1
|
Yang T, Li Z, Chen S, Lan T, Lu Z, Fang L, Zhao H, Li Q, Luo Y, Yang B, Shu J. Ultra-sensitive analysis of exhaled biomarkers in ozone-exposed mice via PAI-TOFMS assisted with machine learning algorithms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134151. [PMID: 38554517 DOI: 10.1016/j.jhazmat.2024.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.
Collapse
Affiliation(s)
- Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020 China
| | - Huan Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Vanstraelen S, Jones DR, Rocco G. Breathprinting analysis and biomimetic sensor technology to detect lung cancer. J Thorac Cardiovasc Surg 2023; 166:357-361.e1. [PMID: 36997463 DOI: 10.1016/j.jtcvs.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Stijn Vanstraelen
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY; Fiona and Stanley Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
3
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|
4
|
Portillo‐Estrada M, Van Moorleghem C, Janssenswillen S, Cooper RJ, Birkemeyer C, Roelants K, Van Damme R. Proton‐transfer‐reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) as a tool for studying animal volatile organic compound (VOC) emissions. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miguel Portillo‐Estrada
- Research Group Pleco (Plants and Ecosystems) Department of Biology University of Antwerp Wilrijk Belgium
| | - Charlotte Van Moorleghem
- Laboratory for Functional Morphology Department of Biology University of Antwerp Wilrijk Belgium
| | - Sunita Janssenswillen
- Amphibian Evolution Lab Biology Department Vrije Universiteit Brussel Brussels Belgium
| | - Richard Joseph Cooper
- Amphibian Evolution Lab Biology Department Vrije Universiteit Brussel Brussels Belgium
| | | | - Kim Roelants
- Amphibian Evolution Lab Biology Department Vrije Universiteit Brussel Brussels Belgium
| | - Raoul Van Damme
- Laboratory for Functional Morphology Department of Biology University of Antwerp Wilrijk Belgium
| |
Collapse
|
5
|
Hamilton JF, Bryant DJ, Edwards PM, Ouyang B, Bannan TJ, Mehra A, Mayhew AW, Hopkins JR, Dunmore RE, Squires FA, Lee JD, Newland MJ, Worrall SD, Bacak A, Coe H, Percival C, Whalley LK, Heard DE, Slater EJ, Jones RL, Cui T, Surratt JD, Reeves CE, Mills GP, Grimmond S, Sun Y, Xu W, Shi Z, Rickard AR. Key Role of NO 3 Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:842-853. [PMID: 33410677 DOI: 10.1021/acs.est.0c05689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.
Collapse
Affiliation(s)
- Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Daniel J Bryant
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Peter M Edwards
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Bin Ouyang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Thomas J Bannan
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Archit Mehra
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Alfred W Mayhew
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - James R Hopkins
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
- National Centre for Atmospheric Science, University of York, York YO10 5DD, U.K
| | - Rachel E Dunmore
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Freya A Squires
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - James D Lee
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
- National Centre for Atmospheric Science, University of York, York YO10 5DD, U.K
| | - Mike J Newland
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Stephen D Worrall
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Asan Bacak
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Hugh Coe
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Carl Percival
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Lisa K Whalley
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Dwayne E Heard
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Eloise J Slater
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Roderic L Jones
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global and Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global and Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Claire E Reeves
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Graham P Mills
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Sue Grimmond
- Department of Meteorology, University of Reading, Reading RG6 6ET, U.K
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Weiqi Xu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Zongbo Shi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew R Rickard
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
- National Centre for Atmospheric Science, University of York, York YO10 5DD, U.K
| |
Collapse
|
6
|
Zhang H, Zhang Y, Huang Z, Acton WJF, Wang Z, Nemitz E, Langford B, Mullinger N, Davison B, Shi Z, Liu D, Song W, Yang W, Zeng J, Wu Z, Fu P, Zhang Q, Wang X. Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing. J Environ Sci (China) 2020; 95:33-42. [PMID: 32653190 DOI: 10.1016/j.jes.2020.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/27/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Vertical profiles of isoprene and monoterpenes were measured by a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) at heights of 3, 15, 32, 64, and 102 m above the ground on the Institute of Atmospheric Physics (IAP) tower in central Beijing during the winter of 2016 and the summer of 2017. Isoprene mixing ratios were larger in summer due to much stronger local emissions whereas monoterpenes were lower in summer due largely to their consumption by much higher levels of ozone. Isoprene mixing ratios were the highest at the 32 m in summer (1.64 ± 0.66 ppbV) and at 15 m in winter (1.41 ± 0.64 ppbV) with decreasing concentrations to the ground and to the 102 m, indicating emission from the tree canopy of the surrounding parks. Monoterpene mixing ratios were the highest at the 3 m height in both the winter (0.71 ± 0.42 ppbV) and summer (0.16 ± 0.10 ppbV) with a gradual decreasing trend to 102 m, indicting an emission from near the ground level. The lowest isoprene and monoterpene mixing ratios all occurred at 102 m, which were 0.71 ± 0.42 ppbV (winter) and 1.35 ± 0.51 ppbV (summer) for isoprene, and 0.42 ± 0.22 ppbV (winter) and 0.07 ± 0.06 ppbV (summer) for monoterpenes. Isoprene in the summer and monoterpenes in the winter, as observed at the five heights, showed significant mutual correlations. In the winter monoterpenes were positively correlated with combustion tracers CO and acetonitrile at 3 m, suggesting possible anthropogenic sources.
Collapse
Affiliation(s)
- Huina Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhonghui Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment and Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - W Joe F Acton
- Lancaster Environment Centre, Lancaster University, Lancaster LA14YQ, UK
| | - Zhaoyi Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Eiko Nemitz
- Centre for Ecology and Hydrology, Edinburgh EH26 0QB, UK
| | - Ben Langford
- Centre for Ecology and Hydrology, Edinburgh EH26 0QB, UK
| | - Neil Mullinger
- Centre for Ecology and Hydrology, Edinburgh EH26 0QB, UK
| | - Brian Davison
- Lancaster Environment Centre, Lancaster University, Lancaster LA14YQ, UK
| | - Zongbo Shi
- School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Di Liu
- School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weiqiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Yang Y, Luo H, Liu R, Li G, Yu Y, An T. The exposure risk of typical VOCs to the human beings via inhalation based on the respiratory deposition rates by proton transfer reaction-time of flight-mass spectrometer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110615. [PMID: 32325328 DOI: 10.1016/j.ecoenv.2020.110615] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The respiratory deposition rates are the important analytical parameters for human health risk assessment related to the environmental volatile organic compounds (VOCs). In present study, the deposition rates from the linear regressions of CH2O, CH5N, C2H6O, C2H4O2, C3H8O, C6H6, C7H8, C8H8, and C8H10 of 120 healthy volunteers were obtained with significantly different from the respective calculated deposition rates. The CH2O (formaldehyde) has the highest deposition rate, indicating the highest associated exposure risk of CH2O if the persons are exposed to the same concentrations of these VOCs through inhalation. In order to explore the effects of the breathing models and sampling time on the deposition rates of VOCs, volunteers were first asked to breathe successively with nasal-in-nasal-out, oral-in-nasal-out, and oral-in-oral-out breathing models before and after three meals for three days. Sampling time variation has no effect on the deposition rates of selected VOCs, while the deposition rates of C2H4O2, C3H8O, C6H6, C7H8 and C8H10 by nasal-in-nasal-out were significantly different from oral-in-oral-out and nasal-in-oral-out models. Among all the breathing models, nasal-in-oral-out comprises the entire respiratory system. In order to further validate the results, the deposition rates of the selected VOCs were calculated in 120 healthy volunteers using nasal-in-oral-out breathing model for unlimited time after the conventional lung function examination. Difference in gender and body mass index had no effect on the deposition rates of VOCs, while the age affects the deposition rates of CH2O, CH5N and C2H4O2. Positive correlation analysis between lung function factors and deposition rates revealed that the individuals with larger lung function factors are more susceptible to deposit the VOCs. Overall, the main conclusion can be drawn that the respiratory deposition rates were influenced by the physiological factors. Therefore, the major objective for future research is to accurately calculate the deposition rates of environmental VOCs for health-risk assessment.
Collapse
Affiliation(s)
- Yi Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ranran Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Vorläufiger Leitwert für Benzol in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:361-367. [DOI: 10.1007/s00103-019-03089-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Huang X, Lai J, Liu Y, Zheng L, Fang X, Song W, Yi Z. Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: Their responses to foliar and soil application of nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135761. [PMID: 31972929 DOI: 10.1016/j.scitotenv.2019.135761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Increasing nitrogen (N) deposition is one of the main drivers of global change, while the emission of biogenic volatile organic compounds (BVOCs) from plant in response to elevated N deposition is poorly understood, especially with respect to the response to foliar application of N. In this study, BVOC emissions from two tree species (Pinus massoniana Lamb. and Schima superba Gardn. et Champ.) were determined by dynamic chamber coupled with a proton transfer reaction-time of flight-mass spectrometer. Two N application methods, namely soil application of N (SAN) and foliar application of N (FAN), and three N levels (5.6, 15.6 and 20.6 g N m-2 yr-1) were employed by applying NH4NO3 every week for 1.5 years. The results showed that: (1) oxygenated volatile organic compounds (OVOCs, mainly acetaldehyde, methyl alcohol, ethenone and acetone) and non-methane hydrocarbons (NMHCs, mainly monoterpenes, propyne, 1,3-butadiene and propylene) were the dominant BVOCs for all the treatments, accounting for 32.40-65.72% and 19.21-47.39% of total 100 determined BVOC compounds, respectively; (2) for S. superba seedlings, both SAN and FAN treatments significantly decreased total BVOC emissions (11.83% to 66.23%). However, total BVOCs from P. massoniana significantly increased with N addition for SAN treatment, while no difference were found in the FAN treatment; (3) BVOC emission rates for FAN treatment were significantly lower than those for SAN treatment, indicating that previous studies which simulated N deposition by adding N directly to soil might have imprecisely estimated their effects on plant BVOC emissions. Considering the inconsistent responses of BVOC emissions to different N application methods for different plant species, close attention should be paid on the effects of N deposition or even global change on plant BVOC emissions in the future.
Collapse
Affiliation(s)
- Xingran Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinmei Lai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfei Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Zheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiong Fang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhigang Yi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Deng W, Fang Z, Wang Z, Zhu M, Zhang Y, Tang M, Song W, Lowther S, Huang Z, Jones K, Peng P, Wang X. Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134357. [PMID: 31683211 DOI: 10.1016/j.scitotenv.2019.134357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Diesel vehicle exhaust is an important source of carbonaceous aerosols, especially in developing countries, like China. Driving condition impacts diesel vehicle emissions, yet its influence needs further understanding especially on secondary organic aerosol (SOA) formation. In this study tailpipe exhaust from an in-use light duty diesel vehicle at idling and driving speeds of 20 and 40 km h-1 was introduced respectively into a 30 m-3 indoor smog chamber to investigate primary emissions and SOA formation during photo-oxidation. The emission factors of SO2 at 20 and 40 km h-1 were higher than those at idling, whereas the emission factors of aromatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs) and oxygenated volatile organic compounds (OVOCs) decreased when driving speeds increased. The emission factors of black carbon (BC) and primary organic aerosol (POA) at idling were comparable to those at 20 and 40 km h-1. The SOA production factors were 0.41 ± 0.09 g kg-fuel-1 at idling, approximately 2.5 times as high as those at 20 km h-1 (0.16 ± 0.09 g kg-fuel-1) or 40 km h-1 (0.17 ± 0.09 g kg-fuel-1). Total carbonaceous aerosols, including BC, POA and SOA, from diesel vehicles at 20 and 40 km h-1 were 60-75% of those at idling, due largely to a reduction in SOA production. Measured AHs and PAHs altogether were estimated to explain <10% of SOA production, and eight major OVOCs could contribute 8.4-23% of SOA production. A preliminary comparison was further made for the same diesel vehicle at idling using diesel oils upgraded from China 3 to China 5 standard. The emission factors of total particle numbers decreased by 38% owing to less nuclei mode particles, which was probably caused by the reducing fuel sulfur content; the emission factors of BC were almost unchanged, the POA emission factors and SOA production factors however decreased by 72% and 37%.
Collapse
Affiliation(s)
- Wei Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zheng Fang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyi Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ming Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Scott Lowther
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Zhonghui Huang
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Feng Y, Wang W, Wang Y, Sun J, Zhang C, Shahzad Q, Mao Y, Zhao X, Song Z. Experimental study of destruction of acetone in exhaust gas using microwave-induced metal discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:788-795. [PMID: 30031337 DOI: 10.1016/j.scitotenv.2018.07.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/03/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) are air pollutants that pose a major concern, and novel treatment technologies must be continuously explored and developed. In this study, microwave-induced metal discharge was applied to investigate the destruction of acetone as a representative model VOC compound. Results revealed that metal discharge intensity largely depended on microwave output power and the number of metal strips. Microwave metal discharge exerted the distinct combined effects of intense heat, strong light, and plasma. In the case of MW without metal discharge, the decrease in acetone at 200 ppm was remarkably limited (approximately 5.5% (mol/mol)). By contrast, in the case of microwave-induced metal discharge, a considerably high destruction efficiency of up to 65% (mol/mol) was obtained at low concentrations. This finding highlights the potential of microwave-induced discharge for VOC removal. Initial assessment indicated that energy consumption can be acceptable.
Collapse
Affiliation(s)
- Yukun Feng
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Wenlong Wang
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China.
| | - Yican Wang
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Jing Sun
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China.
| | - Chao Zhang
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Qamar Shahzad
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Yanpeng Mao
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Xiqiang Zhao
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| | - Zhanlong Song
- National Engineering Lab for Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Lab of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, China
| |
Collapse
|
12
|
Abstract
The electronic nose (e-nose) is a promising technology as a useful addition to the currently available modalities to achieve lung cancer diagnosis. The e-nose can assess the volatile organic compounds detected in the breath and derived from the cellular metabolism. Volatile organic compounds can be analyzed to identify the individual chemical elements as well as their pattern of expression to reproduce a sensorial combination similar to a fingerprint (breathprint). The e-nose can be used alone, mimicking the combinatorial selectivity of the human olfactory system, or as part of a multisensorial platform. This review analyzes the progress made by investigators interested in this technology as well as the perspectives for its future utilization.
Collapse
|