1
|
Qian Y, Li X, Li X, Zhang X, Yuan Q, Wang Z, Zhang M, Huang M, Ji N. TOM5 regulates the mitochondrial membrane potential of alveolar epithelial cells in organizing pneumonia. Redox Rep 2024; 29:2354625. [PMID: 38794801 PMCID: PMC11134018 DOI: 10.1080/13510002.2024.2354625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Deficiency of TOM5, a mitochondrial protein, causes organizing pneumonia (OP) in mice. The clinical significance and mechanisms of TOM5 in the pathogenesis of OP remain elusive. We demonstrated that TOM5 was significantly increased in the lung tissues of OP patients, which was positively correlated with the collagen deposition. In a bleomycin-induced murine model of chronic OP, increased TOM5 was in line with lung fibrosis. In vitro, TOM5 regulated the mitochondrial membrane potential in alveolar epithelial cells. TOM5 reduced the proportion of early apoptotic cells and promoted cell proliferation. Our study shed light on the roles of TOM5 in OP.
Collapse
Affiliation(s)
- Yan Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Xiao Li
- Department of Pathology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Xinyu Li
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xijie Zhang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Minghun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Okafor O, Kim K. Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast. Int J Mol Sci 2024; 25:4714. [PMID: 38731933 PMCID: PMC11083673 DOI: 10.3390/ijms25094714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
3
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
4
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
5
|
Färkkilä SMA, Mortimer M, Jaaniso R, Kahru A, Kiisk V, Kikas A, Kozlova J, Kurvet I, Mäeorg U, Otsus M, Kasemets K. Comparison of Toxicity and Cellular Uptake of CdSe/ZnS and Carbon Quantum Dots for Molecular Tracking Using Saccharomyces cerevisiae as a Fungal Model. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:10. [PMID: 38202465 PMCID: PMC10781119 DOI: 10.3390/nano14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast Saccharomyces cerevisiae as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.
Collapse
Affiliation(s)
- Sanni M. A. Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Valter Kiisk
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Arvo Kikas
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Jekaterina Kozlova
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (R.J.); (V.K.); (A.K.); (J.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia;
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.M.); (A.K.); (I.K.); (M.O.)
| |
Collapse
|
6
|
Marmiroli M, Birarda G, Gallo V, Villani M, Zappettini A, Vaccari L, Marmiroli N, Pagano L. Cadmium Sulfide Quantum Dots, Mitochondrial Function and Environmental Stress: A Mechanistic Reconstruction through In Vivo Cellular Approaches in Saccharomyces cerevisiae. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1944. [PMID: 37446460 DOI: 10.3390/nano13131944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Research on the effects of engineered nanomaterials (ENMs) on mitochondria, which represent one of the main actors in cell function, highlighted effects on ROS production, gametogenesis and organellar genome replication. Specifically, the mitochondrial effects of cadmium sulfide quantum dots (CdS QDs) exposure can be observed through the variation in enzymatic kinetics at the level of the respiratory chain and also by analyzing modifications of reagent and products in term of the bonds created and disrupted during the reactions through Fourier-transform infrared spectroscopy (FTIR). This study investigated both in intact cells and in isolated mitochondria to observe the response to CdS QDs treatment at the level of electron transport chain in the wild-type yeast Saccharomyces cerevisiae and in the deletion mutant Δtom5, whose function is implicated in nucleo-mitochondrial protein trafficking. The changes observed in wild type and Δtom5 strains in terms of an increase or decrease in enzymatic activity (ranging between 1 and 2 folds) also differed according to the genetic background of the strains and the respiratory chain functionality during the CdS QDs treatment performed. Results were confirmed by FTIR, where a clear difference between the QD effects in the wild type and in the mutant strain, Δtom5, was observed. The utilization of these genetic and biochemical approaches is instrumental to clarify the mitochondrial mechanisms implicated in response to these types of ENMs and to the stress response that follows the exposure.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giovanni Birarda
- Elettra, Sincrotrone Trieste, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Villani
- Istituto dei Materiali per l'Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche (IMEM-CNR), 43124 Parma, Italy
| | - Lisa Vaccari
- Elettra, Sincrotrone Trieste, Strada Statale 14-km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy
| |
Collapse
|
7
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Shinto H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Effect of salt concentration and exposure temperature on adhesion and cytotoxicity of positively charged nanoparticles toward yeast cells. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
10
|
Cadmium Sulfide Quantum Dots Adversely Affect Gametogenesis in Saccharomyces cerevisiae. NANOMATERIALS 2022; 12:nano12132208. [PMID: 35808044 PMCID: PMC9268033 DOI: 10.3390/nano12132208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.
Collapse
|
11
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
12
|
Horstmann C, Davenport V, Zhang M, Peters A, Kim K. Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review. Genes (Basel) 2021; 12:genes12060794. [PMID: 34070957 PMCID: PMC8224664 DOI: 10.3390/genes12060794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing (NGS) technology has revolutionized sequence-based research. In recent years, high-throughput sequencing has become the method of choice in studying the toxicity of chemical agents through observing and measuring changes in transcript levels. Engineered nanomaterial (ENM)-toxicity has become a major field of research and has adopted microarray and newer RNA-Seq methods. Recently, nanotechnology has become a promising tool in the diagnosis and treatment of several diseases in humans. However, due to their high stability, they are likely capable of remaining in the body and environment for long periods of time. Their mechanisms of toxicity and long-lasting effects on our health is still poorly understood. This review explores the effects of three ENMs including carbon nanotubes (CNTs), quantum dots (QDs), and Ag nanoparticles (AgNPs) by cross examining publications on transcriptomic changes induced by these nanomaterials.
Collapse
Affiliation(s)
- Cullen Horstmann
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Victoria Davenport
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Alyse Peters
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (V.D.); (M.Z.); (A.P.)
- Correspondence:
| |
Collapse
|
13
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
14
|
Gallo V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Comparative Analysis of Proteins Regulated during Cadmium Sulfide Quantum Dots Response in Arabidopsis thaliana Wild Type and Tolerant Mutants. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:615. [PMID: 33804515 PMCID: PMC7998754 DOI: 10.3390/nano11030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
In previous work, two independent Arabidopsis thaliana Ac/Ds transposon insertional mutant lines, atnp01 and atnp02, were identified that showed a higher level of tolerance than the wild type (wt) line to cadmium sulfide quantum dots (CdS QDs). The tolerance response was characterized at physiological, genetic and transcriptomic levels. In this work, a comparative analysis was performed on protein extracts from plantlets of the two mutants and of wt, each treated with 80 mg L-1 CdS QDs. A comparative protein analysis was performed by 2D-PAGE, and proteins were characterized by MALDI-TOF/TOF mass spectrometry. Of 250 proteins identified from all three lines, 98 showed significant changes in relative abundance between control and CdS QD-treated plantlets. The wt, atnp01, and atnp02 control-treated pairs respectively showed 61, 31, and 31 proteins with differential expression. The two mutants had a different response to treatment in terms of type and quantity of up- and downregulated proteins. This difference became more striking when compared to wt. A network analysis of the proteins differentially expressed in atnp01 and atnp02 included several of those encoded by putative genes accommodating the transposons, which were responsible for regulation of some proteins identified in this study. These included nifu-like protein 3 (Nfu3), involved in chloroplast assembly, elongator complex 3 (Elo3), involved in transcriptional elongation, magnesium-chelate subunit-2 (Chli2), involved in chlorophyll biosynthesis, and protein phosphatase 2C (PP2C) which mediates abiotic stress response.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43123 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
15
|
Shinto H, Takiguchi M, Furukawa Y, Minohara H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Adhesion and cytotoxicity of positively charged nanoparticles toward budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Paesano L, Marmiroli M, Bianchi MG, White JC, Bussolati O, Zappettini A, Villani M, Marmiroli N. Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122430. [PMID: 32155524 DOI: 10.1016/j.jhazmat.2020.122430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found: CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 μg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 μg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 μg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure. The cell-specific miRNome profiles were indicative of a more conservative autophagic response in THP-1 and as apoptosis as in HepG2.
Collapse
Affiliation(s)
- Laura Paesano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marta Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Massimiliano G Bianchi
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06504, United States
| | - Ovidio Bussolati
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy.
| |
Collapse
|
17
|
Gallo V, Srivastava V, Bulone V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1214. [PMID: 32580447 PMCID: PMC7353101 DOI: 10.3390/nano10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Vaibhav Srivastava
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
| | - Vincent Bulone
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Urbrae, SA 5064, Australia
| | - Andrea Zappettini
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
18
|
Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 2020; 12:703-718. [PMID: 32140918 PMCID: PMC7311601 DOI: 10.1007/s12551-020-00653-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.
Collapse
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty, Engineering College, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Salim Gasmi
- Cellular and Applied Toxicology, Larbi Tebessi University, Tebessa, Algeria
| | - P S Anumol
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
19
|
Wu D, Ma Y, Cao Y, Zhang T. Mitochondrial toxicity of nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134994. [PMID: 31715400 DOI: 10.1016/j.scitotenv.2019.134994] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/11/2023]
Abstract
In recent years, nanomaterials have been widely applied in electronics, food, biomedicine and other fields, resulting in increased human exposure and consequent research focus on their biological and toxic effects. Mitochondria, the main target organelle for nanomaterials (NM), play a critical role in their toxic activities. Several studies to date have shown that nanomaterials cause alterations in mitochondrial morphology, mitochondrial membrane potential, opening of the mitochondrial permeability transition pore (MPTP) and mitochondrial respiratory function, and promote cytochrome C release. An earlier mitochondrial toxicity study of NMs additionally reported induction of mitochondrial dynamic changes. Here, we have reviewed the mitochondrial toxicity of NMs and provided a scientific basis for the contribution of mitochondria to the toxicological effects of different NMs along with approaches to reduce mitochondrial and, consequently, overall toxicity of NMs.
Collapse
Affiliation(s)
- Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
20
|
Marmiroli M, Mussi F, Pagano L, Imperiale D, Lencioni G, Villani M, Zappettini A, White JC, Marmiroli N. Cadmium sulfide quantum dots impact Arabidopsis thaliana physiology and morphology. CHEMOSPHERE 2020; 240:124856. [PMID: 31568945 DOI: 10.1016/j.chemosphere.2019.124856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The differential mechanisms of CdS QDs (Quantum Dots) and Cd ion toxicity to Arabidopsis thaliana (L.) Heynh were investigated. Plants were exposed to 40 and 60 mg L-1 for CdS QDs and 76.9 and 115.2 mg L-1 CdSO4·7H2O and toxicity was evaluated at 5, 20, 35 (T5, T20, T35) days after exposure. Oxidative stress upon exposure was evaluated by biochemical essays targeting non-enzymatic oxidative stress physiological parameters, including respiration efficiency, total chlorophylls, carotenoids, ABTS and DPPH radicals reduction, total phenolics, GSH redox state, lipid peroxidation. Total Cd in plants was measured with AAS. Root and leaf morphology and element content were assessed in vivo utilizing low-vacuum Environmental Scanning Electron Microscopy (ESEM) with X-ray microanalysis (EDX). This integrated approach allowed identification of unique nanoscale CdS QDs toxicity to the plants that was distinct from CdSO4 exposure. The analyses highlighted that CdS QDs and Cd ions effects are modulated by the developmental stage of the plant, starting from T20 till T35 the plant development was modulated by the treatments, in particular CdS QDs induced early flowering. Both treatments induced Fe accumulation in roots, but at different intensities, while CdS QDs was associated with Mn increase into plant leaf. CdSO4 elicited higher levels of oxidative stress compared with QDs, especially the former treatment caused more intense respiration damages and reduction in chlorophyll and carotenoids than the latter. The two types of treatments impact differently on root and leaf morphology.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Francesca Mussi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Davide Imperiale
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parma, Italy
| | - Giacomo Lencioni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parma, Italy
| |
Collapse
|
21
|
Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol 2019; 40:16-36. [PMID: 31294482 DOI: 10.1002/jat.3817] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Owing to the increasing application of engineered nanoparticles (NPs), besides the workplace, human beings are also exposed to NPs from nanoproducts through the skin, respiratory tract, digestive tract and vein injection. This review states pathways of cellular uptake, subcellular distribution and excretion of NPs. The uptake pathways commonly include phagocytosis, micropinocytosis, clathrin- and caveolae-mediated endocytosis, scavenger receptor-related pathway, clathrin- or caveolae-independent pathway, and direct penetration or insertion. Then the ability of NPs to decrease cell viability and metabolic activity, change cell morphology, and destroy cell membrane, cytoskeleton and cell function was presented. In addition, the lowest dose decreasing cell metabolic viability compared with the control or IC50 of silver, titanium dioxide, zinc oxide, carbon black, carbon nanotubes, silica, silicon NPs and cadmium telluride quantum dots to some cell lines was gathered. Next, this review attempts to increase our understanding of NP-caused adverse effects on organelles, which have implications in mitochondrial dysfunction, endoplasmic reticulum stress and lysosomal rupture. In particular, the disturbance of mitochondrial biogenesis and mitochondrial dynamic fusion-fission, mitophagy and cytochrome c-dependent apoptosis are involved. In addition, prolonged endoplasmic reticulum stress will result in apoptosis. Rupture of the lysosomal membrane was associated with inflammation, and both induction of autophagy and blockade of autophagic flow can result in cytotoxicity. Finally, the network mechanism of the combined action of multiple organelle dysfunction, apoptosis, autophagy and oxidative stress was discussed.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Pagano L, Caldara M, Villani M, Zappettini A, Marmiroli N, Marmiroli M. In Vivo-In Vitro Comparative Toxicology of Cadmium Sulphide Quantum Dots in the Model Organism Saccharomyces cerevisiae. NANOMATERIALS 2019; 9:nano9040512. [PMID: 30986968 PMCID: PMC6523553 DOI: 10.3390/nano9040512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
The aim of this work was to use the yeast Saccharomyces cerevisiae as a tool for toxicogenomic studies of Engineered Nanomaterials (ENMs) risk assessment, in particular focusing on cadmium based quantum dots (CdS QDs). This model has been exploited for its peculiar features: a short replication time, growth on both fermentable and oxidizable carbon sources, and for the contextual availability of genome wide information in the form of genetic maps, DNA microarray, and collections of barcoded mutants. The comparison of the whole genome analysis with the microarray experiments (99.9% coverage) and with the phenotypic analysis of 4688 barcoded haploid mutants (80.2% coverage), shed light on the genes involved in the response to CdS QDs, both in vivo and in vitro. The results have clarified the mechanisms involved in the exposure to CdS QDs, and whether these ENMs and Cd2+ exploited different pathways of response, in particular related to oxidative stress and to the maintenance of mitochondrial integrity and function. Saccharomyces cerevisiae remains a versatile and robust alternative for organismal toxicological studies, with a high level of heuristic insights into the toxicology of more complex eukaryotes, including mammals.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy.
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy.
| | | | | | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy.
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43123 Parma, Italy.
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy.
| |
Collapse
|
23
|
Zou W, Zhou Q, Zhang X, Mu L, Hu X. Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:221-231. [PMID: 29753824 DOI: 10.1016/j.ecoenv.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The effects of graphene oxide (GO) carbon nanomaterials on ecosystems have been well characterized, but the toxicity of GO at predicted environmental concentrations to living organisms at the protein level remain largely unknown. In the present work, the adverse effects and mechanisms of GO at predicted environmental concentrations were evaluated by integrating proteomics and standard analyses for the first time. The abundances of 243 proteins, including proteins involved in endocytosis (e.g., cltcb, arf6, capzb and dnm1a), oxidative stress (e.g., gpx4b, sod2, and prdx1), cytoskeleton assembly (e.g., krt8, krt94, lmna and vim), mitochondrial function (e.g., ndufa10, ndufa8, cox5aa, and cox6b1), Ca2+ handling (e.g., atp1b2a, atp1b1a, atp6v0a1b and ncx4a) and cardiac function (e.g., tpm4a, tpm2, tnni2a.1 and tnnt3b), were found to be notably altered in response to exposure 100 μg/L GO. The results revealed that GO caused malformation and mortality, likely through the downregulation of proteins related to actin filaments and formation of the cytoskeleton, and induced oxidative stress and mitochondrial disorders by altering the levels of antioxidant enzymes and proteins associated with the mitochondrial membrane respiratory chain. Exposure to GO also increased the heart rate of zebrafish larvae and induced pericardial edema, likely by changing the expression of proteins related to Ca2+ balance and cardiac function. This study provides new proteomic-level insights into GO toxicity against aquatic organisms, which will greatly benefit our understanding of the bio-safety of GO and its toxicity at predicted environmental concentrations.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture), Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review. Molecules 2017; 22:molecules22091439. [PMID: 28858240 PMCID: PMC6151384 DOI: 10.3390/molecules22091439] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S) microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2− for cationic and COOH− for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.
Collapse
Affiliation(s)
- Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
25
|
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12:5421-5431. [PMID: 28814860 PMCID: PMC5546783 DOI: 10.2147/ijn.s138624] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quantum dots (QDs), also known as nanoscale semiconductor crystals, are nanoparticles with unique optical and electronic properties such as bright and intensive fluorescence. Since most conventional organic label dyes do not offer the near-infrared (>650 nm) emission possibility, QDs, with their tunable optical properties, have gained a lot of interest. They possess characteristics such as good chemical and photo-stability, high quantum yield and size-tunable light emission. Different types of QDs can be excited with the same light wavelength, and their narrow emission bands can be detected simultaneously for multiple assays. There is an increasing interest in the development of nano-theranostics platforms for simultaneous sensing, imaging and therapy. QDs have great potential for such applications, with notable results already published in the fields of sensors, drug delivery and biomedical imaging. This review summarizes the latest developments available in literature regarding the use of QDs for medical applications.
Collapse
Affiliation(s)
- Cristian T Matea
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor"
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Physiology, University of Medicine and Pharmacy, "Iuliu Hatieganu"
| | - Flaviu Tabaran
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine
| | - Teodora Pop
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Ofelia Mosteanu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Gastroenterology
| | - Cosmin Puia
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Cornel Iancu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor".,Department of Surgery, University of Medicine and Pharmacy, "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
26
|
Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N. Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs). Data Brief 2016; 11:72-97. [PMID: 28138507 PMCID: PMC5257030 DOI: 10.1016/j.dib.2016.12.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 11/07/2022] Open
Abstract
The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al.) [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.
Collapse
Affiliation(s)
- Laura Paesano
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Alessio Perotti
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Annamaria Buschini
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Cecilia Carubbi
- Department of Biomedical, Biotechnological and Traslational Sciences (S.Bi.Bi.T), University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Marta Marmiroli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Elena Maestri
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Salvatore Iannotta
- Istituto dei Materiali per l׳Elettronica ed il Magnetismo (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Nelson Marmiroli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| |
Collapse
|