pollution as upcoming stresses. This review mainly addresses the chemistry of REEs, uptake and distribution and their biphasic responses in plant systems and possible plausible techniques that could mitigate/alleviate REE contamination. It extends beyond the present understanding of the biphasic impacts of rare earth elements (REEs) on physio-biochemical attributes. It not only provides landmarks for further exploration of the interrelated phytohormonal and molecular biphasic nature but also introduces novel approaches aimed at mitigating their toxicities. By delving into innovative strategies such as recycling, substitution, and phytohormone-assisted mitigation, the review expands upon existing knowledge of REEs whilst also offering pathways to tackle the challenges associated with REE utilization.
Collapse
Affiliation(s)
- Pravneet Kaur
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | - Moksh Mahajan
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | | | - Adiba Khan
- Department of Botany, University of Lucknow, Lucknow, U. P., India
| | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
- Department of Plant Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Sharma P, Jha AB, Dubey RS. Addressing lanthanum toxicity in plants: Sources, uptake, accumulation, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172560. [PMID: 38641102 DOI: 10.1016/j.scitotenv.2024.172560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.
Collapse
Affiliation(s)
- Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| |
Collapse
|
5
|
Xie Q, Deng W, Su Y, Ma L, Yang H, Yao F, Lin W. Transcriptome Analysis Reveals Novel Insights into the Hyperaccumulator Phytolacca acinosa Roxb. Responses to Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:297. [PMID: 38256850 PMCID: PMC10819451 DOI: 10.3390/plants13020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that causes serious damage to plant and human health. Phytolacca acinosa Roxb. has a large amount of aboveground biomass and a rapid growth rate, and it has been identified as a novel type of Cd hyperaccumulator that can be harnessed for phytoremediation. However, the molecular mechanisms underlying the response of P. acinosa to Cd2+ stress remain largely unclear. In this study, the phenotype, biochemical, and physiological traits of P. acinosa seeds and seedlings were analyzed under different concentrations of Cd2+ treatments. The results showed higher Cd2+ tolerance of P. acinosa compared to common plants. Meanwhile, the Cd2+ content in shoots reached 449 mg/kg under 10 mg/L Cd2+ treatment, which was obviously higher than the threshold for Cd hyperaccumulators. To investigate the molecular mechanism underlying the adaptability of P. acinosa to Cd stress, RNA-Seq was used to examine transcriptional responses of P. acinosa to Cd stress. Transcriptome analysis found that 61 genes encoding TFs, 48 cell wall-related genes, 35 secondary metabolism-related genes, 133 membrane proteins and ion transporters, and 96 defense system-related genes were differentially expressed under Cd2+ stress, indicating that a series of genes were involved in Cd2+ stress, forming a complex signaling regulatory mechanism. These results provide new scientific evidence for elucidating the regulatory mechanisms of P. acinosa response to Cd2+ stress and new clues for the molecular breeding of heavy metal phytoremediation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Wentao Deng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Liying Ma
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Feihong Yao
- College of Pharmacy, Xiangnan University, Chenzhou 423099, China; (Q.X.)
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Abuelsoud W, Madany MMY, Sheteiwy MS, Korany SM, Alsharef E, AbdElgawad H. Alleviation of gadolinium stress on Medicago by elevated atmospheric CO 2 is mediated by changes in carbohydrates, Anthocyanin, and proline metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107925. [PMID: 37566995 DOI: 10.1016/j.plaphy.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Rare earth elements (REE) like Gadolinium (Gd), are increasingly used in industry and agriculture and this is concomitant with the increasingly leaking of Gd into the environment. Under a certain threshold concentration, REE can promote plant growth, however, beyond this concentration, they exert negative effects on plant growth. Moreover, the effect of Gd on plants growth and metabolism under a futuristic climate with increasingly atmospheric CO2 has not yet been studied. To this end, we investigated the effect of soil contamination with Gd (150 mg/kg soil) on the growth, carbohydrates, proline, and anthocyanin metabolism of Medicago plants grown under ambient (aCO2, 410 ppm) or elevated CO2 (eCO2, 720 ppm) concentration. Gd negatively affected the growth and photosynthesis of plants and imposed oxidative stress i.e., increased H2O2 and lipid peroxidation (MDA) level. As defense lines, the level and metabolism of osmoprotectants (soluble sugars and proline) and antioxidants (phenolics, anthocyanins, and tocopherols) were increased under Gd treatment. High CO2 positively affected the growth and metabolism of Medicago plants. Moreover, eCO2 mitigated the negative impacts of Gd on Medicago growth. It further induced the levels of osmoprotectants and antioxidants. In line with increased proline and anthocyanins, their metabolic enzymes (e.g. OAT, P5CS, PAL, and CS) were also increased. This study advances our understanding of how Gd adversely affects Medicago plant growth and metabolism. It also sheds light on the biochemical mechanisms underlying the Gd stress-reducing impact of eCO2.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mahmoud M Y Madany
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Emad Alsharef
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Pandey A, Agrawal M, Agrawal SB. Ultraviolet-B and Heavy Metal-Induced Regulation of Secondary Metabolites in Medicinal Plants: A Review. Metabolites 2023; 13:metabo13030341. [PMID: 36984781 PMCID: PMC10058376 DOI: 10.3390/metabo13030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite a rich history and economic importance, the potential of medicinal plants has not been fully explored under different abiotic stress conditions. Penetration of UV-B radiation and contamination of heavy metals are two important environmental stress for plants with remarkable influence on the defense-related and pharmaceutically important secondary metabolites of medicinal plants. UV-B and heavy metal contamination may become a critical issue that either positively or negatively affects the quality and quantity of secondary metabolites. Such effects may result from changes in the expression level of genes that encode the corresponding enzymes or the inactivation and/or stimulation of specific enzymes involved in the different biosynthetic pathways of the secondary metabolites. Therefore, a comprehensive study of the impact of UV-B and heavy metals individually and in combination on the biosynthesis and accumulation of secondary metabolites in medicinal plants is discussed in the present review.
Collapse
|
8
|
Ghazagh F, Bagherieh-Najjar MB, Nezamdoost T. Unraveling the interaction of copper, cadmium, calcium, and nitrate on phenolics, flavonoids, and shikonin contents of Onosma dichroantha calli by statistical modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43804-43816. [PMID: 36662436 DOI: 10.1007/s11356-023-25187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Increased anthropogenic activities have led to the accumulation of certain minerals to ecotoxic levels in the environment, which could influence the secondary metabolism of plants. Shikonin, an exudate from the roots of Onosma dichroantha, is a secondary metabolite involved in plant defense and invasion success; however, the interactive effects of copper (Cu), cadmium (Cd), calcium (Ca), and nitrate (NO3) in shikonin biosynthesis and accumulation are not known. Here, the individual, curvilinear, and pairwise effects of these elements on shikonin biosynthesis in callus culture of O. dichroantha have been investigated by means of a statistical modeling approach and multivariate regression analyses. Although the main effects of the examined minerals seemed to be suppressive, their combined interactions could enhance callus growth and secondary metabolism of O. dichroantha. Accordingly, maximum values were recorded for the callus growth index (6.85 at 23.25 μM Cu, 70 mM NO3, 1 mM Ca, 27.50 μM Cd), total phenolics (24.83 mg gallic acid equivalent at 9.75 μM Cu, 70 mM NO3, 1 mM Ca, 62.50 μM Cd), total flavonoids (6.12 mg quercetin equivalent at 30 μM Cu, 80 mM NO3, 1.5 mM Ca, 45 μM Cd), and shikonin (24.33 μg g-1 FW at 9.75 μM Cu, 70 mM NO3, 2 mM Ca, 27.5 μM Cd). Overall, these data show that increasing concentrations of the examined minerals in culture medium can markedly influence the secondary metabolism of O. dichroantha cells and suggest that a comparable phenomenon may exist in a wider range of medicinal plants, grown on polluted environments, which may affect their invasive capabilities.
Collapse
Affiliation(s)
- Fatemeh Ghazagh
- Department of Biology, Golestan University, Shahid Beheshti Ave, Gorgan, Golestan, Iran
| | | | - Tahereh Nezamdoost
- Department of Biology, Golestan University, Shahid Beheshti Ave, Gorgan, Golestan, Iran
| |
Collapse
|
9
|
Huang B, Cui J, Ran Y, Chen C, Li F, Zhang Y, Li Z, Xie E. Mechanism of macroalgae Gracilaria bailiniae responding to cadmium and lanthanum. FRONTIERS IN PLANT SCIENCE 2022; 13:1076526. [PMID: 36531398 PMCID: PMC9756850 DOI: 10.3389/fpls.2022.1076526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macroalgae can accumulate a wide array of metals, leading to their appliance as biomonitors of aquatic environments. With the rapid development of industrial and agricultural-based activities, Cd pollution in aquatic environments is considered an increasingly severe problem worldwide. Although La could alleviate the Cd stress in higher terrestrial plants, the response mechanisms of macroalgae to Cd and La are unknown. Along these lines, in this work, Cd significantly affected the growth, internal cellular structure, photosynthesis, pigment content, antioxidant enzyme activity, and lipid peroxidation level of G. bailiniae. However, the presence of La alleviated these adverse effects from Cd. Furthermore, the response mechanism of G. bailiniae to Cd was attributed to the self-antioxidant ability enhancement, membrane defense, and programmed-cellular regulation. However, the presence of La mediated the biosynthesis of both flavonoids and lipids, which inhibited the Cd accumulation, modulated algal stress signalling networks, renewed the impaired chlorophyll molecule, maintained the activity of the crucial enzyme, enhanced antioxidant ability, and maintained the stabilization of redox homeostasis, alleviating the adverse impact from Cd and improve the growth of G. bailiniae. The experimental results successfully demonstrate a new detoxicant to alleviate Cd stress, promoting a more comprehensive array of macroalgal applications.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Ran
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Chunli Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Feng Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Yulei Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Laboratory of Marine Ecology Environment Monitoring and Warning, Zhanjiang, China
| | - Zailiang Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health. TOXICS 2022; 10:toxics10090499. [PMID: 36136464 PMCID: PMC9504071 DOI: 10.3390/toxics10090499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
Accelerating heavy metal pollution is a hot issue due to a continuous growth in consumerism and increased activities in various global industries. Soil contamination with heavy metals has resulted in their incorporation into the human food web via plant components. Accumulation and amplification of heavy metals in human tissues through the consumption of medicinal plants can have hazardous health outcomes. Therefore, in this critical review we aim to bring together published information on this subject, with a special highlight on the knowledge gaps related to heavy metal stress in medicinal plants, their responses, and human health related risks. In this respect, this review outlines the key contamination sources of heavy metals in plants, as well as the absorption, mobilization and translocation of metal ions in plant compartments, while considering their respective mechanisms of detoxification. In addition, this literature review attempts to highlight how stress and defensive strategies operate in plants, pointing out the main stressors, either biotic or abiotic (e.g., heavy metals), and the role of reactive oxygen species (ROS) in stress answers. Finally, in our research, we further aim to capture the risks caused by heavy metals in medicinal plants to human health through the assessment of both a hazard quotient (HQ) and hazard index (HI).
Collapse
Affiliation(s)
- Raluca Maria Hlihor
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Mihaela Roșca
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Laura Hagiu-Zaleschi
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Isabela Maria Simion
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| | - Gabriel Mihăiță Daraban
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
11
|
Kováčik J, Husáková L, Graziani G, Patočka J, Vydra M, Rouphael Y. Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:357-367. [PMID: 35753284 DOI: 10.1016/j.plaphy.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The Hypericum species (H. perforatum, H. olympicum, and H. orientale) were cultured in hydroponics with excess nickel (Ni, 1 or 100 μM Ni) to compare the metallic and metabolite content. Identical species were collected outdoor to assess the same parameters (including uranium and lanthanides) with total of 53 elements. The results showed that Ni was less accumulated in shoots in hydroponics (translocation factor of 0.01-0.25) and the highest absolute amount was detected in H. olympicum. Essential elements were typically depleted by Ni excess, but Co and Na increased. Soluble phenols, sum of flavonols and catechin rather increased in response to Ni but quercetin glycosides and free amino acids decreased in the shoots of H. olympicum mainly. Comparison of laboratory and outdoor growing plants showed more phenols in outdoor samples but not in H. olympicum and individual metabolites differed too. Plants cultured in hydroponics contained lower amount of non-essential, toxic and rare earth elements (30-100-fold) and shoot bioaccumulation factor in outdoor samples was low for most elements (<0.01) but not for Cd and Pt. Data reveal that H. olympicum is a potent source of phenolic metabolites whereas H. orientale accumulates many elements (38 out of 53 elements).
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Lenka Husáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, 532 10, Pardubice, Czech Republic
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Jan Patočka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573 HB/D, 532 10, Pardubice, Czech Republic
| | - Marek Vydra
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| |
Collapse
|
12
|
Dridi N, Ferreira R, Bouslimi H, Brito P, Martins-Dias S, Caçador I, Sleimi N. Assessment of Tolerance to Lanthanum and Cerium in Helianthus Annuus Plant: Effect on Growth, Mineral Nutrition, and Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070988. [PMID: 35406967 PMCID: PMC9002919 DOI: 10.3390/plants11070988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Rare earth elements (REEs) present a group of nonessential metals for the growth and development of plants. At high concentrations, they can induce internal stress and disturb the physiological and biochemical mechanisms in plants. The potential uptake of lanthanum (La) and cerium (Ce) by the horticultural plant Helianthus annuus and the effect of these elements on its growth, its absorption of macroelements, and the contents of phenolic compounds and flavonoids were assessed. The plants were exposed to 0, 1, 2.5, 5, and 10 µM of La and Ce for 14 days. The results showed a remarkable accumulation of the two REEs, especially in the roots, which was found to be positively correlated with the total phenolic compound and flavonoid content in the plant shoots and roots. The plant's growth parameter patterns (such as dry weight and water content); the levels of potassium, calcium, and magnesium; and the tolerance index varied with the concentrations of the two studied elements. According to the tolerance index values, H. annuus had more affinity to La than to Ce. Although these metals were accumulated in H. annuus tissues, this Asteraceae plant cannot be considered as a hyperaccumulator species of these two REEs, since the obtained REE content in the plant's upper parts was less than 1000 mg·Kg-1 DW.
Collapse
Affiliation(s)
- Nesrine Dridi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Renata Ferreira
- CERENA, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Houda Bouslimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| | - Pedro Brito
- IPMA, Division of Oceanography and Marine Environment, Instituto Português do Mar e da Atmosfera, 1495-165 Algés, Portugal;
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal
| | - Susete Martins-Dias
- CERENA, Centro de Recursos Naturais e Ambiente, Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Isabel Caçador
- MARE-FCUL, Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| | - Noomene Sleimi
- LR. RME-Resources, Materials and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia; (N.D.); (H.B.)
| |
Collapse
|
13
|
Grosjean N, Le Jean M, Armengaud J, Schikora A, Chalot M, Gross EM, Blaudez D. Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127830. [PMID: 34896703 DOI: 10.1016/j.jhazmat.2021.127830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of green energy sources and new medical technologies contributes to the increased exploitation of rare earth elements (REEs). They can be subdivided into light (LREEs) and heavy (HREEs) REEs. Mining, industrial processing, and end-use practices of REEs has led to elevated environmental concentrations and raises concerns about their toxicity to organisms and their impact on ecosystems. REE toxicity has been reported, but its precise underlying molecular effects have not been well described. Here, transcriptomic and proteomic approaches were combined to decipher the molecular responses of the model organism Saccharomyces cerevisiae to La (LREE) and Yb (HREE). Differences were observed between the early and late responses to La and Yb. Several crucial pathways were modulated in response to both REEs, such as oxidative-reduction processes, DNA replication, and carbohydrate metabolism. REE-specific responses involving the cell wall and pheromone signalling pathways were identified, and these responses have not been reported for other metals. REE exposure also modified the expression and abundance of several ion transport systems, with strong discrepancies between La and Yb. These findings are valuable for prioritizing key genes and proteins involved in La and Yb detoxification mechanisms that deserve further characterization to better understand REE environmental and human health toxicity.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France; Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Marie Le Jean
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, D-38104 Braunschweig, Germany
| | - Michel Chalot
- Université de Bourgogne Franche-Comté, CNRS, Laboratoire Chrono-Environnement, F-25000 Besançon, France; Université de Lorraine, F-54000 Nancy, France
| | | | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| |
Collapse
|
14
|
Kováčik J, Dresler S, Strzemski M, Sowa I, Babula P, Wójciak-Kosior M. Nitrogen modulates strontium uptake and toxicity in Hypericum perforatum plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127894. [PMID: 34986560 DOI: 10.1016/j.jhazmat.2021.127894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Strontium is an unavoidable element occurring in plants due to its abundance in the soil and similarity with calcium. To mimic natural conditions, impacts of additional inorganic (nitrate) or organic (urea and allantoin) nitrogen sources (1 mM of each N form in addition to 3.53 mM N in the basic cultivation solution) or N deficit on strontium-induced changes (100 µM Sr) in the widely used medicinal plant Hypericum perforatum L. were studied. Though various effects of Sr on primary (stimulation of amino acids but depression of most Krebs acids, ascorbic acid and thiols) and secondary metabolites (stimulation of phenols but no change of pseudo/hypericin) or mineral elements were observed (reduction of Ca amount in both shoots and roots), organic N forms often mitigated negative action of Sr or even combined stimulatory impact was observed. Organic N forms also elevated shoot accumulation of Sr while N deficit reduced it. Additional N forms, rather than Sr itself, modulated reactive oxygen species and nitric oxide formation in the root tissue. Germination experiment showed no toxicity of Sr to H. perforatum up to 1 mM Sr and even stimulated accumulation of amino acids and phenols, indicating similar ontogenetic-related responses.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
15
|
Abstract
The Hypericum genus contains one of the few genera of flowering plants that contains a species with authorization for marketing as a traditional medicine, H. perforatum. Due to the fact that this is a large genus, comprising numerous species, a large amount of interest has been shown over the years in the study of its various pharmacological activities. The chemical composition of these species is quite similar, containing compounds belonging to the class of phloroglucinol derivatives, naphthodianthrones, phenols, flavonoids and essential oils. Taking all of this into consideration, the present study aims to offer an overview of the species of the genus from the point of view of their extraction techniques and analysis methods. An extensive study on the scientific literature was performed, and it revealed a wide range of solvents and extraction methods, among which ethanol and methanol, together with maceration and ultrasonication, are the most frequent. Regarding analysis methods, separation and spectral techniques are the most employed. Therefore, the present study provides necessary data for future studies on the species of the genus, offering a complete overview and a possible basis for their development.
Collapse
|
16
|
Kováčik J. Basic physiology and biochemistry in environmental/experimental plant studies: How to quantify and interpret metabolites correctly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117192. [PMID: 34020219 DOI: 10.1016/j.envpol.2021.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
As a reviewer of ca. 50 manuscripts per year submitted to various journals, I often come across questionable metabolic data (both over- or under-estimated) mainly in the journals from the section of Environmental Sciences of Web of Science. Though the trends of visibly incorrect metabolite values may be informative (changes in response to applied treatments or environmental factors), absolute values must be precise enough to allow inter-specific comparison and eventual subsequent calculations. Technical correctness of quantification and calculation of such data is therefore often questionable. One problem arises when calculating metabolites concentration (often nmol or μmol/g of biomass) and another problem is the impact of altered water content on metabolite level (then trend per gram of fresh or dry biomass will differ). Recent discrepancies I found when searching for the literature prompted me to write this technical note aimed at focusing attention of researchers on these problems. I exclude any conflict of interest when discussing the quoted published studies. I strongly urge interested researchers to verify the correctness of metabolite quantification (extraction, dilution/calculation and alternative methods) and also to study similar literature for comparison in order to prevent the spread of incorrect data in the scientific literature.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| |
Collapse
|
17
|
Souri Z, Karimi N, Farooq MA, da Silva Lobato AK. Improved physiological defense responses by application of sodium nitroprusside in Isatis cappadocica Desv. under cadmium stress. PHYSIOLOGIA PLANTARUM 2021; 173:100-115. [PMID: 33011999 DOI: 10.1111/ppl.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Isatis cappadocica is a well-known arsenic-hyperaccumulator, but there are no reports of its responses to cadmium (Cd). Nitric oxide (NO) is a signaling molecule, which induces cross-stress tolerance and mediates several physio-biochemical processes related to heavy metal toxicity. In this study, the effects of Cd and sodium nitroprusside (SNP as NO donor) on the growth, defense responses and Cd accumulation in I. cappadocica were investigated. When I. cappadocica was treated with 100 and 200 μM Cd, there was an insignificant inhibition of shoot growth. However, Cd stress at Cd400 treatment decreased significantly the dry weight of root and shoot by 73 and 38%, respectively, as compared to control. The application of SNP significantly improved the growth parameters and mitigated Cd toxicity. In addition, SNP decreased reactive oxygen species (ROS) production induced by Cd. The increased total thiol and glutathione (GSH) concentrations after SNP application may play a decisive role in maintaining cellular redox homeostasis, thereby protecting plants against oxidative damage under Cd stress. Bovine hemoglobin (Hb as NO scavenger) reduced the protective role of SNP, suggesting a major role of NO in the defensive effect of SNP. Furthermore, the reduction in shoot growth and the increase of oxidative damage were more severe after the addition of Hb, which confirms the protective role of NO against Cd-induced oxidative stress. The protective role of SNP in decreasing Cd-induced oxidative stress may be related to NO production, which can lead to stimulation of the thiols synthesis and improve defense system.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of plant physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of plant physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Muhammad A Farooq
- Agri. Services Department, Fauji Fertilizer Company Limited, Multan, Pakistan
| | - Allan K da Silva Lobato
- Núcleo de Pesquisa Vegetal Básica e Aplicada, Universidade Federal Rural da Amazonia, Paragominas, Brazil
| |
Collapse
|
18
|
Roots of Apium graveolens and Petroselinum crispum-Insight into Phenolic Status against Toxicity Level of Trace Elements. PLANTS 2021; 10:plants10091785. [PMID: 34579318 PMCID: PMC8472699 DOI: 10.3390/plants10091785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Celery (Appium graveolens L.) and parsley (Petroselinum crispum (Mill.) Fuss) are herbs utilized in the everyday diet as spices and culinary flavorings, often used in the chemical and medicinal industries. Despite the knowing benefits of different plants from the Apiaceae family, their chemical composition is closely associated with various extrinsic factors. Environmental loading with trace elements (TEs) can modify a plant's metabolic pathways, change bioactive compounds production, cause plant pollution, and consequently provoke human health issues. Therefore, we established this research aiming to unravel the linkage between TEs accumulation and phenolic status in celery and parsley. Higher As, Cd, and Ni levels were observed in celery, which was followed by greater DPPH∙ radical scavenging activity and higher coumarins content. Contrary, parsley accumulated chromium to a greater extent, was richer in flavonoids, apigenin, and its glucosides. No significant difference between species was found in total phenolic contents, where ferulic and chlorogenic acid dominated in both species. A direct relationship between TEs and selected secondary metabolites was proven by the standardized major axis model. Besides abundant bioactive compounds, analyzed plant species showed a moderate hazard index in the children population, since the hazard index was higher than 1. Therefore, future perspectives should be turned towards the production of genotypes with a lower potential for toxic elements accumulation, so the health benefits of plant food will be more prominent.
Collapse
|
19
|
Brito P, Ferreira RA, Martins-Dias S, Azevedo OM, Caetano M, Caçador I. Cerium uptake, translocation and toxicity in the salt marsh halophyte Halimione portulacoides (L.), Aellen. CHEMOSPHERE 2021; 266:128973. [PMID: 33250233 DOI: 10.1016/j.chemosphere.2020.128973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Halimione portulacoides plants were exposed to dissolved cerium (Ce) in a hydroponic medium for five days. Ce accumulation in plants followed the metal's increase in the medium although with a very low translocation factor (TF < 0.01) between roots and shoots. Ce median concentrations in roots were 586, 988 and 1103 μg/g (dry wt.), while in shoots the median values reached 1.9, 3.5 and 10.0 μg/g (dry wt.), for plants exposed to 300, 600 and 1200 μg/L of Ce, respectively. No significant differences occurred in the length of roots and shoots among treatment groups, albeit plants exposed to the highest Ce concentration showed a clear loss of turgor pressure on the fifth day. An increase of hydrogen peroxide and malondialdehyde levels were observed in the plant shoots at 1200 μg/L of Ce. The highest concentration also triggered an answer by the shoots' antioxidant enzymes with a decrease in the activity of superoxide dismutase and an increase in peroxidase. However, no significant change in catalase activity was observed, compared to the control group, which may indicate that peroxidase played a more crucial role against the oxidative stress than catalase. Combined results indicate that H. portulacoides was actively responding to a toxic effect imposed by this higher Ce concentration. Nevertheless, changes in normal environmental conditions, may increase the bioavailability of Ce, while in areas where acid mine drainage may occur, the highest Ce concentration tested in this study may be largely exceeded, placing the sustainability of halophytes and estuarine marshes at risk.
Collapse
Affiliation(s)
- Pedro Brito
- IPMA, Instituto Português Do Mar e da Atmosfera, Rua Dr. Alfredo Magalhães Ramalho, 6, 1495-006, Lisboa, Portugal; MARE-FCUL, Centro de Ciências Do Mar e Do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Renata A Ferreira
- CERENA, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Susete Martins-Dias
- CERENA, Centro de Recursos Naturais e Ambiente, DBE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Olga M Azevedo
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Basque Country, Spain
| | - Miguel Caetano
- IPMA, Instituto Português Do Mar e da Atmosfera, Rua Dr. Alfredo Magalhães Ramalho, 6, 1495-006, Lisboa, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Isabel Caçador
- MARE-FCUL, Centro de Ciências Do Mar e Do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
20
|
Leng Y, Li Y, Wen Y, Zhao H, Wang Q, Li SW. Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111098. [PMID: 32798749 DOI: 10.1016/j.ecoenv.2020.111098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a detrimental element that can be toxic to plants. The physiological and biochemical responses of plants to Cd stress have been extensively studied, but the molecular mechanisms remain unclear. The present study showed that Cd severely inhibited the growth of roots and shoots and reduced plant biomass of mung bean seedlings. To further investigate the gene profiles and molecular processes in response Cd stress, transcriptome analyses of mung bean roots exposed to 100 μM Cd for 1, 5, and 9 days were performed. Cd treatment significantly decreased global gene expression levels at 5 and 9 d compared with the control. A total of 6737, 10279, and 9672 differentially expressed genes (DEGs) were identified in the 1-, 5-, and 9-day Cd-treated root tissues compared with the controls, respectively. Based on the analysis of DEG function annotation and enrichment, a pattern of mung bean roots response to Cd stress was proposed. The processes detoxification and antioxidative defense were involved in the early response of mung bean roots to Cd. Cd stress downregulated the expressions of a series of genes involved in cell wall biosynthesis, cell division, DNA replication and repair, and photosynthesis, while genes involved in signal transduction and regulation, transporters, secondary metabolisms, defense systems, and mitochondrial processes were upregulated in response to Cd, which might be contributed to the improvement of plant tolerance. Our results provide some novel insights into the molecular processes for growth and adaption of mung bean roots in response to Cd and many candidate genes for further biotechnological manipulations to improve plant tolerance to heavy metals.
Collapse
Affiliation(s)
- Yan Leng
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yi Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ya Wen
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hui Zhao
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Qiang Wang
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Shi-Weng Li
- School of Chemical and Biological Engineering, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
21
|
Chen S, Lin R, Lu H, Wang Q, Yang J, Liu J, Yan C. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. CHEMOSPHERE 2020; 249:126341. [PMID: 32213393 DOI: 10.1016/j.chemosphere.2020.126341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Current mechanism studies in plant heavy metal tolerance do not consider the effects of different phenolic acids on the bioavailability of heavy metals and the comparison with antioxidant enzyme system in the hydroxyl radical scavenging capacity. In present study, by a set of pot culture experiments with adding cadmium (Cd) and zinc (Zn) to the sediments, the effects of different phenolic acids on the toxicity of Cd and Zn in Kandelia obovata and the dominant role in scavenging hydroxyl radicals were evaluated. The results showed that 100 mg kg-1 Zn treatment promoted the growth of plant under high concentrations of Cd and Zn stress. Under the stress of Cd and Zn, the phenolic acids were mainly metabolized by phenylpropanoid and flavonoid pathways, supplemented by shikimate and monolignol pathways in K. obovata. Eleven phenolic acids with different abilities of scavenging free radicals were detected in the plant, including pyrogallic acid (Gal), coumaric acid (Cou), protocatechuic acid (Pro), chlorogenic acid (Chl), 4-hydroxy benzoic acid (Hyd), caffeic acid (Caf), vanillic acid (Van), ferulic acid (Fer), benzoic acid (Ben), and salicylic acid (Sal). By adding phenolic acids to the sediments, chlorogenic acid (Chl), pyrogallic acid (Gal), cinnamic acid (Cin), and coumaric acid (Cou) behave as more reactive in changing Cd or Zn into residual fractions than the others, and chlorogenic acid (Chl), pyrogallic acid (Gal), ferulic acid (Fer) and caffeic acid (Caf) have higher ability of scavenging hydroxyl radicals than the others. In summary, K. obovata tends to synthesize phenolic acids with strong scavenging ability of free radicals and changing the bioavailability of Cd and Zn under high concentration of Cd and Zn stress. Phenolic acids played a crucial role in the mitigative effect of heavy metal stress via scavenging free radicals and involving in the process of Cd and Zn uptake and tolerance. The results will provide important theoretical basis and method guidance for mangrove wetland conservation.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Ruiyu Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Haoliang Lu
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Qiang Wang
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Jinjin Yang
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Jingchun Liu
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China
| | - Chongling Yan
- State Key Laboratory of Marine Environmental Science C/o Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
22
|
Kováčik J, Dresler S, Peterková V, Babula P. Nitrogen nutrition modulates oxidative stress and metabolite production in Hypericum perforatum. PROTOPLASMA 2020; 257:439-447. [PMID: 31748976 DOI: 10.1007/s00709-019-01448-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Impact of various nitrate concentrations (14.12 mM, 3.53 mM, no nitrate) or ammonium presence (14.12 mM) on physiological and metabolic changes in Hypericum perforatum after 14 days of cultivation was monitored. Nitrate deficiency suppressed growth of shoots but stimulated root growth while ammonium suppressed root growth: concomitant changes of ascorbic acid and glutathione supported these growth changes, e.g., unaltered level in roots under nitrate deficiency but depleted in ammonium treatment. Soluble proteins and water content were more suppressed by nitrate deficiency but total ROS, nitric oxide formation, and antioxidative enzyme activities (APX and SOD) indicate higher sensitivity of plants to ammonium. Though both extreme treatments (NO3- deficiency or ammonium) stimulated accumulation of total soluble phenols and affected PAL activity (in comparison with full or 1/4× nitrate dose), major phenols (chlorogenic acid and three flavonoids) were elevated mainly by NO3- deficiency. At the level of specific metabolites, NO3- deficiency had stimulatory impact on pseudohypericin (but not hypericin) content while hyperforin decreased. Expression of earlier putative gene of hypericin biosynthesis (hyp-1) showed rather partial correlation with pseudohypericin amount. Data indicate that depletion of NO3- is useful to obtain Hypericum plants with higher amount of health-positive secondary metabolites.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - Viera Peterková
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
23
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. PHYSIOLOGIA PLANTARUM 2020; 168:345-360. [PMID: 31343742 DOI: 10.1111/ppl.13012] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 05/22/2023]
Abstract
We conducted a study to evaluate the interactive effect of NO and H2 S on the cadmium (Cd) tolerance of wheat. Cadmium stress considerably reduced total dry weight, chlorophyll a and b content and ratio of Fv/Fm by 36.7, 48.6, 26.7 and 19.5%, respectively, but significantly enhanced the levels of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA), endogenous H2 S and NO, and the activities of antioxidant enzymes. Exogenously applied sodium nitroprusside (SNP) and sodium hydrosulfide (NaHS), donors of NO and H2 S, respectively, enhanced total plant dry matter by 47.8 and 39.1%, chlorophyll a by 92.3 and 61.5%, chlorophyll b content by 29.1 and 27.2%, Fv/Fm ratio by 19.7 and 15.2%, respectively, and the activities of antioxidant enzymes, but lowered oxidative stress and proline content in Cd-stressed wheat plants. NaHS and SNP also considerably limited both the uptake and translocation of Cd, thereby improving the levels of some key mineral nutrients in the plants. Enhanced levels of NO and H2 S induced by NaHS were reversed by hypotuarine application, but they were substantially reduced almost to 50% by cPTIO (a NO scavenger) application. Hypotuarine was not effective, but cPTIO was highly effective in reducing the levels of NO and H2 S produced by SNP in the roots of Cd-stressed plants. The results showed that interactive effect of NO and H2 S can considerably improve plant resistance against Cd toxicity by reducing oxidative stress and uptake of Cd in plants as well as by enhancing antioxidative defence system and uptake of some essential mineral nutrients.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
24
|
Wang MQ, Bai ZY, Xiao YF, Li Y, Liu QL, Zhang L, Pan YZ, Jiang BB, Zhang F. Transcriptomic analysis of Verbena bonariensis roots in response to cadmium stress. BMC Genomics 2019; 20:877. [PMID: 31747870 PMCID: PMC6868873 DOI: 10.1186/s12864-019-6152-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a serious heavy metal (HM) soil pollutant. To alleviate or even eliminate HM pollution in soil, environmental-friendly methods are applied. One is that special plants are cultivated to absorb the HM in the contaminated soil. As an excellent economical plant with ornamental value and sound adaptability, V. bonariensis could be adapted to this very situation. In our study, the Cd tolerance in V. bonariensis was analyzed as well as an overall analysis of transcriptome. RESULTS In this study, the tolerance of V. bonariensis to Cd stress was investigated in four aspects: germination, development, physiological changes, and molecular alterations. The results showed that as a non-hyperaccumulator, V. bonariensis did possess the Cd tolerance and the capability to concentration Cd. Under Cd stress, all 237, 866 transcripts and 191, 370 unigenes were constructed in the transcriptome data of V. bonariensis roots. The enrichment analysis of gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that differentially expressed genes (DEGs) under Cd stress were predominately related to cell structure, reactive oxygen species (ROS) scavenging system, chelating reaction and secondary metabolites, transpiration and photosynthesis. DEGs encoding lignin synthesis, chalcone synthase (CHS) and anthocyanidin synthase (ANS) were prominent in V. bonariensis under Cd stress. The expression patterns of 10 DEGs, validated by quantitative real-time polymerase chain reaction (qRT-PCR), were in highly accordance with the RNA-Sequence (RNA-Seq) results. The novel strategies brought by our study was not only benefit for further studies on the tolerance of Cd and functional genomics in V. bonariensis, but also for the improvement molecular breeding and phytoremediation.
Collapse
Affiliation(s)
- Meng-qi Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Zhen-yu Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ya-fang Xiao
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yan Li
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025 People’s Republic of China
| | - Qing-lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yuan-zhi Pan
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Bei-bei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
25
|
Lu C, Ma Y, Wang J. Lanthanum elicitation on hypocrellin A production in mycelium cultures of Shiraia bambusicola is mediated by ROS generation. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Jiang M, Liu S, Li Y, Li X, Luo Z, Song H, Chen Q. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:502-512. [PMID: 30557708 DOI: 10.1016/j.ecoenv.2018.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 05/24/2023]
Abstract
Bamboos are considered as potential plants for phytoremediation. However, the mechanisms of EDTA-assisted bamboo for lead (Pb) control has not been described. The objective of this study was to examine the tolerance and behaviors of Pb to screen bamboos for Pb-contaminated soil and to explore the effects of EDTA on their phytoremediation. In this regard, five dwarf bamboos were treated with various doses Pb (0-1500 mg kg-1) and/or EDTA (500 or 250-1000 mg kg-1) to investigate antioxidant systems and Pb accumulation/species. Our findings showed that different doses of Pb significantly affect lipid peroxidation and antioxidant compounds in studied bamboos. EDTA increased the absorption of soil Pb2+ in all tissues with increasing Pb doses, while the Pb concentrations in all bamboo roots was higher than those in other tissues. Among these plants, Arundinaria argenteostriata (AA) and A. fortunei (AF) showed greater oxidative tolerance than other bamboos. Moreover, Pb accumulation showed the highest values in AA and AF plants relative to other bamboos. With increasing EDTA doses, levels of reducible and residual Pb decreased but the weak acid-soluble and total Pb increased in Pb-stressed AA/AF soils. Similarly, EDTA increased Pb2+ concentration in both bamboo tissues, while the Pb2+ level in leaves was higher than that in other organs at the highest EDTA dose. This study provides the first comprehensive evidence regarding EDTA enhancing the availability, absorption, and translocation of Pb in bamboo/soil, suggesting the application of EDTA may be an effective strategy for phytoremediation with two Arundinaria bamboos in Pb-contaminated soils.
Collapse
Affiliation(s)
- Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yangfan Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huixing Song
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
27
|
Zicari MA, d'Aquino L, Paradiso A, Mastrolitti S, Tommasi F. Effect of cerium on growth and antioxidant metabolism of Lemna minor L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:536-543. [PMID: 30077150 DOI: 10.1016/j.ecoenv.2018.07.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 05/23/2023]
Abstract
An increasing input rate of rare earth elements in the environment is expected because of the intense extraction of such elements form their ores to face human technological needs. In this study Lemna minor L. plants were grown under laboratory conditions and treated with increasing concentrations of cerium (Ce) ions to investigate the effects on plant growth and antioxidant systems. The growth increased in plants treated with lower Ce concentrations and reduced in plants treated with higher concentrations, compared to control plants. In plants treated with higher Ce concentrations lower levels of chlorophyll and carotenoid and the appearance of chlorotic symptoms were also detected. Increased levels of hydrogen peroxide, antioxidant metabolites and antioxidant activity confirmed that higher Ce concentrations are toxic to L. minor. Ce concentration in plant tissues was also determined and detectable levels were found only in plants grown on Ce-supplemented media. The use of duckweed plants as a tool for biomonitoring of Ce in freshwater is discussed.
Collapse
Affiliation(s)
| | - Luigi d'Aquino
- ENEA Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Annalisa Paradiso
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | | | - Franca Tommasi
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
28
|
Liu S, Yang R, Tripathi DK, Li X, Jiang M, Lv B, Ma M, Chen Q. Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:53-68. [PMID: 29649760 DOI: 10.1016/j.envpol.2018.03.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The significant influence of •NO on the stress response is well established; however, the precise metabolic pathways of •NO and RNS under metal stresses remain unclear. Here, the key components of ROS and RNS metabolism under Cd stress were investigated with multi-level approaches using high-quality forage white clover (Trifolium repens L.) plants. For the studied plants, Cd disturbed the redox homeostasis, affected the absorption of minerals, and exacerbated the degree of lipid peroxidation, thus triggering oxidative stress. However, •NO was also involved in regulating mineral absorption, ROS-scavenger levels and mRNA expression in Cd-treated white clover plants. In addition, GSNOR activity was up-regulated by Cd with the simultaneous depletion of •NO generation and GSNO but was counteracted by the •NO donor sodium nitroprusside. Response to Cd-stressed SNOs was involved in generating ONOO- and NO2-Tyr in accordance with the regulation of •NO-mediated post-translational modifications in the ASC-GSH cycle, selected amino acids and NADPH-generating dehydrogenases, thereby provoking nitrosative stress. Taken together, our data provide comprehensive metabolite evidence that clearly confirms the relationships between ROS and RNS in Cd-stressed plants, supporting their regulatory roles in response to nitro-oxidative stress and providing an in-depth understanding of the interaction between two families subjected to metal stresses.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Durgesh Kumar Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bingyang Lv
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
29
|
Pereira LS, de Araújo RP, de Oliveira PS, da Silva LD, Alves PAC, Fernandes VF, Gross E. Cadmium induced changes in Solidago chilensis Meyen (Asteraceae) grown on organically fertilized soil with reference to mycorrhizae, metabolism, anatomy and ultrastructure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:76-85. [PMID: 29268118 DOI: 10.1016/j.ecoenv.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Solidago chilensis Meyen (Asteraceae) is a medicinal important plant with few studies on nutrition and metabolism and none information on cadmium phytotoxicity. The objective of this study was to investigate Cd induced responses on the growth and metabolism in S. chilensis and on arbuscular mycorrhiza (AM). The experiment was carried out in a greenhouse, consisting of a 5 × 4 factorial with five doses of manure (0, 3.5, 7, 14 and 21gdm-3) and four doses of cadmium (0, 25, 50 and 75mgdm-3) applied to a Dystrophic Ultisol. After 250 days of plant cultivation, biomass, nutrient content, photosynthetic rate, guaiacol peroxidase activity, mycorrhizal colonization, glomalin content, anatomical and ultrastucture were evaluated. Plants were significantly affected by interaction of manure and Cd doses with anatomical, ultrastructural, physiological and nutritional modifications. Manure applied into Cd contaminated soil significantly improved mycorrhizal colonization and glomalin production. The highest organic manure dose (21gdm-3) alleviated toxicity symptoms of Cd on S. chilensis.
Collapse
Affiliation(s)
- Lidiane Silva Pereira
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microorganismos, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Romária Pereira de Araújo
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Priscila Souza de Oliveira
- Programa de Pós-Graduação em Produção Vegetal, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Leandro Dias da Silva
- Programa de Pós-Graduação em Produção Vegetal, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | - Patricia Alves Casaes Alves
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microorganismos, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| | | | - Eduardo Gross
- Departmento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilheus, Bahia, Brazil.
| |
Collapse
|
30
|
Dresler S, Kováčik J, Strzemski M, Sowa I, Wójciak-Kosior M. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J Pharm Biomed Anal 2018; 155:82-90. [PMID: 29621655 DOI: 10.1016/j.jpba.2018.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
Accumulation of selected secondary metabolites in two Hypericum species (H. perforatum and H. annulatum) was compared in their vegetative parts (stems and leaves) and in terms of the extraction solvent (80% aq. methanol or 60% aq. ethanol). The presence of chlorogenic acid and quercitrin was not detected in stem of both species. Almost all metabolites were more accumulated in the leaves than in the stems (rutin, hyperoside, quercetin and hypericin) but epicatechin showed the opposite in both species and hyperforin in H. annulatum. Extraction solvents showed rather species-specific differences with EtOH being more suitable for the extraction of hypericin, quercetin, quercitrin, and hyperoside (on average, for both the leaves and stems, extraction increased by approximately 130, 30, 25, and 15%, respectively) while MeOH for the extraction of epicatechin, rutin, and hyperforin (increased extraction by approximately 50, 40, and 35%, respectively). On the other hand, content of total soluble phenols did not differ in relation to solvent in any organ or species. Various ages of H. annulatum plants did not show dramatic impact on the amount of metabolites. Subsequently, the usefulness of capillary electrophoresis (CE) as an alternative to HPLC for the quantification of metabolites in H. perforatum was tested and results showed non-significant differences between CE and HPLC with the methods we developed (the difference did not exceed 10%).
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Liu S, Yang R, Tripathi DK, Li X, He W, Wu M, Ali S, Ma M, Cheng Q, Pan Y. RETRACTED: The interplay between reactive oxygen and nitrogen species contributes in the regulatory mechanism of the nitro-oxidative stress induced by cadmium in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1007-1024. [PMID: 30216961 DOI: 10.1016/j.jhazmat.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 05/26/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor, after consultation with the corresponding author Dr. Shiliang Liu due to image issues. The article reused several images from the author's paper published in Environmental Pollution 239 (2018) 53-68 (which has been retracted due to image issues): Figures 1c, 1d, 2a, 2b, 2c, 4a, 9a and 9b. The article also plagiarized part of a paper from other authors that had appeared in Plant Physiology, 150, 229-243 (2009). The images that were reused were Fig 5 a, 5c, 5e and 5 g. This was brought to the editors’ attention via a letter to the editor. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Durgesh Kumar Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India; Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei He
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingsu Cheng
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
32
|
Kováčik J, Dresler S. Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:664-669. [PMID: 28934710 DOI: 10.1016/j.ecoenv.2017.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Impact of calcium nutrition (pre-culture on solid medium with standard or elevated Ca dose, i. e. 0.17 and 4.40mM marked as low and high Ca) on acute metal toxicity (Cd, Mn and Pb, 24h of exposure to 10µM) in freshwater green alga Scenedesmus quadricauda was studied. Surprisingly, Ca content differed only slightly between low and high Ca samples and applied metals rather suppressed its amount. Na content was higher in metal-exposed high Ca samples, indicating that Ca/Na ratio may affect accumulation of metals. Content of heavy metals increased in order Cd < Mn < Pb and high Ca samples contained less metal than low Ca samples at least in absorbed fraction. Accumulation of ascorbic acid and thiols (GSH - glutathione and PC2 - phytochelatin 2) was affected mainly by Cd, GSH also by Mn and PC2 by Pb with often significant differences between low Ca and high Ca samples. Calcium nutrition also affected responses of algae to metals at the level of antioxidative enzyme activities (SOD, APX, and CAT) and elevated values were typically found in high Ca samples while ROS (hydrogen peroxide and superoxide radical) were mainly depleted in Mn treatment. These data confirm that Ca nutrition affects accumulation of metals in algae and metabolic parameters as observed in vascular plants but, unlike them, rather Ca/Na ratio than absolute Ca content seems to regulate the uptake of metals.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
33
|
Owen JD, Evans SJ, Guirguis A, Kellett K, Stair JL. Method development for the determination of elements in Hypericum perforatum L. (St John's wort) herb and preparations using inductively coupled plasma–optical emission spectroscopy and microwave digestion. J Pharm Pharmacol 2017; 71:38-45. [DOI: 10.1111/jphp.12742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
A method was developed to analyze St John's wort (Hypericum perforatum L.) herb and preparations using inductively coupled plasma–optical emission spectroscopy (ICP-OES) to determine the quantity of 11 elements (Al, B, Ba, Ca, Cu, Fe, Mg, Mn, Ni, Sr and Zn).
Methods
This study includes the evaluation of digestion acids and calibration methods, as well as instrumental parameters such as choice of nebulizer and emission wavelength.
Key findings
Two nebulizers (Conikal and SeaSpray) performed similarly for most elements, and two optimum wavelengths were determined for each element. Five acids were evaluated for the digestion of the Polish Certified Reference Material Tea Leaves (INCT-TL-1), while three were taken forward to use for the different St John's wort formulations (i.e. herb, capsule and tablet). A simple protocol using 5 ml HNO3 was sufficient in most cases; however, variability was observed for elements often bound in silicates (e.g. Al, Fe and Zn). An external weighted calibration was also found to be preferential over unweighted, and the use of standard addition affected some concentration values up to 20%.
Conclusions
Therefore, this paper presents the development and optimized method parameters to be used with ICP-OES that will allow the analysis of 11 key elements present in St John's wort herb and preparations.
Collapse
Affiliation(s)
- Jade D Owen
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Sara J Evans
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Amira Guirguis
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Kathryn Kellett
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Jacqueline L Stair
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
34
|
Xu Q, Jiang Y, Chu W, Su C, Hu D, Lu Q, Zhang T. Response of Spirodela polyrhiza to cerium: subcellular distribution, growth and biochemical changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:56-64. [PMID: 28110046 DOI: 10.1016/j.ecoenv.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Rare earth elements are new and emerging contaminants in freshwater systems. Greater duckweed (Spirodela polyrhiza L.) is a common aquatic plant widely used in phytotoxicity tests for xenobiotic substances. In this study, the cerium (Ce) accumulation potential, the distribution of Ce in bio-molecules, and ensuing biochemical responses were investigated in greater duckweed fronds when they were exposed to Ce (0, 10, 20, 40, and 60μM). There was a concentration dependent increase in Ce accumulation, which reached a maximum of 67mgg-1 of dry weight (DW) at 60μM Ce after 14 d. The Ce concentrations in bio-macromolecules followed the order: cellulose and pectin > proteins > polysaccharides > lipids. In response to Ce exposure, significant chlorosis; declines in growth, photosynthetic pigment and protein contents; and cell death were noted at the highest Ce concentration. Photosystem II inhibition, degradation of the reaction center protein D1, and damage to chloroplast ultrastructure were observed in Ce treated S. polyrhiza fronds, as revealed by chlorophyll a fluorescence transients, immunoblotting, and transmission electron microscopy (TEM). O2.- accumulation and malondialdehyde (MDA) content in the treated fronds increased in a concentration dependent manner, which indicated that oxidative stress and unsaturated fatty acids (C18:3) were specifically affected by Ce exposure. These results suggest Ce exerts its toxic effects on photosynthesis, with a primary effect on PS II, through oxidative stress.
Collapse
Affiliation(s)
- Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiyue Chu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chunlei Su
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Hu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qianqian Lu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Tingting Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
35
|
Hojati M, Modarres-Sanavy SAM, Enferadi ST, Majdi M, Ghanati F, Farzadfar S, Pazoki A. Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12261-12272. [PMID: 28357789 DOI: 10.1007/s11356-017-8846-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/16/2017] [Indexed: 05/28/2023]
Abstract
Morphological and biochemical responses of feverfew plants exposed to low (5 μM) and high (35 and 70 μM) levels of Cd or Cu were investigated. Increasing metal supply notably reduced the plant biomass. Elevated Cd and Cu levels also resulted in an increase in the leaf proline content. Besides, decrease in ascorbic acid (AsA) and glutathione (GSH) contents was similar in the leaves of Cd- and Cu-treated plants, indicating altered biosynthesis of AsA and GSH under metal excess. High metal doses stimulated increase in antioxidative enzyme activities that could be related to elevated hydrogen peroxide (H2O2) content and subsequent lipid peroxidation. Cd was typically more accumulated in shoots and roots than Cu, leading to higher translocation factor at high Cd doses. In terms of essential oil content, it seems that Cd had an inhibitory effect during the experiment, whereas Cu was found to stimulate it only at 5 μM. Furthermore, high Cd supply enhanced the relative proportion of monoterpene hydrocarbons, while Cu increased the proportion of sesquiterpenes, especially at 5 μM. This result provides the first evidence of the response of feverfew plants to Cd or Cu by associating stress-related responses with changes in terpenoids.
Collapse
Affiliation(s)
- Mostafa Hojati
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Jallal-Al-Ahmad Highway, Nasr Bridge, Tehran, Iran
| | | | - Sattar Tahmasebi Enferadi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965-161, Tehran, Iran
| | - Mohammad Majdi
- Agricultural Biotechnology Department, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Soudeh Farzadfar
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Alireza Pazoki
- Department of Agronomy and Plant Breeding, Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Liu S, Yang R, Pan Y, Ren B, Chen Q, Li X, Xiong X, Tao J, Cheng Q, Ma M. Beneficial behavior of nitric oxide in copper-treated medicinal plants. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:140-154. [PMID: 27131454 DOI: 10.1016/j.jhazmat.2016.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 05/21/2023]
Abstract
Despite numerous reports implicating nitric oxide (NO) in the environmental-stress responses of plants, the specific metabolic and ionic mechanisms of NO-mediated adaptation to metal stress remain unclear. Here, the impacts of copper (Cu) and NO donor (SNP, 50μM) alone or in combination on the well-known medicinal plant Catharanthus roseus L. were investigated. Our results showed that Cu markedly increased Cu(2+) accumulation, decreased NO production, and disrupted mineral equilibrium and proton pumps, thereby stimulating a burst of ROS; in addition, SNP ameliorates the negative toxicity of Cu, and cPTIO reverses this action. Furthermore, the accumulations of ROS and NO resulted in reciprocal changes. Interestingly, nearly all of the investigated amino acids and the total phenolic content in the roots were promoted by the SNP treatment but were depleted by the Cu+SNP treatment, which is consistent with the self-evident increases in phenylalanine ammonia-lyase activity and total soluble phenol content induced by SNP. Unexpectedly, leaf vincristine and vinblastine as well as the total alkaloid content (ca. 1.5-fold) were decreased by Cu but markedly increased by SNP (+38% and +49% of the control levels). This study provides the first evidence of the beneficial behavior of NO, rather than other compounds, in depleting Cu toxicity by regulating mineral absorption, reestablishing ATPase activities, and stimulating secondary metabolites.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Ren
- Institute of Biotechnology & Breeding, Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xi Xiong
- College of Agriculture, Food & Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Jianjun Tao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingsu Cheng
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Electrical & Biomedical Engineering, University of Nevada, Reno, NV 89557, USA
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
37
|
Kummerová M, Zezulka Š, Babula P, Tříska J. Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:351-361. [PMID: 26476323 DOI: 10.1016/j.jhazmat.2015.09.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Lemna minor is often used in environmental risk assessment and it can be supposed that usually evaluated parameters will be reliable even for assessing the risk of pharmaceuticals. Subtle changes in duckweed plant number, biomass production, and leaf area size induced by 10-day-exposure to diclofenac (DCF) and paracetamol (PCT) (0.1, 10, and 100 μg/L), excepting 100 μg/L DCF, are in contrast with considerable changes on biochemical and histochemical level. Both drugs caused a decrease in content of photosynthetic pigments (by up to 50%), an increase in non-photochemical quenching (by 65%) and decrease in relative chlorophyll fluorescence decay values (by up to 90% with DCF). Both DCF and especially PCT increased amount of reactive nitrogen and oxygen species in roots. DCF-induced effects included mainly increased lipid peroxidation (by 78%), disturbation in membrane integrity and lowering both oxidoreductase and dehydrogenase activities (by 30%). PCT increased the content of soluble proteins and phenolics. Higher concentrations of both DCF and PCT increased the levels of oxidised ascorbate (by 30%) and oxidised thiols (by up to 84% with DCF). Glutathion-reductase activity was elevated by both pharmaceuticals (nearly by 90%), glutathion-S-transferase activity increased mainly with PCT (by 22%). The early and sensitive indicators of DCF and PCT phytotoxicity stress in duckweed are mainly the changes in biochemical processes, connected with activation of defense mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Marie Kummerová
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Štěpán Zezulka
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jan Tříska
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Center, Academy of Sciences of the Czech Republic v.v.i., Bělidla 986/4a, 603 00 Brno, Czech Republic.
| |
Collapse
|