1
|
Ferreira Azevedo L, de Souza Rocha CC, Souza MCO, Machado ART, Devóz PP, Rocha BA, Antunes LMG, Uribe-Romo FJ, Campiglia AD, Barbosa F. High molecular weight polycyclic aromatic hydrocarbon (HMW-PAH) isomers: unveiling distinct toxic effects from cytotoxicity to oxidative stress-induced DNA damage. Arch Toxicol 2024:10.1007/s00204-024-03917-w. [PMID: 39611947 DOI: 10.1007/s00204-024-03917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the most extensive classes of known carcinogenic and genotoxic compounds widely distributed across the globe. Particularly relevant to ecotoxicological studies is the possible presence of PAHs with molecular weight (MW) 302 Da. Since the toxicity of 302 Da PAHs differs significantly from isomer to isomer, understanding their relative toxicity is essential for assessing their potential risks to human health. This study investigates the toxic effects of micromolar concentrations of four HMW-PAHs isomers of MW = 302 Da, namely dibenzo(b,l)fluoranthene (DB(b,l)F), dibenzo(a,j)fluoranthene (DB(a,j)F), dibenzo(a,l)fluoranthene (DB(a,l)F) and naphtho(1-2j)fluoranthene (N(1-2j)F), upon exposure and metabolic activation in HepG2 cells. Appropriate assays were selected to investigate their potential to disrupt cellular viability and to induce cytotoxicity, apoptosis/necrosis, genotoxicity, and oxidative stress with DNA damage. After 48 h of exposure time, DB(a,l)F was the only isomer to reduce cellular viability in a concentration-dependent manner. In all cases, apoptosis was the main mechanism of HepG2 cell death, which could be induced by the significant DNA damage and an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct level formation. The highest concentrations of DB(a,l)F tested exhibited the greatest potential to induce HepG2 DNA damage and 8-OHdG formation. Altogether, these facts demonstrate that the distinct arrangements of the atoms in HMW-PAHs isomers can impact on their toxic potential and that DB(a,l)F was the most toxic isomer evaluated in this study. These results shed light on the importance to thoroughly characterize MW302 PAHs to substantiate their human and environmental risk assessments.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Cecilia Cristina de Souza Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marília Cristina Oliveira Souza
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Biomolecular Sciences, University of Sao Paulo, Av. do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Ana Rita Thomazela Machado
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Paula Pícoli Devóz
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Bruno Alves Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lusania Maria Greggi Antunes
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | | | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil.
| |
Collapse
|
2
|
Alighardashi M, Mousavi SA, Almasi A, Mohammadi P. A study of indoor air pollution caused by disinfection equipment as a consequence of infectious waste management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-11. [PMID: 38899861 DOI: 10.1080/09603123.2024.2368123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Infectious waste disinfection is an essential process in medical waste management that may cause release of some pollutants. In this study, the PAHs concentration at the disinfection was investigated. The change in the release rate of PAHs in two including infectious waste reduction and increasing the segregation ratio was estimated. The results showed that the PAHs concentration was 1172 - 2066 ng/m3. The specific concentration of PAHs was 852 ng/ton of infectious waste in average. The annual emission of the PAHs resulting from infectious waste disinfection is estimated to be 612.6 kg. Reduction of infectious waste caused by redefining infectious waste and increasing the segregation ratio leads to reduction of PAHs concentration by 50%. Increasing the ratio of segregation and redefinition of infectious waste that led to reduced waste loading volume are essential measures that reduce the emissions of pollutants as by-products of disinfection.
Collapse
Affiliation(s)
- Mojgan Alighardashi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Almasi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Soleimani Z, Haghshenas R, Farzi Y, Taherkhani A, Naddafi K, Hajebi A, Behnoush AH, Khalaji A, Mirzaei S, Keyvani M, Saeify S, Kalantar R, Yunesian M, Mesdaghina A, Farzadfar F. Exposure and biomonitoring of PAHs in indoor air at the urban residential area of Iran: Exposure levels and affecting factors. CHEMOSPHERE 2024; 356:141886. [PMID: 38582159 DOI: 10.1016/j.chemosphere.2024.141886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The concentration of polycyclic aromatic hydrocarbons (PAHs) in the air inside residential houses in Iran along with measuring the amount of 1-OHpyrene metabolite in the urine of the participants in the study was investigated by gas chromatography-mass spectrometry (GC-MS). Demographic characteristics (including age, gender, and body composition), equipment affecting air quality, and wealth index were also investigated. The mean ± standard error (SE) concentration of particulate matter 10 (PM10) and ∑PAHs in the indoor environment was 43.2 ± 1.98 and 1.26 ± 0.15 μg/m3, respectively. The highest concentration of PAHs in the indoor environment in the gaseous and particulate phase related to Naphthalene was 1.1 ± 0.16 μg/m3 and the lowest was 0.01 ± 0. 0.001 μg/m3 Pyrene, while the most frequent compounds in the gas and particle phase were related to low molecular weight hydrocarbons. 30% of the samples in the indoor environment have BaP levels higher than the standards provided by WHO guidelines. 68% of low molecular weight hydrocarbons were in the gas phase and 73 and 75% of medium and high molecular weight hydrocarbons were in the particle phase. There was a significant relationship between the concentration of some PAH compounds with windows, evaporative coolers, printers, and copiers (p < 0.05). The concentration of PAHs in houses with low economic status was higher than in houses with higher economic status. The average concentration of 1-hydroxypyrene metabolite in the urine of people was 7.10 ± 0.76 μg/L, the concentration of this metabolite was higher in men than in women, and there was a direct relationship between the amount of this metabolite in urine and the amount of some hydrocarbon compounds in the air, PM10, visceral fat and body fat. This relationship was significant for age (p = 0.01). The concentration of hydrocarbons in the indoor environment has been above the standard in a significant number of non-smoking indoor environments, and the risk assessment of these compounds can be significant. Also, various factors have influenced the amount of these compounds in the indoor air, and paying attention to them can be effective in reducing these hydrocarbons in the air.
Collapse
Affiliation(s)
- Zahra Soleimani
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Haghshenas
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yosef Farzi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Taherkhani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran
| | - Amirali Hajebi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saham Mirzaei
- Institute of Methodologies for Environmental Analysis, Italian National Research Council Potenza, Italy
| | - Maryam Keyvani
- Environmental Health Group, Mashhad University of Medical Sciences. Mashhad, Iran
| | - Shahedeh Saeify
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Kalantar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghina
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran; Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fan L, Bin Wang, Ma J, Ye Z, Nie X, Cheng M, Xie Y, Gu P, Zhang Y, You X, Zhou Y, Chen W. Role and mechanism of WNT5A in benzo(a)pyrene-induced acute lung injury and lung function decline. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132391. [PMID: 37651938 DOI: 10.1016/j.jhazmat.2023.132391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Benzo(a)pyrene was sparsely studied for its early respiratory impairment. The non-canonical ligand WNT5A play a role in pneumonopathy, while its function during benzo(a)pyrene-induced adverse effects were largely unexplored. Individual benzo(a)pyrene, plasma WNT5A, and spirometry 24-hour change for 87 residents from Wuhan-Zhuhai cohort were determined to analyze potential role of WNT5A in benzo(a)pyrene-induced lung function alternation. Normal bronchial epithelial cell lines were employed to verify the role of WNT5A after benzo(a)pyrene treatment. RNA sequencing was adopted to screen for benzo(a)pyrene-related circulating microRNAs and differentially expressed microRNAs between benzo(a)pyrene-induced cells and controls. The most potent microRNA was selected for functional experiments and target gene validation, and their mechanistic link with WNT5A-mediated non-canonical Wnt signaling was characterized through rescue assays. We found significant associations between increased benzo(a)pyrene and reduced 24-hour changes of FEF50% and FEF75%, as well as increased WNT5A. The benzo(a)pyrene-induced inflammation and epithelial-mesenchymal transition in BEAS-2B and 16HBE cells were attenuated by WNT5A silencing. hsa-miR-122-5p was significantly and positively associated with benzo(a)pyrene and elevated after benzo(a)pyrene induction, and exerted its effect by downregulating target gene TP53. Functionally, WNT5A participates in benzo(a)pyrene-induced lung epithelial injury via non-canonical Wnt signaling modulated by hsa-miR-122-5p/TP53 axis, showing great potential as a preventive and therapeutic target.
Collapse
Affiliation(s)
- Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Cesila CA, Souza MCO, Cruz JC, Bocato MZ, Campíglia AD, Barbosa F. Biomonitoring of polycyclic aromatic hydrocarbons in Brazilian pregnant women: Urinary levels and health risk assessment. ENVIRONMENTAL RESEARCH 2023; 235:116571. [PMID: 37467941 DOI: 10.1016/j.envres.2023.116571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Over the years, humans have been continuously exposed to several compounds directly generated by industrial processes and/or present in consumed products. Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants ubiquitous in the environment and represent the main chemical pollutants in urban areas. Worldwide, studies that aim to understand the impacts of exposure to these chemicals have gained increasing prominence due to their potential toxicity profile, mainly concerning genotoxicity and carcinogenicity. Human biomonitoring (HB) is an analytical approach to monitoring population exposure to chemicals; however, these studies are still limited in Brazil. Thus, this work aimed to evaluate the exposure of Brazilian pregnant women to PAHs through HB studies. Besides, the risk characterization of this exposure was performed. For this purpose, urine samples from 358 Brazilian pregnant women were used to evaluate 11 hydroxylated metabolites of PAHs employing gas chromatography coupled to mass spectrometry. The 1OH-naphthol and 2OH-naphthol were detected in 100% of the samples and showed high levels, corresponding to 16.99 and 3.62 μg/g of creatinine, respectively. 2OH-fluorene (8.12 μg/g of creatinine) and 9OH-fluorene (1.26 μg/g of creatinine) were detected in 91% and 66% of the samples, respectively. Benzo(a)pyrene (BaP) metabolites were detected in more than 50% of the samples (0.58-1.26 μg/g of creatinine). A hazard index of 1.4 and a carcinogenic risk above 10-4 were found for BaP metabolites in the risk characterization. Therefore, our findings may indicate that exposure to PAHs poses a potential risk to pregnant women's health and a high probability of carcinogenic risk due to their exposure to BaP. Finally, this work shows the need for more in-depth studies to determine the sources of exposure and the implementation of health protection measures regarding the exposure of the Brazilian population to PAHs.
Collapse
Affiliation(s)
- Cibele Aparecida Cesila
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Zuccherato Bocato
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences. ASTox Analytical and System Toxicology Laboratory. Av. do Café s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
6
|
Styszko K, Pamuła J, Pac A, Sochacka-Tatara E. Biomarkers for polycyclic aromatic hydrocarbons in human excreta: recent advances in analytical techniques-a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7099-7113. [PMID: 37530922 PMCID: PMC10517897 DOI: 10.1007/s10653-023-01699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are generated by the incomplete combustion of organic materials. The main anthropogenic sources of PAHs are the combustion of solid fuels for heating purposes, illegal waste incineration, road transport and industries based on fossil fuels. PAHs can easily enter the body because they are present in all elements of the environment, including water, soil, air, and food. Due to their ubiquitous presence, PAHs, may exert a harmful effect on human health. Assessing PAH exposure through biomonitoring mostly involve techniques to measure the concentration of 1-hydroxypyrene in human urine. Nevertheless, through recent progress in analytical techniques, other common metabolites of PAHs in human biospecimens can be detected. A scientific literature search was conducted to determine which hydroxy derivatives of PAHs are markers of PAHs exposure and to reveal the leading sources of these compounds. Techniques for analyzing biological samples to identify OH-PAHs are also discussed. The most frequently determined OH-PAH in human urine is 1-hydroxypyrene, the concentration of which reaches up to a dozen ng/L in urine. Apart from this compound, the most frequently determined biomarkers were naphthalene and fluorene metabolites. The highest concentrations of 1- and 2-hydroxynaphthalene, as well as 2-hydroxyfluorene, are associated with occupational exposure and reach approximately 30 ng/L in urine. High molecular weight PAH metabolites have been identified in only a few studies. To date, PAH metabolites in feces have been analyzed only in animal models for PAH exposure. The most frequently used analytical method is HPLC-FLD. However, compared to liquid chromatography, the LOD for gas chromatography methods is at least one order of magnitude lower. The hydroxy derivatives naphthalene and fluorene may also serve as indicators of PAH exposure.
Collapse
Affiliation(s)
- Katarzyna Styszko
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Justyna Pamuła
- Department of Geoengineering and Water Management, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Kraków, Poland
| | - Agnieszka Pac
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Sochacka-Tatara
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Liu C, Liu Q, Song S, Li W, Feng Y, Cong X, Ji Y, Li P. The association between internal polycyclic aromatic hydrocarbons exposure and risk of Obesity-A systematic review with meta-analysis. CHEMOSPHERE 2023; 329:138669. [PMID: 37059208 DOI: 10.1016/j.chemosphere.2023.138669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is emerging as a risk factor for obesity, but with conflicting findings. The aim of this systematic review is to investigate and summarize the current evidence towards the associations between PAHs exposure and risk of obesity. We conducted a systematic search of online databases, including PubMed, Embase, Cochrane Library, and Web of Science up to April 28, 2022. Eight cross-sectional studies with data from 68,454 participants were included. The present study illustrated that there was a significant positive association between naphthalene (NAP), phenanthrene (PHEN), and total OH-PAH metabolites and risk of obesity, the pooled OR (95% CI) was estimated at 1.43 (1.07, 1.90), 1.54 (1.18, 2.02), and 2.29 (1.32, 3.99), respectively. However, there was no significant association between fluorene (FLUO) and1-hydroxypyrene (1-OHP) metabolite and risk of obesity. Subgroup analyses showed that associations between PAHs exposure and risk of obesity were more apparent in children, female, smokers and developing regions.
Collapse
Affiliation(s)
- Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qisijing Liu
- Research Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; National Institute of Metrology, Beijing, 100029, China.
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China.
| |
Collapse
|
8
|
Hubai K, Kováts N, Eck-Varanka B, Teke G. Pot study using Chlorophytum comosum plants to biomonitor PAH levels in domestic kitchens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51932-51941. [PMID: 36813942 PMCID: PMC10119263 DOI: 10.1007/s11356-023-25469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In indoor environments, cooking is a major contributor to indoor air pollution releasing potentially harmful toxic compounds such as polycyclic aromatic hydrocarbons. In our study, Chlorophytum comosum 'Variegata' plants were applied to monitor PAH emission rates and patterns in previously selected rural Hungarian kitchens. Concentration and profile of accumulated PAHs could be well explained by cooking methods and materials used in each kitchen. Accumulation of 6-ring PAHs was characteristic in the only kitchen which frequently used deep frying. It also should be emphasized that applicability of C. comosum as indoor biomonitor was assessed. The plant has proven a good monitor organism as it accumulated both LMW and HMW PAHs.
Collapse
Affiliation(s)
- Katalin Hubai
- University of Pannonia, Centre for Natural Sciences, Egyetem Str. 10, Veszprém, 8200, Hungary
| | - Nora Kováts
- University of Pannonia, Centre for Natural Sciences, Egyetem Str. 10, Veszprém, 8200, Hungary.
| | - Bettina Eck-Varanka
- University of Pannonia, Centre for Natural Sciences, Egyetem Str. 10, Veszprém, 8200, Hungary
| | - Gábor Teke
- ELGOSCAR-2000 Environmental Technology and Water Management Ltd., Balatonfűzfő, 8184, Hungary
| |
Collapse
|
9
|
Hisamuddin NH, Jalaludin J. Children's exposure to polycyclic aromatic hydrocarbon (PAHs): a review on urinary 1-hydroxypyrene and associated health effects. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:151-168. [PMID: 35019243 DOI: 10.1515/reveh-2021-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
This article reviewed the published studies on the environmental exposure to polycyclic aromatic hydrocarbons (PAHs) among children and assessed the urinary 1-hydroxypyrene (1-OHP) level as a biomarker of exposure to PAHs. The current knowledge of the potential health effects of increased 1-OHP in children was reviewed. Additionally, the influence of genetic polymorphism on the urinary 1-OHP level was discussed in this review. The assembled data showed that children who are attending schools or living close to industrial and polluted urban areas might have greater exposure to higher concentrations of PAHs with a higher level of urinary 1-OHP when compared to those children living in rural areas. Urinary 1-OHP may be a reliable biomarker for determining the genotoxic effects, oxidative stress and inflammation caused by exposure to PAHs. Strong research evidence indicated that the total body burden of PAHs should be evaluated by biomonitoring of 1-OHP in line with other urinary PAHs metabolites (with 2-3 rings) to evaluate recent total exposure to PAHs. Overall, the study suggests implementing a mitigation plan to combat air pollution to provide a cleaner environment for children.
Collapse
Affiliation(s)
- Nur Hazirah Hisamuddin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, East Java, Indonesia
| |
Collapse
|
10
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
11
|
Souza MCO, Rocha BA, Ximenez JPB, Devóz PP, Santana A, Campíglia AD, Barbosa F. Urinary levels of monohydroxylated polycyclic aromatic hydrocarbons in Brazilian children and health risk assessment: a human biomonitoring-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47298-47309. [PMID: 35178633 DOI: 10.1007/s11356-022-19212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Monitoring human exposure to polycyclic aromatic hydrocarbons (PAHs) is a public health concern. Children are a vulnerable subgroup of the population with limited human biomonitoring data worldwide. Thus, this study aimed to measure the levels of seven PAH metabolites in urine from Brazilian children and provide risk assessment values for this exposure. Our data show naphthalene was the major contributor to children's exposure to PAHs, with a 100% detection rate. Children in urban regions presented higher exposure to PAHs, with higher concentrations of 2-naphthol in the southeast (1.09 ng/mL, p < 0.05). Furthermore, the highest concentration of 2-naphthol was found in older children (p = 0.02), suggesting a possible difference in dietary habits. Exposure to the carbaryl insecticide is suggested based on the high concentrations of 1-naphthol (1.29 ng/mL) and considering the ratio 1-naphthol/2-naphthol (1.78). Moreover, the positive correlation between the metabolites of fluorine and pyrene also suggests exposure to PAHs by petrol combustion. The risk assessment of the PAH exposure was evaluated using the estimated daily intake (EDI) for two naphthalene metabolites in the study with a 100% detection rate. The EDI was 14.47 ng/kg BW/day. The risk assessment to the PAH exposure revealed a non-carcinogenic risk profile, with a hazard quotient of 0.71. To the best of our knowledge, this study is the first to provide levels of PAHs in Brazilian children.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil.
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - João Paulo Bianchi Ximenez
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Paula Picoli Devóz
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| |
Collapse
|
12
|
Lv X, Tan J, Feng J, Li Z, Gong W, Zhang D, Kuang H, Fan R. Relationship of polycyclic aromatic hydrocarbons exposure with vascular damages among sanitation workers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:154-171. [PMID: 35895920 DOI: 10.1080/26896583.2022.2062199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic exposure to polycyclic aromatic hydrocarbons (PAHs) leads to a high incidence of cardiovascular diseases. To assess the effects of PAHs exposure on vascular damages in occupationally exposed populations, 196 sanitation workers were recruited. According to the differences of occupation or operation, they were divided into exposure group (n = 115) and control group (n = 81). Sixteen serum PAHs were determined by gas chromatography-tandem mass spectrometery. Tumor necrosis factor ɑ (TNF-ɑ) and angiotensin II (ANG-II) in serum, blood lipids and blood pressure were also measured. Results showed that, except for indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene, the detection frequencies of other PAHs were above 85%, showing that subjects are generally exposed to PAHs. The top three compounds in serum concentrations of PAHs were phenanthrene, acenaphthylene and anthracene. Moreover, the concentrations of total serum PAHs in the exposure group were significantly higher than those in the control (p < 0.05), suggesting a higher PAHs exposure in the former. Though there was no significant difference in blood lipids and blood pressure between groups (p > 0.05), TNF-ɑ and ANG-II levels in the exposure group were significantly higher than those in the control group (p < 0.05), suggesting that PAHs exposure may be related to pro-inflammatory effects and vascular endothelial damages.
Collapse
Affiliation(s)
- Xuejing Lv
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Jianglu Feng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhilin Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Weiran Gong
- College of Environment, Hohai University, Nanjing, China
| | - Dingguo Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Hisamuddin NH, Jalaludin J, Abu Bakar S, Latif MT. The Influence of Environmental Polycyclic Aromatic Hydrocarbons (PAHs) Exposure on DNA Damage among School Children in Urban Traffic Area, Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042193. [PMID: 35206377 PMCID: PMC8872109 DOI: 10.3390/ijerph19042193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the association between particulate PAHs exposure and DNA damage in Malaysian schoolchildren in heavy traffic (HT) and low traffic (LT) areas. PAH samples at eight schools were collected using a low volume sampler for 24 h and quantified using Gas Chromatography-Mass Spectrometry. Two hundred and twenty-eight buccal cells of children were assessed for DNA damage using Comet Assay. Monte-Carlo simulation was performed to determine incremental lifetime cancer risk (ILCR) and to check the uncertainty and sensitivity of the estimated risk. Total PAH concentrations in the schools in HT area were higher than LT area ranging from 4.4 to 5.76 ng m-3 and 1.36 to 3.79 ng m-3, respectively. The source diagnostic ratio showed that PAHs in the HT area is pyrogenic, mainly from diesel emission. The 95th percentile of the ILCR for children in HT and LT area were 2.80 × 10-7 and 1.43 × 10-7, respectively. The degree of DNA damage was significantly more severe in children in the HT group compared to LT group. This study shows that total indoor PAH exposure was the most significant factor that influenced the DNA damage among children. Further investigation of the relationship between PAH exposure and genomic integrity in children is required to shed additional light on potential health risks.
Collapse
Affiliation(s)
- Nur Hazirah Hisamuddin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Correspondence:
| | - Suhaili Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| |
Collapse
|
14
|
Pena A, Duarte S, Pereira AMPT, Silva LJG, Laranjeiro CSM, Oliveira M, Lino C, Morais S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I-Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides. Molecules 2021; 27:242. [PMID: 35011472 PMCID: PMC8746698 DOI: 10.3390/molecules27010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by determining the parent compounds, their metabolites or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are disperse and limited. To overcome this knowledge gap, this review gathers, for the first time, the published Portuguese HBM information concerning polycyclic aromatic hydrocarbons (PAHs), metals, metalloids, and pesticides concentrations detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative insight of available HBM data allows the analysis of the main determinants and patterns of exposure of the Portuguese population to these selected hazardous compounds, as well as assessment of the potential health risks. Identification of the main difficulties and challenges of HBM through analysis of the enrolled studies was also an aim. Ultimately, this study aimed to support national and European policies promoting human health and summarizes the most important outcomes and lessons learned through the HBM studies carried out in Portugal.
Collapse
Affiliation(s)
- Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
- Centro de Investigação Vasco da Gama-Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes, Campus Universitário-Bloco B, 3020-210 Coimbra, Portugal
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Célia S. M. Laranjeiro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Marta Oliveira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Simone Morais
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| |
Collapse
|
15
|
Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part II—Lessons Learned on Mycotoxins. Molecules 2021; 27:molecules27010130. [PMID: 35011364 PMCID: PMC8747060 DOI: 10.3390/molecules27010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by means of determining the parent compounds, their metabolites, or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are dispersed and limited. Thus, to overcome this knowledge gap, this work reviews the published Portuguese HBM information concerning mycotoxins detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative approach to the available HBM data allows us to analyze the main determinants and patterns of exposure of the Portuguese population to the selected hazardous compounds, as well as to assess the potential health risks. We also aimed to identify the main difficulties and challenges of HBM through the analysis of the enrolled studies. Ultimately, this study aims to support national and European policies in promoting human health by summarizing the most important outcomes and lessons learned through the HBM studies carried out in Portugal.
Collapse
|
16
|
Abstract
Firefighters are the professional force at high risk of suffering potential health consequences due to their chronic exposure to numerous hazardous pollutants during firefighting activities. Unfortunately, determination of fire emission exposure is very challenging. As such, the identification and development of appropriate biomarkers is critical in meeting this need. This chapter presents a critical review of current information related with the use of different urinary biomarkers of effect and exposure in occupationally exposed firefighters over the last 25 years. Evidence suggests that urinary isoprostanes and mutagenicity testing are promising biomarkers of early oxidative stress. Data indicate that firefighters participating in firefighting activities present with increased urinary biomarkers of exposure. These include polycyclic aromatic hydrocarbons, heavy metals and metalloids, organo-chlorine and -phosphorus compounds, environmental phenols, phthalates, benzene and toluene. More studies are urgently needed to better evaluate firefighter occupational safety and health and to support the implementation of preventive measures and mitigation strategies to promote the protection of this chronically exposed group of workers.
Collapse
|
17
|
Zhu H, Martinez-Moral MP, Kannan K. Variability in urinary biomarkers of human exposure to polycyclic aromatic hydrocarbons and its association with oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 156:106720. [PMID: 34166875 PMCID: PMC8380707 DOI: 10.1016/j.envint.2021.106720] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Urinary concentrations of mono-hydroxylated metabolites of PAHs (OH-PAHs) have been used as biomarkers of these chemicals' exposure in humans. Little is known, however, with regard to intra- and inter-individual variability in OH-PAH concentrations and their association with oxidative stress. We conducted a longitudinal study of measurement of urinary concentrations of 15 OH-PAHs and 7 oxidative stress biomarkers (OSBs) of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], lipid [malondialdehyde (MDA) and F2-isoprostanes (PGF2α)] and protein [o,o'-dityrosine (diY)] peroxidation in 19 individuals for 44 consecutive days. Metabolites of naphthalene (OHNap), fluorene (OHFlu), phenanthrene (OHPhe), and pyrene (OHPyr) were found in >70% of 515 urine samples analyzed, at sum concentrations (∑OH-PAH) measured in the range of 0.46-60 ng/mL. After adjusting for creatinine, OHNap and ∑OH-PAH concentrations exhibited moderate predictability, with intra-class correlation coefficients (ICCs) ranging from 0.359 to 0.760. However, ICC values were low (0.001-0.494) for OHFlu, OHPhe, and OHPyr, which suggested poor predictability for these PAH metabolites. Linear mixed-effects analysis revealed that an unit increase in ∑OH-PAH concentration corresponded to 4.5%, 5.3%, 20%, and 21% increase in respective urinary 8-OHdG, MDA, PGF2α, and diY concentrations, suggesting an association with oxidative damage to DNA, lipids, and proteins. The daily intakes of PAHs, calculated from urinary concentrations of OH-PAHs, were 10- to 100-fold below the current reference doses. This study provides valuable information to design sampling strategies in biomonitoring studies and in assigning exposure classifications of PAHs in epidemiologic studies.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Maria-Pilar Martinez-Moral
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
18
|
Aminiyan MM, Kalantzi OI, Etesami H, Khamoshi SE, Hajiali Begloo R, Aminiyan FM. Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63359-63376. [PMID: 34231139 DOI: 10.1007/s11356-021-14839-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads. The United States Environmental Protection Agency (USEPA) Standard Methods 8270D and 3550C were used for the measurement of PAHs using GC mass spectroscopy. The total concentration of PAHs was 1443 ng g-1, with a range of 1380-1550 ng g-1. Additionally, the concentration of carcinogenic PAHs (∑carcPAHs) ranged from 729.5 to 889.4 ng g-1, with a mean value of 798.1 ng g-1. Pyrene was the most abundant PAH, with an average concentration of 257 ng g-1. Source identification analyses showed that vehicle emissions along with incomplete combustion and petroleum were the main sources of PAHs. The ecological risk status of the studied area was moderate. Spatial distribution mapping revealed that the streets around the city center and oil company had higher PAH levels than the other sectors of Rafsanjan. The results indicated that dermal contact and ingestion of contaminated particles were the most important pathways compared to inhalation. The mean incremental lifetime cancer risk (ILCR) was 1.4 × 10-3 and 1.3 × 10-3 for children and adults, respectively. This implies potentially adverse health effects in exposed individuals. The mutagenic risk for both subpopulations was approximately 18 times greater than the one recommended by USEPA. Our findings suggest that children are subjected to a higher carcinogenic and mutagenic risk of PAHs, especially dibenzo[a,h]anthracene (DahA), bounded to street dust of Rafsanjan. Our study highlights the need for the development of emission monitoring and control scenarios.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | | | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyyed Erfan Khamoshi
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Raziyeh Hajiali Begloo
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Mirzaei Aminiyan
- Civil Engineering Department, College of Engineering, Vali-e-Asr Rafsanjan University, Rafsanjan, Iran
| |
Collapse
|
19
|
Shi J, Zhao Y, Xue L, Li G, Wu S, Guo X, Wang B, Huang J. Urinary metabolites of polycyclic aromatic hydrocarbons after short-term fine particulate matter exposure: A randomized crossover trial of air filtration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117258. [PMID: 33964555 DOI: 10.1016/j.envpol.2021.117258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Research on the relationship between short-term exposure to fine particulate matter (PM2.5) and urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) is sparse in the nonoccupationally exposed populations. A quasi-experimental observation of haze events nested within a randomized crossover trial of alternative 1-week real or sham indoor air filtration was conducted to evaluate the associations of urinary monohydroxy-PAHs (OH-PAHs) with short-term exposure to PM2.5 and PM2.5-bound PAHs. The study was conducted among 57 healthy college students in Beijing, China. PM2.5-bound PAHs and urinary OH-PAHs were quantified using gas chromatography coupled with a triple-quadrupole tandem mass spectrometer. Linear mixed-effect models were applied to evaluate the association of urinary OH-PAHs with time-weighted personal PM2.5 and PM2.5-bound PAHs, controlling for potentially confounding variables. The results demonstrated that air filtration could markedly reduce external exposure to PM2.5 and PM2.5-bound parent, nitrated, and oxygenated PAHs. In the intervention trial, the urinary concentrations of 2-hydroxyfluorene (2-OH-FLU) and 9-hydroxyphenanthrene (9-OH-PHE) were elevated significantly by 16.5% (95% CI, 2.1%, 33.1%) and 37.9% (95% CI, 8.4%, 75.4%), respectively, in association with a doubling increase in personal PM2.5 exposure. Urinary 9-OH-PHE was also significantly positively associated with the increase in the sum of PM2.5-bound parent PAHs. Furthermore, the levels of urinary OH-PAHs such as 2-OH-FLU and 9-OH-PHE in the haze events were elevated by 31.1% (95% CI, 8.7%, 53.4%) and 73.5% (95% CI, 16.0%, 131.0%), respectively, in association with a doubling increase in personal PM2.5 exposure. The findings indicated that urinary 2-OH-FLU and 9-OH-PHE could serve as potential internal exposure biomarkers for assessing short-term PM2.5 exposure in nonoccupational populations.
Collapse
Affiliation(s)
- Jiazhang Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Yan Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Lijun Xue
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University, Beijing, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, PR China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, PR China.
| |
Collapse
|
20
|
Fernández SF, Pardo O, Hernández CS, Garlito B, Yusà V. Children's exposure to polycyclic aromatic hydrocarbons in the Valencian Region (Spain): Urinary levels, predictors of exposure and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106535. [PMID: 33831740 DOI: 10.1016/j.envint.2021.106535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that are released into the environment during incomplete combustion of organic matter and which can have a negative effect on human health. PAHs enter the human body mostly through ingestion of food or inhalation of tobacco smoke. The purpose of the present study is to evaluate the internal levels of PAHs that children living in the Valencian Region (Spain) are exposed to. In total, we measured eleven biomarkers of exposure to naphthalene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene in the urine of 566 children aged 5-12. The analytical method was based on a liquid-liquid extraction of the PAH metabolites from the urine samples, followed by their determination by liquid chromatography coupled to tandem mass spectrometry. In addition, we used a questionnaire to collect the socio-demographic characteristics and 72 h dietary recall information of the participants in our study. Overall, we detected PAH metabolites in more than 78% of the children, with the exception of 3-hydroxyfluorene and 3-hydroxybenzo(a)pyrene, which were found in less than 37% of the analyzed samples. The most abundant biomarker found was 2-hydroxynaphthalene, with a geometric mean of 10 ng·ml-1. Reference values (RV95) ranging from 0.11 (4-hydroxyphenanthrene) to 53 ng·ml-1 (2-hydroxynaphthalene) in urine of Spanish children were derived from the present study. According to the statistical analysis, the factors that were significantly associated with the internal exposure to PAHs were province of residence, body mass index (BMI), children's age, consumption of plastic-wrapped food, and dietary habits. The estimated daily intakes in geometric mean terms ranged from 5 (fluorene) to 204 ng·kg-bw-1·day-1 (naphthalene). Risk assessment calculations showed higher hazard quotients and hazard indexes for children aged 5-8 than those aged 9-12, but all were below 1. In conclusion, no potential non-cancer health risk due to PAH exposure was observed in children living in Spain.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, University of València Doctor, Moliner 50, 46100 Burjassot, Spain.
| | - Cristina S Hernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Borja Garlito
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain; Public Health Laboratory of València Av. Catalunya, 21, 46020 València, Spain
| |
Collapse
|
21
|
Chen Q, Wang F, Yang H, Wang X, Zhang A, Ling X, Li L, Zou P, Sun L, Huang L, Chen H, Ao L, Liu J, Cao J, Zhou N. Exposure to fine particulate matter-bound polycyclic aromatic hydrocarbons, male semen quality, and reproductive hormones: The MARCHS study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116883. [PMID: 33794416 DOI: 10.1016/j.envpol.2021.116883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/19/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Exposure to outdoor fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) is linked to reproductive dysfunction. However, it is unclear which component of PAHs is responsible for the adverse outcomes. In the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study, we measured the exposure levels of 16 PAHs by collecting air PM2.5 particles and assessed eight PAHs metabolites from four parent PAHs, including naphthalene, fluorene, phenanthrene, and pyrene in urine samples. We investigated compositional profiles and variation characteristics for 16 PAHs in PM2.5, and then assessed the association between PAHs exposure and semen routine parameters, sperm chromatin structure, and serum hormone levels in 1452 samples. The results showed that naphthalene (95% CI: -17.989, -8.101), chrysene (95% CI: -64.894, -47.575), benzo[a]anthracene (95% CI: -63.227, -45.936) and all the high molecular weight (HMW) PAHs in PM2.5 were negatively associated with sperm normal morphology. Most of the low molecular weight (LMW) PAHs, such as acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, ∑LMW PAHs and ∑16 PAHs, were correlated with increased sperm motility (all corrected P < 0.05). On the other hand, sperm normal morphology was all negatively associated with urinary metabolites of ∑OH-Nap (95% CI: -5.611, -0.536), ∑OH-Phe (95% CI: -5.741, -0.957), and ∑OH-PAHs (95% CI: -5.274, -0.361). Urinary concentrations of ∑OH-PAHs were found to be negatively associated with sperm high DNA stainability (HDS) (P = 0.023), while ∑OH-Phe were negatively associated with serum testosterone level and sperm HDS (P = 0.004). Spearman correlation analysis showed that except for the urinary OH-Nap metabolites, the rest of the urinary OH-PAHs metabolites were negatively correlated with their parent PAHs in air. The results of this study suggest that various PAHs' components may affect reproductive parameters differently. Inhalation of PAHs in air, especially HMW PAHs, may be a potential risk factor for male reproductive health.
Collapse
Affiliation(s)
- Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Furong Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaogang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lianbing Li
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Linping Huang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqiang Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
22
|
Vorläufiger Leitwert für Benzo[a]pyren (B[a]P) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1036-1046. [PMID: 34170375 DOI: 10.1007/s00103-021-03354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wang Q, Xu X, Zeng Z, Hylkema MN, Cai Z, Huo X. PAH exposure is associated with enhanced risk for pediatric dyslipidemia through serum SOD reduction. ENVIRONMENT INTERNATIONAL 2020; 145:106132. [PMID: 32979814 DOI: 10.1016/j.envint.2020.106132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is linked to abnormal lipid metabolism, but evidence regarding PAHs as risk factors for dyslipidemia is lacking. OBJECTIVE To investigate the respective role and interaction of PAH exposure and antioxidant consumption in the risk for pediatric dyslipidemia. METHODS We measured the concentrations of serum lipids, superoxide dismutase (SOD) and urinary hydroxylated PAHs (OH-PAHs) in 403 children, of which 203 were from an e-waste-exposed area (Guiyu) and 200 were from a reference area (Haojiang). Biological interactions were calculated by additive models. RESULTS Guiyu children had higher serum triglyceride concentration and dyslipidemia incidence, and lower serum concentration of high-density lipoprotein (HDL) than Haojiang children. Elevated OH-PAH concentration, and concomitant SOD reduction, were both associated with lower HDL concentration and higher hypo-HDL risk (∑3OH-Phes: B for lgHDL = -0.048, P < 0.01; OR for hypo-HDL = 3.708, 95% CI: 1.200, 11.453; SOD: BT3 for lgHDL = 0.061, P < 0.01; ORT3 for hypo-HDL = 0.168, 95% CI: 0.030, 0.941; all were adjusted for confounders). Biological interaction between phenanthrol exposure and SOD reduction was linked to dyslipidemia risk (RERI = 2.783, AP = 0.498, S = 2.537). Children with both risk factors (higher ∑3OH-Phes and lower SOD) had 5.594-times (95% CI: 1.119, 27.958) the dyslipidemia risk than children with neither risk factors (lower ∑3OH-Phes and higher SOD). CONCLUSION High PAH exposure combined with SOD reduction is recommended for predicting elevated risk for pediatric dyslipidemia. Risk assessment of PAH-related dyslipidemia should take antioxidant concentration into consideration.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
24
|
Oliveira M, Duarte S, Delerue-Matos C, Pena A, Morais S. Exposure of nursing mothers to polycyclic aromatic hydrocarbons: Levels of un-metabolized and metabolized compounds in breast milk, major sources of exposure and infants' health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115243. [PMID: 32702605 DOI: 10.1016/j.envpol.2020.115243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, biomonitoring of nursing Portuguese mothers to polycyclic aromatic hydrocarbons (PAHs) exposure and assessment of potential health risks of their infants were performed through determination of 18 PAHs and 6 major metabolites (OH-PAHs) in breast milk. Concentrations of total PAHs ranged between 55.2 and 1119 ng/g fat, being naphthalene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and phenanthrene the most abundant compounds (68.4% of ∑PAHs). Benzo(a)pyrene, known carcinogenic, was not detected. Total levels of OH-PAHs ranged from 6.66 to 455 ng/g fat with 1-hydroxyphenanthrene, 1-hydroxynaphthalene and 1-hydroxyacenaphthene as major compounds (96% of ∑OH-PAHs). Concentrations of ∑PAHs and ∑OH-PAHs were strongly correlated between each other (r = 0.692; p ≤ 0.001) and moderately-to-strongly associated with individual compounds (0.203 < r < 0.841; p ≤ 0.001). The attained data suggest increased levels of PAHs in older nursing mothers (>30 years) and in those whose child had lower weight (up to 3.0 kg). Breast-fed infant presented a median PAHs daily intake of 1.41 μg/kg body weight (total benzo(a)pyrene equivalents of 0.0679 μg/kg) and were exposed to 0.024 μg/kg body weight of ∑PAH4 [benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, and chrysene]. Although breast milk is a secure food for newborns, un-metabolized and metabolized PAHs should be included in biomonitoring surveillance studies during breastfeeding to prevent potential health risks for infants.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sofia Duarte
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia, Universidade de Coimbra, Polo Das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, Avenida José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Angelina Pena
- REQUIMTE-LAQV, Laboratório de Bromatologia e Farmacognosia, Faculdade de Farmácia, Universidade de Coimbra, Polo Das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
25
|
Mehmood T, Zhu T, Ahmad I, Li X. Ambient PM 2.5 and PM 10 bound PAHs in Islamabad, Pakistan: Concentration, source and health risk assessment. CHEMOSPHERE 2020; 257:127187. [PMID: 32505038 DOI: 10.1016/j.chemosphere.2020.127187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 05/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in ambient particulate matter contribute considerably to human health risk. Simultaneous sampling of ambient PM2.5/PM10 was done to analyze the Ʃ16PAH across the four seasons of 2017 in Islamabad, Pakistan. The average Ʃ16PAH concentrations in PM2.5 and PM10 were 25.69 and 40.69 ng m-3, respectively. For both PM2.5 and PM10, the highest PAHs concentration was in winter (45.14, 67.10 ng m-3), while the lowest was in summer (16.40, 28.18 ng m-3). Source appointment indicated that vehicular exhaust, i.e., diesel, gasoline and alternatively fuel liquid natural gas (LNG), and compressed natural gas (CNG) combustion was the primary PAHs contributor, whereas biomass burning and fuel combustion (coal, biomass, wood, CNG) from stationary sources were another important sources. Health risk assessment showed that the lifetime cancer risk (LCR) values of PAHs were higher than the acceptable level in all four seasons. LCR values were the highest in winter (9.23 × 10-4 for PAHs in PM2.5 and 13.98 × 10-4 for PAHs in PM10) which were 9 and 13 times higher than tolerable cancer risk level respectively, and they were 2-3 times higher than the acceptable values in other seasons.
Collapse
Affiliation(s)
- Tariq Mehmood
- School of Space and Environment, Beihang University, Beijing, 100191, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ishaq Ahmad
- NPU-NCP Joint International Research Centre on Advanced Nanomaterials and Defects Engineering, National Center for Physics, Islamabad, Pakistan
| | - Xinghua Li
- School of Space and Environment, Beihang University, Beijing, 100191, China.
| |
Collapse
|
26
|
Cheng Z, Huo X, Dai Y, Lu X, Hylkema MN, Xu X. Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children. ENVIRONMENT INTERNATIONAL 2020; 139:105720. [PMID: 32289583 DOI: 10.1016/j.envint.2020.105720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. OBJECTIVES We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. METHODS Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. RESULTS The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1β, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1β, IL-18, IFN-γ, and TNF-β were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. CONCLUSIONS Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
27
|
Polachova A, Gramblicka T, Parizek O, Sram RJ, Stupak M, Hajslova J, Pulkrabova J. Estimation of human exposure to polycyclic aromatic hydrocarbons (PAHs) based on the dietary and outdoor atmospheric monitoring in the Czech Republic. ENVIRONMENTAL RESEARCH 2020; 182:108977. [PMID: 31821985 DOI: 10.1016/j.envres.2019.108977] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
In everyday life, humans can be exposed to various chemicals including ubiquitous polycyclic aromatic hydrocarbons (PAHs) mostly through food consumption and/or inhalation. In the presented study, we evaluated PAH concentrations in duplicate samples (n = 251). Concurrently, the outdoor concentrations of PM2.5-bound PAHs in filters (n = 179) were also monitored. The daily exposure to PAHs was subsequently estimated for the risk group of pregnant women living in two different cities (Most city and Ceske Budejovice city) in the Czech Republic. This is the first unique study in Europe to evaluate human daily exposure to 20 PAHs both from inhalation (outdoor air) and dietary intake. For the analysis of samples collected during the years 2016/2017, a gas chromatography coupled to tandem mass spectrometry was applied. Focusing on the diet samples, a slightly higher sum of detected PAHs was measured in duplicates obtained from the mothers living in the Most city (0.115-186 ng g-1) compared to the Ceske Budejovice city (0.115-97.1 ng g-1). This could be due to a higher occurrence of major analytes (pyrene, phenanthrene and fluoranthene) and the different composition of daily diet. The values of toxic and most often detected substance, namely benzo[a]pyrene (BaP), were also higher by 35% in the Most city. Regarding the outdoor air contamination (only particulate phase - PM2.5 was assessed), here the opposite situation was observed, relatively higher amounts of all PAHs were monitored in the Ceske Budejovice city (median: 2.22 ng m-3) than in the Most city (median: 1.07 ng m-3). These higher PAH concentrations in the Ceske Budejovice city are probably caused by more intense traffic, higher population and also by the occurrence of old-fashioned heating plant. Depending on a seasonal variability, especially during the cold season, the concentrations of BaP exceeded the European average emission limit (1 ng m-3) by 1.5-6 times. This highest inhalation exposure to all PAHs was observed in February. However, the dietary intake still represents the dominant contributor (>90%) to the total PAH exposure.
Collapse
Affiliation(s)
- Andrea Polachova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Ondrej Parizek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Radim J Sram
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic; Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Michal Stupak
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
28
|
Xing H, Chen J, Peng M, Wang Z, Liu F, Li S, Teng X. Identification of signal pathways for immunotoxicity in the spleen of common carp exposed to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109464. [PMID: 31398777 DOI: 10.1016/j.ecoenv.2019.109464] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant due to its high toxicity to aquatic animals. Because CPF was detected in aquatic environments in many countries, it has been widely concerned by researchers. Although the immunotoxicity of CPF to fish had been reported, the immunotoxicity mechanism is still not clear. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. However, the immunotoxicity identification of CPF on fish had not been reported by transcriptome analysis. In the present study, we examined the effects of CPF on organismal system in the spleen of common carp by transcriptome analysis. We have successfully constructed a database of transcriptome analysis of carp spleens under exposure to CPF and found 773 differentially expressed genes (DEGs) (including 498 up-regulated DEGs and 275 down-regulated DEGs) and 4 branches (containing 33 known KEGG pathways). Some genes associated with the 4 pathways (Complement and coagulation cascades, PPAR signaling pathway, Fat digestion and absorption, and Collecting duct acid secretion) contained in organismal system were validated by quantitative real-time PCR and showed significant improvement compared with the control group. Our results indicated that exposure to CPF caused a change in the signal pathways of organismal system in carp spleens. The present study provides new insights into the immunotoxicity mechanism and risk assessment of CPF, as well as references for comparative medicine.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muqiao Peng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhilei Wang
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Feng Liu
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
29
|
Dai Y, Huo X, Cheng Z, Wang Q, Zhang Y, Xu X. Alterations in platelet indices link polycyclic aromatic hydrocarbons toxicity to low-grade inflammation in preschool children. ENVIRONMENT INTERNATIONAL 2019; 131:105043. [PMID: 31352259 DOI: 10.1016/j.envint.2019.105043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the effect of PAHs on low-grade inflammation related to platelets in humans is unknown. OBJECTIVES We investigated the association of PAH exposure with low-grade inflammation and platelet parameters in healthy preschoolers. METHODS The present study recruited 239 participants, aged 2-7 years, from an electronic-waste (e-waste)-exposed (n = 118) and a reference (n = 121) area. We measured ten urinary PAH metabolites, four types of immune cells and cytokines, and seven platelet parameters, and compared their differences between children from the two groups. Spearman correlation analysis was performed to explore the potential risk factors for PAH exposure and the associations between urinary monohydroxylated PAHs (OH-PAHs) and biological parameters. Associations between urinary PAH metabolites and platelet indices were analyzed using quantile regression models. Mediation analysis was used to understand the relationship between urinary total hydroxynaphthalene (ΣOHNa) and interleukin (IL)-1β through seven platelet indices, as mediator variables. RESULTS We found higher urinary monohydroxylated PAH (OH-PAH) concentrations, especially 1-hydroxynaphthalene (1-OHNa) and 2-hydroxynaphthalene (2-OHNa), in children from the e-waste-exposed group than in the reference group. These were closely associated with child personal habits and family environment. A decreased lymphocyte ratio and increased pro-inflammatory cytokines, such as gamma interferon-inducible protein (IP)-10 and IL-1β, were found in the e-waste-exposed children. After adjustment for confounding factors, significantly negative correlations were found between levels of mean platelet volume (MPV), platelet distribution width (PDW), platelet-large cell ratio (P-LCR) and ratio of mean platelet volume to platelet count (MPVP) and OH-PAHs. In addition, ΣOHNa was positively associated with IL-1β mediated through MPV, PDW, P-LCR, and ratio of platelet count to lymphocyte count (PLR). CONCLUSIONS Platelet indices were significantly associated with the changes in urinary OH-PAH levels, which may can be regarded as effective biomarkers of low-grade inflammation resulting from low PAH exposure in healthy children.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
30
|
Chang FC, Chen CY, Lin CY, Sheen JF. A combined analytical method for biological monitoring of arsenic, benzene and polycyclic aromatic hydrocarbons in human urine by liquid chromatography tandem mass spectrometry. Talanta 2019; 198:137-145. [DOI: 10.1016/j.talanta.2019.01.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022]
|
31
|
Peng N, Huang C, Su J. An experimental and kinetic study of thermal decomposition of phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:565-571. [PMID: 30469036 DOI: 10.1016/j.jhazmat.2018.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have enormous potential hazards. It is necessary for China to propose more internationally stricter standards for PAHs, in order to improve the country's pollutant prevention and control policy system, and ultimately, provide institutional guarantees for implementing PAH emissions prevention and control. In this study, phenanthrene, a typical PAHs generated during municipal solid waste (MSW) to energy system, was applied as a model compound to study the thermal degradation mechanism during the combustion process. Combustion kinetics for the three major gaseous products, including hydrogen, methane, and carbon dioxide, were determined. Experimental results indicated that hydrogen was promoted compared to methane and carbon dioxide during the combustion of phenanthrene, especially in high oxygen concentrations. The apparent activation energy (Ea) of 8.299-11.51, 13.10-23.07, and 9.368-15.29 kJ/mol, pre-exponential factor (A) of 0.219-1.579, 5.034-10.12, and 6.553-15.51 s-1, and the reaction order (n) of 1.160-1.234, 1.059-1.305, and 1.636-1.774 were obtained for hydrogen, methane, and carbon dioxide, respectively. Research on combustion behavior of phenanthrene and reaction kinetics provides the theoretical basis for the high-temperature removal of PAHs as byproducts during the combustion of MSW in oxygen-rich atmosphere.
Collapse
Affiliation(s)
- Nana Peng
- School of Public Policy and Management, Tsinghua University, Beijing 100084, China
| | - Cui Huang
- School of Public Policy and Management, Tsinghua University, Beijing 100084, China.
| | - Jun Su
- School of Public Policy and Management, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. ENVIRONMENT INTERNATIONAL 2019; 124:180-204. [PMID: 30654326 DOI: 10.1016/j.envint.2018.12.052] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Children, an important vulnerable group, spend most of their time at schools (up to 10 h per day, mostly indoors) and the respective air quality may significantly impact on children health. Thus, this work reviews the published studies on children biomonitoring and environmental exposure to particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) at school microenvironments (indoors and outdoors), major sources and potential health risks. A total of 28, 35, and 31% of the studies reported levels that exceeded the international outdoor ambient air guidelines for PM10, PM2.5, and benzo(a)pyrene, respectively. Indoor and outdoor concentrations of PM10 at European schools, the most characterized continent, ranged between 7.5 and 229 μg/m3 and 21-166 μg/m3, respectively; levels of PM2.5 varied between 4 and 100 μg/m3 indoors and 6.1-115 μg/m3 outdoors. Despite scarce information in some geographical regions (America, Oceania and Africa), the collected data clearly show that Asian children are exposed to the highest concentrations of PM and PAHs at school environments, which were associated with increased carcinogenic risks and with the highest values of urinary total monohydroxyl PAH metabolites (PAH biomarkers of exposure). Additionally, children attending schools in polluted urban and industrial areas are exposed to higher levels of PM and PAHs with increased concentrations of urinary PAH metabolites in comparison with children from rural areas. Strong evidences demonstrated associations between environmental exposure to PM and PAHs with several health outcomes, including increased risk of asthma, pulmonary infections, skin diseases, and allergies. Nevertheless, there is a scientific gap on studies that include the characterization of PM fine fraction and the levels of PAHs in the total air (particulate and gas phases) of indoor and outdoor air of school environments and the associated risks for the health of children. There is a clear need to improve indoor air quality in schools and to establish international guidelines for exposure limits in these environments.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Klara Slezakova
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
33
|
Slezakova K, Peixoto C, Pereira MDC, Morais S. Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:56-66. [PMID: 30014915 DOI: 10.1016/j.jhazmat.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Associations between indoor air quality (IAQ) and health in sport practise environments are not well understood due to limited knowledge of magnitude of inhaled pollutants. Thus, this study assessed IAQ in four health clubs (HC1-HC4) and estimated inhaled doses during different types of activities. Gaseous (TVOCs, CO, O3, CO2) and particulate pollutants (PM1, PM4) were continuously collected during 40 days. IAQ was influenced both by human occupancy and the intensity of the performed exercises. Levels of all pollutants were higher when clubs were occupied (p < 0.05) than for vacant periods, with higher medians in main workout areas rather than in spaces/studios for group activities. In all spaces, TVOCs highly exceeded legislative limit (600 μg/m3), even when unoccupied, indicating possible risks for the respective occupants. CO2 levels were well correlated with relative humidity (rs 0.534-0.625) and occupancy due to human exhalation and perspiration during exercising. Clubs with natural ventilations exhibited twice higher PM, with PM1 accounting for 93-96% of PM4; both PM were highly correlated (rs 0.936-0.995) and originated from the same sources. Finally, cardio classes resulted in higher inhalation doses than other types of exercising (1.7-2.6).
Collapse
Affiliation(s)
- Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia Peixoto
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
34
|
Martín Tornero E, Espinosa-Mansilla A, Muñoz de la Peña A, Durán Merás I. Phenanthrene metabolites determination in human breast and cow milk by combining elution time-emission fluorescence data with multiway calibration. Talanta 2018; 188:299-307. [DOI: 10.1016/j.talanta.2018.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
|
35
|
Goudarzi G, Geravandi S, Alavi N, Idani E, Salmanzadeh S, Yari AR, Jamshidi F, Mohammadi MJ, Ranjbarzadeh A, Alamdari FA, Darabi F, Rohban A. Association between cancer risk and polycyclic aromatic hydrocarbons' exposure in the ambient air of Ahvaz, southwest of Iran. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1461-1470. [PMID: 29959528 DOI: 10.1007/s00484-018-1543-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 05/24/2023]
Abstract
Nowadays, a large number of health endpoints such as disease rates, treatment costs, and death, by air pollutants, have been a serious health problem for humans. One of the most hazardous air pollutants, which is highly dangerous for human health, is polycyclic aromatic hydrocarbons (PAHs). The existence of the emission of industries' pollutants and seasonal variations are the primary agents affecting PAHs' concentration. The purposes of this study were to calculate the cancer risk and measure PAHs' exposure in the ambient air of Ahvaz, southwest of Iran, during 2017. Three distinct areas ((S1) industrial, (S2) high traffic, and (S3) residential) of Ahvaz metropolitan were selected. Omni sampler equipped with polytetrafluoroethylene (PTFE) filters were used for active sampling of PAHs. To detect the level of PAHs, gas chromatography with mass spectrometry (GC/MS) was used. Incremental lifetime cancer risk (ILCR) and lifetime average daily dose (LADD) were used to estimate the health risk caused by PAHs. The results showed that the residential and industrial areas had the lowest and highest level of PAHs. Moreover, the average levels of PAHs in industrial, high traffic, and residential areas were 8.44 ± 3.37, 7.11 ± 2.64, and 5.52 ± 1.63 ng m-3, respectively. Furthermore, ILCR in autumn and winter was higher than EPA standard, 0.06307 and 0.04718, respectively. In addition, ILCR in different areas was significantly higher than standard. Research findings imply that the levels of exposure to PAHs can increase ILCR and risk of health endpoint. The cancer risk attributed to PAHs should be further investigated from the perspective of the public health in metropolitans.
Collapse
Affiliation(s)
- Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nadali Alavi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Idani
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Internal Medicine, Division of Pulmonology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokrolah Salmanzadeh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Yari
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Farkhondeh Jamshidi
- Department of Forensic Medicine and Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | | | | | - Fatemeh Darabi
- Department of Public Health, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Alireza Rohban
- Rehabilitation Management, School of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Sochacka-Tatara E, Majewska R, Perera FP, Camann D, Spengler J, Wheelock K, Sowa A, Jacek R, Mróz E, Pac A. Urinary polycyclic aromatic hydrocarbon metabolites among 3-year-old children from Krakow, Poland. ENVIRONMENTAL RESEARCH 2018; 164:212-220. [PMID: 29501831 DOI: 10.1016/j.envres.2018.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and can adversely affect human health. The aim of the present study is to describe the level of PAHs exposure in children living in Kraków, one of the most polluted cities in Poland, and to determine the relationship of urinary biomarkers with environmental PAHsexposure. Urinary monohydroxy metabolites (OH-PAHs) of 20 PAHs were assessed in 218 three-year old children, of which only 10 were present in nearly all the samples: monohydroxy metabolites of naphthalene, fluorene, phenantrene and pyrene. Of the metabolites analyzed, hydroxynaphthalenes were predominant and constituted almost 73% of total excreted OH-PAHs, while 1-OH-PYRene was the least abundant (2.3% of total OH-PAHs). All measured urinary OH-PAHs were statistically significantly correlated with each other (R = 0.165-0.880) but the highest correlation coefficients with other individual OH-PAHs and with total OH-PAHs were observed for 2-OH-FLUOR. Children exposed at home to environmental tobacco smoke (ETS) had higher concentrations of fluorene and pyrene urinary metabolites compared to those without ETS exposure; and those exposed to gas-based appliances used for cooking or heating water had higher levels of fluorene and phenanthrene metabolites than children not exposed. The use of coal, wood or oil for heating was associated with elevated levels of 1-OH-PYRene. Urinary PAHs metabolites only modestly reflect high molecular weight carcinogenic PAHs exposures such as those monitored in air in the present study. None of the measured PAHs metabolites was correlated with airborne PM2.5 and only two were slightly correlated with measured higher molecular mass airborne PAHs. The average concentrations of these specific metabolites in Polish children were much higher than observed in other pediatric populations living in developed countries. Our findings suggest that to capture various sources of PAHs, in addition to 1-OH-PYRene, biomonitoring of PAHs exposure should include 2-OH-NAP and 2-OH-FLUOR.
Collapse
Affiliation(s)
- Elżbieta Sochacka-Tatara
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland.
| | - Renata Majewska
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland
| | - Frederica P Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY 10032, USA
| | - David Camann
- Chemistry and Chemical Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA
| | - John Spengler
- Department of Environmental Health, Harvard School of Public Health, P.O. Box 15677, Landmark 406 West, 401 Park Drive, Boston, MA 02215, USA
| | - Kylie Wheelock
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 W. 168 St., New York, NY 10032, USA
| | - Agata Sowa
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland
| | - Ryszard Jacek
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland
| | - Elżbieta Mróz
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland
| | - Agnieszka Pac
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kopernika 7a Str., 31-034 Krakow, Poland
| |
Collapse
|
37
|
Oliveira M, Slezakova K, Magalhães CP, Fernandes A, Teixeira JP, Delerue-Matos C, do Carmo Pereira M, Morais S. Individual and cumulative impacts of fire emissions and tobacco consumption on wildland firefighters' total exposure to polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2017; 334:10-20. [PMID: 28380396 DOI: 10.1016/j.jhazmat.2017.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/19/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
There is limited information about wildland firefighters' exposure to polycyclic aromatic hydrocarbons (PAHs), being scarce studies that included the impact of tobacco consumption. Thus, this work evaluated the individual and cumulative impacts of firefighting activities and smoking on wildland firefighters' total exposure to PAHs. Six urinary PAH metabolites (1-hydroxynaphthalene (1OHNaph), 1-hydroxyacenaphthene (1OHAce), 2-hydroxyfluorene (2OHFlu), 1-hydroxyphenanthrene (1OHPhen), 1-hydroxypyrene (1OHPy), and 3-hydroxybenzo[a]pyrene (3OHB[a]P)) were quantified by high-performance liquid chromatography with fluorescence detection. Firefighters from three fire stations were characterized and organized in three groups: non-smoking and non-exposed to fire emissions (NSNExp), smoking non-exposed (SNExp), and smoking exposed (SExp) individuals. 1OHNaph+1OHAce were the most predominant OH-PAHs (66-91% ∑OH-PAHs), followed by 2OHFlu (2.8-28%), 1OHPhen (1.3-7%), and 1OHPy (1.4-6%). 3OHB[a]P, the carcinogenicity PAH biomarker, was not detected. Regular consumption of tobacco increased 76-412% ∑OH-PAHs. Fire combat activities promoted significant increments of 158-551% ∑OH-PAHs. 2OHFlu was the most affected compound by firefighting activities (111-1068%), while 1OHNaph+1OHAce presented the more pronounced increments due to tobacco consumption (22-339%); 1OHPhen (76-176%) and 1OHPy (20-220%) were the least influenced ones. OH-PAH levels of SExp firefighters were significantly higher than in other groups, suggesting that these subjects may be more vulnerable to develop and/or aggravate diseases related with PAHs exposure.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | - Adília Fernandes
- Escola Superior de Saúde, Instituto Politécnico de Bragança, Bragança, Portugal
| | - João Paulo Teixeira
- Instituto Nacional de Saúde Pública, Departamento de Saúde Ambiental, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Universidade do Porto, Instituto de Saúde Pública, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal.
| |
Collapse
|
38
|
Poursafa P, Amin MM, Hajizadeh Y, Mansourian M, Pourzamani H, Ebrahim K, Sadeghian B, Kelishadi R. Association of atmospheric concentrations of polycyclic aromatic hydrocarbons with their urinary metabolites in children and adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17136-17144. [PMID: 28585013 DOI: 10.1007/s11356-017-9315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
This study aims to determine the atmospheric concentrations of particulate matter 2.5 (PM2.5)-bounded polycyclic aromatic hydrocarbons (PAHs) and their association with their urinary metabolites in children and adolescents. This study was conducted from October 2014 to March 2016 in Isfahan, Iran. We measured 16 species of PAHs bounded to PM2.5 by gas chromatography mass spectrometry (GC/MS) from 7 parts of the city. Moreover, PAH urinary metabolites were measured in 186 children and adolescents, randomly selected from households. Urinary metabolites consisted of 1-hydroxy naphthalene (1-naphthol), 2-hydroxy naphthalene (2-naphthol), 9-hydroxy phenanthrene (9-phenanthrol), and 1-hydroxy pyrene using GC/MS. Considering the short half-lives of PAHs, we measured the metabolites twice with 4 to 6 months of time interval. We found that the ambient concentrations of PAHs were significantly associated with their urinary metabolites. 1-hydroxy naphthalene and 2-hydroxy naphthalene concentrations showed an increase of 1.049 (95% CI: 1.030, 1.069) and 1.047 (95% CI: 1.025, 1.066) for each unit increase (1 ng/m3) in ambient naphthalene. Similarly, 1-hydroxy pyrene showed an increase of 1.009 (95% CI: 1.006-1.011) for each unit increase (1 ng/m3) in ambient pyrene concentration after adjustment for body mass index, physical activity level, urinary creatinine, age, and sex. The association of urinary 9-hydroxyphenanthrene and ambient phenantherene was significant in the crude model; however after adjustment for the abovementioned covariates, it was no more significant. We found significant correlations between exposure to ambient PM2.5-bounded PAHs and their urinary excretion. Considering the adverse health effects of PAHs in the pediatric age group, biomonitoring of PAHs should be underscored; preventive measures need to be intensified.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran.
| | - Yaghoub Hajizadeh
- Department of Environmental Health Engineering, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahim
- Department of Environmental Health Engineering, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Goudarzi G, Idani E, Alavi N, Salmanzadeh S, Babaei AA, Geravandi S, Mohammadi MJ, Mahboubi M, Moradi M. Association of polycyclic aromatic hydrocarbons of the outdoor air in Ahvaz, southwest Iran during warm-cold season. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1304422] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
- Department of Environmental Health Engineering, School of Public Health AND Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Esmaeil Idani
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
- Department of Internal Medicine, Division of Pulmonology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Nadali Alavi
- Department of Environmental Health Engineering, School of Public Health and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Shokrolah Salmanzadeh
- Department of Infectious and Tropical Diseases, Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | - Ali Akbar Babaei
- Department of Environmental Health Engineering, School of Public Health AND Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| | | | - Mohammad Javad Mohammadi
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health AND Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, and
- Department of Environmental Health Engineering, Abadan school of Medical Sciences, Abadan, Iran
| | | | - Mahsa Moradi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
| |
Collapse
|