1
|
Bonaldi DS, Funnicelli MIG, Fernandes CC, Laurito HF, Pinheiro DG, Alves LMC. Genetic and biochemical determinants in potentially toxic metals resistance and plant growth promotion in Rhizobium sp LBMP-C04. World J Microbiol Biotechnol 2024; 41:7. [PMID: 39690265 DOI: 10.1007/s11274-024-04219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The association of bacteria resistant to potentially toxic metals (PTMs) with plants to remove, transfer, or stabilize these elements from the soil is an appropriate tool for phytoremediation processes in metal-contaminated environments. The objective of this study was to evaluate the potential of Rhizobium sp. LBMP-C04 for phytoremediation processes and plant growth promotion in metal-contaminated soils. Functional annotation allowed us to predict a variety of genes related to PTMs resistance and plant growth promotion in the bacterial genome. Resistance genes are mainly associated with DNA repair, and the import or export of metals in bacterial cells to maintain cell homeostasis. Genes that promote plant growth are related to mechanisms of osmotic stress tolerance, phosphate solubilization, nitrogen metabolism, biological nitrogen fixation, biofilm formation, heat shock responses, indole-3-acetic acid (IAA) biosynthesis, tryptophan, and organic acids metabolism. Biochemical tests indicated that Rhizobium sp. LBMP-C04 can solubilize calcium phosphate and produce siderophores and IAA in vitro in the presence of the PTMs Cd2+,Cu2+,Cr3+,Cr6+, Zn2+, and Ni2+. Results indicate the possibility of using Rhizobium sp. LBMP-C04 as a potentially efficient bacterium in phytoremediation processesin environments contaminated by PTMs and simultaneously promote plant growth.
Collapse
Affiliation(s)
- Daiane Silva Bonaldi
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of of Agricultural and Environmental Biotechnology, Bioinformatics Laboratory, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Camila Cesário Fernandes
- Department of of Agricultural and Environmental Biotechnology, Centralized Laboratory for Large-Scale DNA Sequencing and Gene Expression Analysis, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Henrique Fontellas Laurito
- Graduate Program in Vegetable Production, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Daniel Guariz Pinheiro
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of of Agricultural and Environmental Biotechnology, Bioinformatics Laboratory, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucia Maria Carareto Alves
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of of Agricultural and Environmental Biotechnology, School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| |
Collapse
|
2
|
Liu Q, Zheng X, Du R, Shao Y, Wen Q, Shen X, Wang F, Qi Y, Shen J, Hu Y. Enrichment characteristics of Cd and Hg and regulation of heavy metal transporter signaling in Pleurotus ostreatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176909. [PMID: 39426543 DOI: 10.1016/j.scitotenv.2024.176909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Currently, heavy metal pollution has emerged as a global issue. Compared with green plants, edible fungi, significant crops cultivated worldwide, present a greater capacity to accumulate heavy metals (HMs). However, the enrichment characteristics and functions of heavy metal transporters (HMATs) in the accumulation of HMs in edible fungi are still unclear. Cadmium (Cd) and mercury (Hg) are the primary HMs enriched in edible fungi. This study focused on Pleurotus ostreatus, the second largest edible mushroom worldwide, to examine the enrichment process. In this study, a series of different concentrations of CdCl2 and HgCl2 (0, 0.01, 0.05, 0.5, 2, 5, 10, and 20 mg/L) were used to mimic HMs pollution. HMs in the experimental concentration range did not affect the mycelial growth rate or fruiting body yield of P. ostreatus. However, in the 20 mg/L treatment group, the HMs were mainly concentrated in the cap, with about 4.4 mg/kg Cd and 2.7 mg/kg Hg, and were predominantly present in the most toxic ion exchange state. Thirteen HMATs were identified in the genome database of P. ostreatus. Using RT-qPCR, seven HMATs (24093, 1066001, 1106787, 1066344, 1079972, 1095088, and 1104877) whose expression levels were more than twice that of the control under most concentrations of HMs were selected for further investigation of their transport functions and their involvement in signal regulation. Among them, gene 24093 was involved in the absorption of Cd and Hg. These transporters are regulated by ROS, Ca2+, and NO signals under HM stress. This study provides target genes for reducing the risk of HM accumulation through molecular means, and serves as a reference for HM remediation using edible fungi.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiukun Zheng
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Rui Du
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuqiang Shao
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
3
|
Dubey P, Roy A, Mishra S, Naseem M, Farooqui A, Patel A, Singh PC, Srivastava PK. "Efficient novel fungal-enriched biochar formulation for hexavalent chromium bioremediation". JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122806. [PMID: 39366233 DOI: 10.1016/j.jenvman.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chromium (Cr), a key element in industrial processes such as leather tanning, poses severe environmental hazards, particularly its hexavalent form, Cr(VI), which is highly toxic and prevalent in tannery effluents/sludge. The persistence and toxicity of Cr(VI) necessitate the development of effective remediation strategies to mitigate its environmental impact. This study investigated the potential of Trichoderma yunnanense (NBRICRF_97) and its combination with 0.5% sugarcane bagasse biochar (SBC) for the reduction of Cr(VI). The results demonstrated that T. yunnanense alone achieved a 91.04% reduction of 50 mg L-1 Cr(VI) within 72 h. Combined with 0.5% SBC, the reduction efficiency increased to 99.65% within 48 h. However, the efficiency decreased at higher concentrations (200 mg L-1). The combination also improved fungal growth and increased extracellular ChrR enzyme activity (13.07 U mg-1 protein compared to the control). Total glutathione activity was boosted by 161.07% at 100 mg L-1 Cr(VI). Antioxidant enzymes (SOD, POD, CAT) and proline mitigated oxidative stress and FTIR analysis revealed changes in fungal cell wall functional groups (-OH and -NH) upon Cr(VI) exposure. SEM-EDX confirmed chromium deposition on fungal surfaces. These results underscore the Cr(VI) detoxification capabilities of T. yunnanense and the synergistic benefits of SBC, suggesting a promising bioremediation strategy for Cr(VI)-contaminated environments. The integration of T. yunnanense with SBC offers a sustainable and cost-effective approach for the bioremediation of Cr(VI)-contaminated sites, with potential for implementation in large-scale environmental cleanup efforts.
Collapse
Affiliation(s)
- Priya Dubey
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India; Department of Biosciences, Integral University, Lucknow, India
| | - Aditi Roy
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sandhya Mishra
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mariya Naseem
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alvina Farooqui
- Department of Biosciences, Integral University, Lucknow, India.
| | - Anju Patel
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Poonam C Singh
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Pankaj Kumar Srivastava
- Plant Ecology and Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
4
|
Fatima K, Mohsin H, Afzal M. Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01198-5. [PMID: 39327398 DOI: 10.1007/s12223-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.
Collapse
Affiliation(s)
- Kaneez Fatima
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Hareem Mohsin
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Maryam Afzal
- School of Chemical Engineering, Aalto University, Otakaari 24, 02150, Espoo, Finland
| |
Collapse
|
5
|
Singh VK, Singh R. Role of white rot fungi in sustainable remediation of heavy metals from the contaminated environment. Mycology 2024; 15:585-601. [PMID: 39678632 PMCID: PMC11636154 DOI: 10.1080/21501203.2024.2389290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 12/17/2024] Open
Abstract
Heavy metal contamination has severe impacts on the natural environment. The currently existing physico-chemical methods have certain limitations, restricting their wide-scale application. The use of biological agents like bacteria, algae, and fungi can help eliminate heavy metals without adversely affecting flora and fauna. Due to their inherent ability to withstand adverse environmental conditions, nowadays, mycoremediation approaches are receiving considerable attention for heavy metal removal from contaminated sites. In this review, we emphasised the role of white rot fungi in remediation of heavy metal along with different factors influencing biosorption, effects on exposed fungi, and the mechanisms involved. Bibliometric analysis tools have been applied to literature search and trend analysis of the research on white rot fungi-mediated heavy metal removal. Annual growth rates and average citations per document are 5.08% and 35.48, respectively. Phanerochaete chrysosporium, Pleurotus ostreatus, and Trametes versicolor have been widely explored for the remediation of heavy metals. In addition to providing some prospects, the review also highlighted a few limitations, including inconsistent removal and effects of environmental factors influencing the functioning of white rot fungi. Overall, white rot fungi have been found to have immense potential to be widely utilised for sustainable remediation of heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya, Uttar Pradesh, India
| | - Rishikesh Singh
- Amity School of Earth & Environmental Sciences, Amity University Punjab, Mohali, Punjab, India
| |
Collapse
|
6
|
Shen C, Li X, Qin J. Kiwifruit-Agaricus blazei intercropping effectively improved yield productivity, nutrient uptake, and rhizospheric bacterial community. Sci Rep 2024; 14:16546. [PMID: 39019951 PMCID: PMC11255323 DOI: 10.1038/s41598-024-66030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-Economy Research Center, Ankang University, Ankang, 725000, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, 725000, China
| | - Jianfeng Qin
- Ankang Academy of Agricultural Sciences, Ankang, 725000, China
| |
Collapse
|
7
|
Li X, Liang LM, Hua ZB, Zhou XK, Huang Y, Zhou JH, Cao Y, Liu JJ, Liu T, Mo MH. Eco-friendly management of Meloidogyne incognita in cadmium-contaminated soil by using nematophagous fungus Purpureocillium lavendulum YMF1.683: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117930. [PMID: 38103771 DOI: 10.1016/j.envres.2023.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Zhi-Bin Hua
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xin-Kui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jin-Hua Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer, 650202, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
8
|
Dou R, Xie Y, Liu FX, Wang B, Xu F, Xiao K. In situ mycoremediation of acid rain and heavy metals co-contaminated soil through microbial inoculation with Pleurotus ostreatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169020. [PMID: 38056637 DOI: 10.1016/j.scitotenv.2023.169020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The combined pollution of acid rain and heavy metals in soil is a pressing environmental problem, especially in the regions with large-scale heavy industrial production activities. Low remediation efficiency and weak long-lasting stability are major challenges when disposing the heavy metals contaminated soil in acid rain polluted sites. Herein, a specific microbe, strain CT13 was isolated and domesticated to exhibit high tolerance to both acid rain and cadmium (Cd). Then, an in situ mycoremediation method by adopting a bioaugmentation technology of strain CT13 inoculation with Pleurotus ostreatus was developed. The remediation performance was investigated in acidic conditions with Cd concentrations in soil ranging from 0 to 15 mg/kg. While most of the bacteria strains (e.g. strain CT6/13) significantly improved the dry weight of mushroom and Cd accumulation in neutral environment, the performance of strain CT6 was remarkably deteriorated in acid rain environment. In contrast, strain CT13 maintained its behavior in acidic conditions, displaying ∼30 % and 150 % enhancements (vs the neutral environment) in the dry weight of mushroom and Cd accumulation, respectively. In addition, inoculation of strain CT13 led to significant reductions in the content of superoxide dismutase, peroxidase and lipid peroxidation in the fruiting body of P. ostreatus, indicating an improvement in the mushroom's tolerance to both acid rain and heavy metals. The synergistic effect of strain CT13 and P. ostreatus realized the significant improvement in soil remediation efficiency and long-lasting stability in acidic conditions, providing valuable insights into the remediation of heavy metal contaminated soil in the regions affected by acid rain.
Collapse
Affiliation(s)
- Ruqiang Dou
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yanluo Xie
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China; College of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610064, China
| | - Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Biao Wang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Fei Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Kemeng Xiao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
9
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Dong Q, Chen M, Yu C, Zhang Y, Zha L, Kakumyan P, Yang H, Zhao Y. Combined Proteomic and Metabolomic Analyses Reveal the Comprehensive Regulation of Stropharia rugosoannulata Mycelia Exposed to Cadmium Stress. J Fungi (Basel) 2024; 10:134. [PMID: 38392806 PMCID: PMC10890358 DOI: 10.3390/jof10020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The potential of Stropharia rugosoannulata as a microbial remediation material for cadmium (Cd)-contaminated soil lies in its capacity to absorb and accumulate Cd in its mycelia. This study utilized the TMT and LC-MS techniques to conduct integrated proteomic and metabolomic analyses with the aim of investigating the mycelial response mechanisms of S. rugosoannulata under low- and high-Cd stresses. The results revealed that mycelia employed a proactive defense mechanism to maintain their physiological functions, leading to reduced sensitivity to low-Cd stress. The ability of mycelia to withstand high levels of Cd stress was influenced primarily by the comprehensive regulation of six metabolic pathways, which led to a harmonious balance between nitrogen and carbohydrate metabolism and to reductions in oxidative stress and growth inhibition caused by Cd. The results provide valuable insights into the molecular mechanisms involved in the response of S. rugosoannulata mycelia to Cd stress.
Collapse
Affiliation(s)
- Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yaru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
11
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
12
|
de Almeida TT, Tschoeke BAP, Quecine MC, Tezzoto T, Gaziola SA, Azevedo RA, Piotto FA, Orlandelli RC, Dourado MN, Azevedo JL. Mechanisms of Mucor sp. CM3 isolated from the aquatic macrophyte Eichhornia crassipes (Mart.) Solms to increase cadmium bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93846-93861. [PMID: 37523087 DOI: 10.1007/s11356-023-29003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Bioremediation of toxic metals is a feasible and low-cost remediation tool to reduce metal contamination. Plant-fungus interactions can improve this technique. Eichhornia crassipes (Mart.) Solms is a macrophyte reported to bioremediate contaminated water. Thus, the present study aimed to isolate endophytic fungi from E. crassipes, select a highly cadmium (Cd) tolerant isolate and evaluate its bioremediation potential. This was evaluated by (1) the fungus tolerance and capacity to accumulate Cd; (2) Cd effects on cell morphology (using SEM and TEM) and on the fungal antioxidant defense system, as well as (3) the effect on model plant Solanum lycopersicum L. cultivar Calabash Rouge, inoculated with the endophyte fungus and exposed to Cd. Our results selected the endophyte Mucor sp. CM3, which was able to tolerate up to 1000 g/L of Cd and to accumulate 900 mg of Cd/g of biomass. Significant changes in Mucor sp. CM3 morphology were observed when exposed to high Cd concentrations, retaining this metal both in its cytoplasm and in its cell wall, which may be linked to detoxification and metal sequestration mechanisms related to the formation of Cd-GSH complexes. In addition, Cd stress induced the activation of all tested antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) - in this endophytic fungus. Moreover, when inoculated in tomato plants, this fungus promoted plant growth (in treatments without Cd) and induced an increased metal translocation to plant shoot, showing its potential to increase metal bioremediation. Therefore, this study indicates that the isolated endophyte Mucor sp. CM3 can be applied as a tool in different plant conditions, improving plant bioremediation and reducing the environmental damage caused by Cd, while also promoting plant growth in the absence of contaminants.
Collapse
Affiliation(s)
- Tiago Tognolli de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil.
- Stricto Sensu Postgraduate Program in Environmental Sciences and Agricultural Sustainability, Dom Bosco Catholic University (UCDB), Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, 79117-900, Brazil.
| | - Bruno Augusto Prohmann Tschoeke
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Tiago Tezzoto
- Plant Production Department, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Fernando Angelo Piotto
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ravely Casarotti Orlandelli
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, Bloco H67, Maringá, PR, 87020-900, Brazil
| | - Manuella Nóbrega Dourado
- Postgraduate Program in Technological and Environmental Processes, University of Sorocaba (UNISO), Rod. Raposo Tavares, Km 92,5 - Vila Artura, Sorocaba, SP, 18023-000, Brazil
| | - João Lucio Azevedo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| |
Collapse
|
13
|
Yadav P, Mishra V, Kumar T, Rai AK, Gaur A, Singh MP. An Approach to Evaluate Pb Tolerance and Its Removal Mechanisms by Pleurotus opuntiae. J Fungi (Basel) 2023; 9:jof9040405. [PMID: 37108860 DOI: 10.3390/jof9040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Widespread lead (Pb) contamination prompts various environmental problems and accounts for about 1% of the global disease burden. Thus, it has necessitated the demand for eco-friendly clean-up approaches. Fungi provide a novel and highly promising approach for the remediation of Pb-containing wastewater. The current study examined the mycoremediation capability of a white rot fungus, P. opuntiae, that showed effective tolerance to increasing concentrations of Pb up to 200 mg L−1, evidenced by the Tolerance Index (TI) of 0.76. In an aqueous medium, the highest removal rate (99.08%) was recorded at 200 mg L−1 whereas intracellular bioaccumulation also contributed to the uptake of Pb in significant amounts with a maximum of 24.59 mg g−1. SEM was performed to characterize the mycelium, suggesting changes in the surface morphology after exposure to high Pb concentrations. LIBS indicated a gradual change in the intensity of some elements after exposure to Pb stress. FTIR spectra displayed many functional groups including amides, sulfhydryl, carboxyl, and hydroxyl groups on the cell walls that led to binding sites for Pb and indicated the involvement of these groups in biosorption. XRD analysis unveiled a mechanism of biotransformation by forming a mineral complex as PbS from Pb ion. Further, Pb fostered the level of proline and MDA at a maximum relative to the control, and their concentration reached 1.07 µmol g−1 and 8.77 nmol g−1, respectively. High Pb concentration results in oxidative damage by increasing the production of ROS. Therefore, the antioxidant enzyme system provides a central role in the elimination of active oxygen. The enzymes, namely SOD, POD, CAT, and GSH, served as most responsive to clear away ROS and lower the stress. The results of this study suggested that the presence of Pb caused no visible adverse symptoms in P. opuntiae. Moreover, biosorption and bioaccumulation are two essential approaches involved in Pb removal by P. opuntiae and are established as worthwhile agents for the remediation of Pb from the environment.
Collapse
Affiliation(s)
- Priyanka Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Vartika Mishra
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Tejmani Kumar
- Department of Physics, University of Allahabad, Prayagraj 211002, India
| | | | - Ayush Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
14
|
Zhang Y, Chen X, Xie L. Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5056. [PMID: 36981967 PMCID: PMC10049176 DOI: 10.3390/ijerph20065056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The arsenic (As, III) and cadmium (Cd, II) accumulation and tolerance traits of a new strain Pleurotus pulmonarius MT were evaluated, and the utilization of the strain for repairing contaminated liquid and soil was explored. The hypha cultivated in potato dextrose agar (PDA) exhibited medium or high Cd accumulation (0 to 320 mg/L), medium Cd tolerance (maximum tolerated concentration, MTC ≥ 640 mg/L), medium As accumulation (0 to 80 mg/L), and high As tolerance (MTC > 1280 mg/L). The hypha has application potential in processes related to the removal of Cd and As in aqueous pollutants at concentrations of 80 mg/L Cd and 20 mg/L As. The trends obtained for the fruiting bodies of P. pulmonarius MT seemed to deviate from those of the hypha of this strain. The results show that the fruiting bodies featured medium As accumulation (0 to 40 mg/kg), medium As tolerance (MTC > 160 mg/kg), medium Cd accumulation (0 to 10 mg/kg), and high Cd tolerance (MTC > 1280 mg/kg). The fruiting bodies of P. pulmonarius MT were utilized in processes related to the recovery of Cd and As in substrates, that is, 12% contaminated soil mixed with 50 mg/kg Cd and 200 mg/kg As; thus, the hypha and fruiting bodies of P. pulmonarius MT can be used for the decontamination of water and soil containing As(III) and Cd(II).
Collapse
Affiliation(s)
- Yuhui Zhang
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
| | - Xiaohong Chen
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
| | - Ling Xie
- Horticulture College, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Research Center of Edible Fungi, Changsha 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| |
Collapse
|
15
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
16
|
Dong Q, Chen M, Zhang Y, Song P, Yang H, Zhao Y, Yu C, Zha L. Integrated physiologic and proteomic analysis of Stropharia rugosoannulata mycelia in response to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129877. [PMID: 36067563 DOI: 10.1016/j.jhazmat.2022.129877] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Soil Cd pollution seriously threatens environment and human health. Due to its ability to absorb and accumulate Cd in mycelia, Stropharia rugosoannulata could be a potential candidate for bioremediation of Cd-contaminated soils; however, the response mechanism of mycelia to Cd stress is still unclear. In this study, the physiologic and proteomic differences of S. rugosoannulata mycelia under 0.2 mg/L (low) and 2 mg/L (high) Cd stress were investigated. The results showed that Cd accumulation and mycelial growth inhibition exhibited a concentration-depended trend. Analysis of antioxidant system indicated that SOD, GR, GSH, GSSG and ASA played key roles in resisting the toxic effects of Cd. Via proteome analysis, 24 and 267 differentially expressed proteins (DEPs) were observed under low and high Cd stress, respectively. GO and KEGG analysis found that the mycelial growth inhibition might due to the down-regulation of some DEPs involved in "valine, leucine and isoleucine biosynthesis" and "tyrosine metabolism"; the certain tolerance to high Cd stress might attribute to the regulation of DEPs referred to energy metabolism and antioxidant system-related pathways, maintaining cellular energy homeostasis and removing ROS. These results provide a theoretical basis for further elucidation of response mechanisms in S. rugosoannulata to Cd stress.
Collapse
Affiliation(s)
- Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yaru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Panpan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201403, China; National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| |
Collapse
|
17
|
He H, Zhang D, Gao J. Bioaccumulation and physiological changes in the fruiting body of Agaricus bisporus (Large) sing in response to cadmium. Sci Rep 2022; 12:20079. [PMID: 36418499 PMCID: PMC9684502 DOI: 10.1038/s41598-022-24561-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The bioremediation of heavy metals contaminated soils with macrofungi is a new and promising approach; hence Agaricus bisporus (Large) sing has potentially shown accumulating ability to Cd contamination. This study focused on the tolerance response by A. bisporus to different contents of Cd in the closed cup and the flat stage of fruiting body development. The contents of Cd, soluble protein, sugar, low molecular weight organic acids (LMWOAs), and antioxidant activity were investigated. The bioaccumulation factor and transfer factor results revealed that Cd accumulated in the cap of A. bisporus more than that in the stipe with the highest content being 18.38 mg kg-1 dry weight at the closed cup stage under 414.28 mg kg-1 Cd stress. High Cd content stress increased soluble protein, proline, and malonaldehyde contents at both stages; while higher peroxidase, catalase, ascorbic acid peroxidase activities, and LMWOAs contents were only recorded at the closed cup stage. On the other hand, Superoxide dismutase activities and soluble sugar content showed a complex trend. Overall, these results have successfully established that A. bisporus could resort to modulating its metabolism to avoid the destructive effects of Cd stress and could successfully accumulate Cd in the soil, which is a promising prospect for the remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Haiyan He
- grid.464376.40000 0004 1759 6007College of Geography and Resources Science, Neijiang Normal University, Neijiang, People’s Republic of China
| | - Dan Zhang
- grid.9227.e0000000119573309Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People’s Republic of China
| | - Jianing Gao
- grid.9227.e0000000119573309Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Growth response and mycoremediation of heavy metals by fungus Pleurotus sp. Sci Rep 2022; 12:19947. [PMID: 36402909 PMCID: PMC9675861 DOI: 10.1038/s41598-022-24349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Heavy metal contamination (HMs) in water and soil is the most serious problem caused by industrial and mining processes and other human activities. Mycoremediation is a biotechnology that employs fungi to remove toxic contaminants from the environment in an efficient and cost-effective manner. Pleurotus spp. have been shown to either increase plant growth on metal-contaminated soils by providing more nutrients or by reducing metal toxicity. Pleurotus species (J. Lange), a mushroom that can be eaten, has been observed growing on plantations of wood trees in Kerman's orchards. P. sp. was the subject of this study, which examined the effects of different concentrations of various heavy metals Cobalt (Co), Copper (Cu), and Nickel (Ni) (0, 15, 30, 45, and 60 mg/L) on fungal colony diameters, mycelial dry weights, accumulation of heavy metals, and antioxidative enzymes. The findings revealed that P. sp. was more tolerant of Co than other metals, so the fungus grew more in the presence of low concentrations of Co and Cu. However, even at concentrations as low as 15 mg/L, Ni greatly inhibited the growth of biomass and colony diameter. Heavy metals increased the activity of superoxide dismutases (SOD) and catalase (CAT) up to 45 mg/L, but an increase in metal concentration above 45 mg/L resulted in a significant decrease in SOD. Metals in mycelium also increased as the concentrations of these heavy metals increased.
Collapse
|
19
|
Zhang J, Hai Y, Shi M, Bing W, Bao N, Liang J. Selective assembly of microbe on patterned porous interfaces as potential membrane reactors for enhanced biodegradation of phenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Aziz L, Hamayun M, Rauf M, Iqbal A, Husssin A, Khan SA, Shafique M, Arif M, Ahmad A, Rehman G, Ali S, Kang SM, Lee IJ. Aspergillus violaceofuscus alleviates cadmium and chromium stress in Okra through biochemical modulation. PLoS One 2022; 17:e0273908. [PMID: 36240136 PMCID: PMC9565449 DOI: 10.1371/journal.pone.0273908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Endophytic fungi from the Chilli were used to help okra plants exposed to cadmium (Cd) or chromium (Cr) stress. Initially, the strain Ch06 produced higher amounts of indole acetic acid (IAA) (230.5 μg/mL), sugar (130.7 μg/mL), proteins (128.2 μg/mL), phenolics (525.6 μg/mL) and flavonoids (98.4 μg/mL) in Czapek broth supplemented with Cd or Cr. The production of IAA and other metabolites in such a higher concentration suggested that Ch06 might improve plant growth under heavy metal stress. For this reason, an experiment was designed, in which biomass of Ch06 (at 2g/100g of sand) were applied to the okra plants exposed to Cd or Cr stress (at 100 or 500 μg/g). The results exhibited that Ch06 improved the total chlorophyll (36.4±0.2 SPAD), shoot length (22.6±0.2 cm), root length (9.1±0.6 cm), fresh weight (5±0.6 g), dry weight (1.25±0.01 g), sugars (151.6 μg/g), proteins (114.8 μg/g), proline (6.7 μg/g), flavonoids (37.9 μg/g), phenolics (70.7 μg/g), IAA (106.7 μg/g), catalase (0.75 enzyme units/g tissue) and ascorbic acid oxidaze (2.2 enzyme units/g tissue) of the associated okra plants. Similar observations have been recorded in Ch06 associated okra plants under Cd and Cr stress. Also, Ch06 association reduced translocation of Cd (35% and 45%) and Cr (47% and 53%) to the upper parts of the okra plants and thus reduced their toxicity. The internal transcribed spacer (ITS) region amplification of 18S rDNA (ribosomal deoxyribo nucleic acid) exhibited that the potent strain Ch06 was Aspergillus violaceofuscus. The results implied that A. violaceofuscus has the ability to promote host species growth exposed to Cd and Cr. Moreover, it helped the host plants to recover in Cd and Cr polluted soils, hence can be used as biofertilizer.
Collapse
Affiliation(s)
- Laila Aziz
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
- * E-mail: (IL); (MH)
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Anwar Husssin
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Maryam Shafique
- Department of Microbiology, Federal Urdu University of Art, Science & Technology, Karachi, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeumgnam University, Gyeongsan, Republic of Korea
| | - Sang Mo Kang
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (IL); (MH)
| |
Collapse
|
21
|
Duan Y, Zhang Y, Zhao B. Lead, zinc tolerance mechanism and phytoremediation potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and ethylenediaminetetraacetic acid effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41329-41343. [PMID: 35088277 DOI: 10.1007/s11356-021-18243-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 05/15/2023]
Abstract
In this study, we aimed to elucidate the defense mechanism of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. against the single and compound toxicity of lead (Pb) and zinc (Zn) along with the synergistic effect of ethylenediaminetetraacetic acid (EDTA) in accumulation of metals in these two species. The two plant species were subjected to single metal treatment (Pb 1000 mg kg-1, Zn 600 mg kg-1) and compound metal treatment (Pb 1000 mg kg-1 + Zn 600 mg kg-1) in a greenhouse. Besides, different levels of EDTA were applied (2.5, 5.0, and 10.0 mmol kg-1) with compound metal treatment. Several physiological and biochemical parameters, including plant photosynthetic parameters, enzymatic antioxidant system, accumulation concentration of metals, and subcellular distribution were estimated. The results showed that the antioxidative enzymes, proline, root morphological changes, and metal localization all played important roles in resisting Pb and Zn toxicity. A notable difference was that Zn was concentrated in the roots (58.5%) of H. macrophylla to reduce the damage but in the leaves (38.5%) of A. rosea to promote photosynthesis and resist the toxicity of metals. In addition, Zn reduced the toxicity of Pb to plants by regulating photosynthesis, Pb absorption and Pb distribution in subcells. The biological concentration factors (BCF) and translocation factors (TF) for Pb in two plants were less than 1, indicating that they could be considered as phytostabilizators in Pb-contaminated soils. Moreover, EDTA could enhance the enrichment and transport capacity of Pb and Zn to promote the phytoremediation effect. In summary, both plants have a certain application potential for repairing Pb-Zn-contaminated soil.
Collapse
Affiliation(s)
- Yaping Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Ying Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Bing Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
22
|
Tian Z, Wang Y, Zhuang Y, Mao C, Shi Y, Sun L. Fungus–Fungus Association of Boletus griseus and Hypomyces chrysospermus and Cadmium Resistance Characteristics of Symbiotic Fungus Hypomyces chrysospermus. J Fungi (Basel) 2022; 8:jof8060578. [PMID: 35736061 PMCID: PMC9225628 DOI: 10.3390/jof8060578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Fungi bioaccumulation of heavy metals is a promising approach to remediate polluted soil and water. Boletus griseus could accumulate high amounts of Cd, even in a natural habitat with low Cd contents. This study found a symbiotic association of B. griseus with a fungus. The symbiotic fungus was isolated and identified as Hypomyces chrysospermus. The isolated strain had a strong ability to tolerate Cd. The minimum inhibitory concentration of Cd of fungal growth was 200 mg·L−1. The Cd bioaccumulation capacity of the fungus reached 10.03 mg·g−1. The biomass production of the fungus was promoted by 20 mg·L−1 Cd. However, high concentrations of Cd suppressed fungal growth and significantly altered the morphology and fine texture of fungal hyphae and chlamydospores. The immobilization effects of the cell wall and acid compounds and antioxidant enzymes were employed by the fungus to alleviate the toxic effects of Cd. The results not only demonstrate a new insight into the Cd bioconcentration mechanisms of B. griseus but also provide a potential bioremediation fungus for Cd contamination.
Collapse
Affiliation(s)
| | | | | | | | | | - Liping Sun
- Correspondence: ; Tel./Fax: +86-871-65920216
| |
Collapse
|
23
|
He M, Xu Y, Qiao Y, Zhang Z, Liang J, Peng Y, Liao J, Qiao Y, Shang C, Guo Z, Chen S. A novel yeast strain Geotrichum sp. CS-67 capable of accumulating heavy metal ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113497. [PMID: 35405529 DOI: 10.1016/j.ecoenv.2022.113497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Bioremediation, which has several advantages over traditional methods, represents an alternative means of dealing with heavy metal pollution. We screened for microorganisms showing heavy metal tolerance in polluted mangrove soils. A novel yeast, Geotrichum sp. CS-67, was discovered and tested for tolerance of Cu2+, Zn2+, and Ni2+. Zn2+ was the most efficiently sequestered by Geotrichum sp. CS-67 followed by Ni2+ and Cu2+. Zn2+ and Ni2+ were actively taken up into the cell, while Cu2+ was adsorbed to the cell wall. We used RNA-Seq to show that a large number of genes involved in the physiological and biochemical processing of heavy metals were differentially expressed in this yeast when it was subjected to Zn2+ and Ni2+ stress. From this panel, we selected the SED1, GDI1 and ZRT1 genes for validation by qRT-PCR and discovered that, during Zn2+ and Ni2+ stress, SED1 and GDI1 were upregulated, while ZRT1 was downregulated, which was consistent with the RNA-Seq results and the biochemical function of these genes. In conclusion, the novel yeast Geotrichum sp. CS-67 has a marked ability to accumulate heavy metal ions, making it of great interest as a possible microbial agent for heavy metal pollution remediation in the future.
Collapse
Affiliation(s)
- Mengyuan He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Yue Qiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zuye Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yunhui Peng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Junxian Liao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yue Qiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhipeng Guo
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
24
|
Keskin F, Sarikurkcu C, Demirak A, Akata I, Sihoglu Tepe A. Wild mushrooms from Ilgaz Mountain National Park (Western Black Sea, Turkey): element concentrations and their health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31923-31942. [PMID: 35013958 DOI: 10.1007/s11356-021-18011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to determine Fe, Cd, Cr, Se, P, Cu, Mn, Zn, Al, Ca, Mg, and K contents of some edible (Chlorophyllum rhacodes, Clavariadelphus truncatus, Clitocybe nebularis, Hydnum repandum, Hygrophorus pudorinus, Infundibulicybe gibba, Lactarius deliciosus, L. piperatus, L. salmonicolor, Macrolepiota mastoidea, Russula grata, Suillus granulatus, and Tricholoma imbricatum), inedible (Amanita pantherina, Geastrum triplex, Gloeophyllum sepiarium, Hypholoma fasciculare, Phellinus vorax, Pholiota limonella, Russula anthracina, and Tapinella atrotomentosa), and poisonous mushroom species (Amanita pantherina and Hypholoma fasciculare) collected from Ilgaz Mountain National Park (Western Black Sea, Turkey). The element contents of the mushrooms were determined to be 18.0-1239.1, 0.2-4.6, 0.1-3.4, 0.2-3.2, 1.0-8.9, 3.3-59.9, 3.7-220.4, 21.3-154.1, 6.4-754.3, 15.8-17,473.0, 413.0-5943.0, and 2803.0-24,490.0 mg·kg-1, respectively. In addition to metal contents, the daily intakes of metal (DIM) and Health Risk Index (HRI) values of edible mushrooms were also calculated. Both DIM and HRI values of mushroom species except L. salmanicolor, M. mastoidea, and R. grata were within the legal limits. However, it was determined that the Fe content of L. salmanicolor and M. mastoidea and Cd content of R. grata were above the legal limits.
Collapse
Affiliation(s)
- Feyyaz Keskin
- Environmental Problems Research and Application Center, Mugla Sıtkı Koçman University, TR-48000, Mugla, Turkey
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, TR-03100, Afyonkarahisar, Turkey.
| | - Ahmet Demirak
- Environmental Problems Research and Application Center, Mugla Sıtkı Koçman University, TR-48000, Mugla, Turkey
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, TR-06100, Ankara, Turkey
| | - Arzuhan Sihoglu Tepe
- Department of Pharmacy Services, Kilis 7 Aralik University, Vocational High School of Health Services, TR-79000, Kilis, Turkey
| |
Collapse
|
25
|
Singh A, Pal DB, Mohammad A, Alhazmi A, Haque S, Yoon T, Srivastava N, Gupta VK. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. BIORESOURCE TECHNOLOGY 2022; 343:126154. [PMID: 34673196 DOI: 10.1016/j.biortech.2021.126154] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the environment caused by dyes and heavy metals emitted by industries has become a worldwide problem. The development of efficient, environmentally acceptable, and cost-effective methods of wastewater treatment containing dyes and heavy metals is critical. Biologically based techniques for treating effluents are fascinating since they provide several benefits over standard treatment methods. This review assesses the most recent developments in the use of biological based techniques to remove dyes and heavy metals from wastewater. The remediation of dyes and heavy metals by diverse microorganisms such as algae, bacteria, fungi and enzymes are depicted in detail. Ongoing biological method's advances, scientific prospects, problems, and the future prognosis are all highlighted. This review is useful for gaining a better integrated view of biological based wastewater treatment and for speeding future research on the function of biological methods in water purification applications.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemical Engineering, Birsa Institute of Technology Sindri, Dhanbad 828123, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
26
|
Bilal S, Shahzad R, Lee IJ. Synergistic interaction of fungal endophytes, Paecilomyces formosus LHL10 and Penicillium funiculosum LHL06, in alleviating multi-metal toxicity stress in Glycine max L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67429-67444. [PMID: 34254237 DOI: 10.1007/s11356-021-15202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal accumulation in crop grains due to hazardous metal contamination is considered a great concern. However, phytobeneficial fungi are reported to have important abilities for the biosafety of crops grown in contaminated soil. Therefore, the current study was undertaken to explore the mutualistic association of plant growth-promoting endophytic fungi in reducing heavy metal concentration in the seeds of soybean plants subsequently grown in contaminated soil, without comprising seed quality and biochemical profile. The results revealed that endophytic Paecilomyces formosus LHL10 and Penicillium funiculosum LHL06 synergistically produced higher amounts of GAs and IAA in a co-cultured medium. Moreover, the co-inoculation of LHL06 and LHL10 to soybean plants grown under multi-metal toxic conditions significantly mitigated the adverse effects of heavy metal toxicity and increased the seed production (number of pods per plants, number of seeds per pod, and 100 seed weight) of soybean plants grown under control and multi-metal toxic conditions. Moreover, the levels of carbohydrates (glucose, sucrose, and fructose), minerals (iron, calcium, magnesium, and potassium), amino acids (serine, glutamic acids, glycine, methionine, lysine, arginine, and proline), and antioxidants (superoxide dismutase, catalase, and peroxidase) were significantly enhanced in sole and co-inoculated plants under control and stress conditions. Whereas organic acids (citric acid, tartaric acid, malic acid, and succinic acid), lipid peroxidation (MDA) products, multi-metal accumulation (nickel, cadmium, copper, lead, chromium, and aluminum), and stress-responsive endogenous abscisic acid levels were significantly decreased in seeds of soybean plants grown under control and multi-metal toxic conditions upon LHL06 and LHL10 sole and co-inoculation. The current results suggested the positive biochemical regulation in seeds for improving the nutritional status and making it safe for human consumption.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Crop Physiology Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
27
|
El-Sayed MT, Ezzat SM, Taha AS, Ismaiel AA. Iron stress response and bioaccumulation potential of three fungal strains isolated from sewage-irrigated soil. J Appl Microbiol 2021; 132:1936-1953. [PMID: 34796581 DOI: 10.1111/jam.15372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
AIMS Contamination with heavy metal (HM) is a severe environmental issue. Therefore, there is a pressing need to create environmentally safe and cost-effective HM bioremediation approaches. METHODS AND RESULTS Three iron-tolerant fungal strains were isolated from sewage-irrigated soils, molecularly identified and deposited in the GenBank as Aspergillus flavus MT639638, A. terreus MT605370 and Fusarium oxysporum MT605399. The fungal growth, minimum inhibitory concentration (MIC), tolerance index (TI), removal efficiency, bioaccumulation, and enzymatic and non-enzymatic antioxidants were determined. Based on MIC values, A. flavus MT639638 was the most resistant strain. F. oxysporum displayed the highest percent removal efficiency (93.65% at 4000 mg L-1 ) followed by A. flavus (92.92%, at 11,000 mg L-1 ), and A. terreus (91.18% at 3000 mg L-1 ). F. oxysporum was selected based on its highly sensitivity for further characterization of its response to Fe(II) stress using TEM, SEM and EDX, in addition to HPLC analysis of organic acids. These analyses demonstrated the localization of bioaccumulated Fe(II) and ultrastructural changes induced by iron and indicated induction release of organic acids. CONCLUSIONS Our fungal strains showed an effective capacity for removal of Fe(II) via bioaccumulation and biosorption mechanisms which were supported by instrumental analyses. The iron tolerance potentiality was mediated by induction of selected antioxidative enzymes and biomolecules. SIGNIFICANCE AND IMPACT OF THE STUDY This study depicts a potential utilization of the three fungal strains for the bioremediation of iron-contaminated soils.
Collapse
Affiliation(s)
- Manal T El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Saeid M Ezzat
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Asmaa S Taha
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
28
|
Özenoğlu-Aydınoğlu S, Yıldızhan H, Cansaran-Duman D. A proteomic analysis of Pseudevernia furfuracea after exposure to Cr +6 by MALDI-TOF mass spectrometry. 3 Biotech 2021; 11:444. [PMID: 34631345 DOI: 10.1007/s13205-021-02986-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022] Open
Abstract
The problem of heavy metal pollution in nature has increased rapidly in recent years. Hexavalent chromium (Cr+6) is one of the most toxic heavy metals that cause environmental pollution. Although many studies in the literature that illuminate the stress response mechanisms of biological organisms such as bacteria, algae, and plants against heavy metals, there is limited information about revealing the protein level changes of lichen species in response to heavy metal stress. Here, we used a MALDI-TOF-based proteomic assay to determine protein level changes in Pseudevernia furfuracea after exposure to Cr+6 heavy metal stress at 6, 18 and 24 h. It was determined that expression levels of 26, 149 and 66 proteins changed in P. furfuracea. 6, 18 and 24 h after Cr+6 application compared to the control sample, respectively. We identified 9 common proteins expressed at three different time levels (6, 18, 24 h) and evaluated their protein-protein interaction profiles with the STRING tool. According to the results of the study, it was determined that the expression level of six proteins was up-regulated (OP4, KIP3, BNI5, VSP64, HSP 60, BCK1) and three proteins were down-regulated (MNS1, ABZ2, ATG4) from the expression level of nine proteins in total with Cr+6 exposure. It was determined that nine proteins were also found to be effective in biological processes such as stress signaling, transcription regulation and cellular detoxification metabolisms. To confirm the protein expression level, we analyzed the HSP60 protein by western blot assay. It has been shown that exposure to Cr+6 exposure in P. furfuracea caused an increase in HSP60 protein level compared to the control sample (non-exposed Cr+6). In this study, new knowledge are presented for the use of P. furfuracea as a biosorption agent in the removal of industrial wastes in biotechnological applications.
Collapse
|
29
|
Xu F, Chen P, Li H, Qiao S, Wang J, Wang Y, Wang X, Wu B, Liu H, Wang C, Xu H. Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125814. [PMID: 33866290 DOI: 10.1016/j.jhazmat.2021.125814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pleurotus has great potential for heavy metal mycoremediation. Using comparative transcriptome analysis, the response of Pleurotus ostreatus and Pleurotus cornucopiae under Cd contamination was evaluated. P. ostreatus and P. cornucopia accumulated 0.34 and 0.46 mg/g Cd in mycelium, respectively. Cd removal elevated with its concentration elevation, which reached 56.47% and 54.60% for P. ostreatus and P. cornucopia with Cd at 20 mg/L. Low-level Cd (≤ 1 mg/L) had no significant influence on either fungus, while varied response was observed under high-level Cd. 705 differentially expressed genes (DEGs) were identified in P. cornucopia at Cd1 and Cd20, whereas 12,551 DEGs in P. ostreatus. Differentially regulated functional categories and pathways were also identified. ATP-binding cassette transporters were involved in Cd transport in P. cornucopia, whereas the endocytosis and phagosome pathways were more enhanced in P. ostreatus. 26 enzymes including peroxisomal enzymes catalase and superoxide dismutase were upregulated in P. ostreatus, whereas only cytosolic catalase was overexpressed in P. cornucopia, suggesting their different Cd detoxification pathways. Also, the mitogen-activated protein kinase signaling pathway involved in Cd resistance in both species instead of glutathione metabolism, although more active in P. ostreatus. These findings provided new insight into the molecular mechanism of mycoremediation and accumulator screening.
Collapse
Affiliation(s)
- Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Peng Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Suyu Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Jiaxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Bohan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Huangkang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China
| | - Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
30
|
Xu H, Guo J, Meng Q, Xie Z. Morphological changes and bioaccumulation in response to cadmium exposure in Morchella spongiola, a fungus with potential for detoxification. Can J Microbiol 2021; 67:789-798. [PMID: 34228941 DOI: 10.1139/cjm-2020-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morchella is a genus of edible fungi with strong resistance to Cd and the ability to accumulate it in the mycelium. However, the mechanisms conferring Cd resistance in Morchella are unknown. In the present study, morphological and physiological responses to Cd were evaluated in the mycelia of Morchella spongiola. Variations in hyphal micro-morphology including twisting, folding and kinking in mycelia exposed to different Cd concentrations (0.15, 0.9, 1.5, 2.4, 5.0 mg/L) were observed using scanning electron microscopy. Deposition of Cd precipitates on cell surfaces (at Cd concentrations > 2.4 mg/L) was shown by SEM-EDS. Transmission electron microscopy analysis of cells exposed to different concentrations of Cd revealed the loss of intracellular structures and the localization of Cd depositions inside/outside the cell. FTIR analysis showed that functional groups such as C=O, -OH, -NH and -CH could be responsible for Cd binding on the cell surface of M. spongiola. In addition, intracellular accumulation was observed in cultures at low Cd concentrations (< 0.9 mg/L), while extracellular adsorption occurred at higher concentrations. These results provide valuable information on the Cd tolerance mechanism in M. spongiola and constitute a robust foundation for further studies on fungal bioremediation strategies.
Collapse
Affiliation(s)
- Hongyan Xu
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Jing Guo
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Qing Meng
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Zhanling Xie
- Qinghai University, 207475, Xining, Qinghai, China, 810016;
| |
Collapse
|
31
|
Kumar V, Dwivedi SK. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10375-10412. [PMID: 33410020 DOI: 10.1007/s11356-020-11491-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Industrial processes and mining of coal and metal ores are generating a number of threats by polluting natural water bodies. Contamination of heavy metals (HMs) in water and soil is the most serious problem caused by industrial and mining processes and other anthropogenic activities. The available literature suggests that existing conventional technologies are costly and generated hazardous waste that necessitates disposal. So, there is a need for cheap and green approaches for the treatment of such contaminated wastewater. Bioremediation is considered a sustainable way where fungi seem to be good bioremediation agents to treat HM-polluted wastewater. Fungi have high adsorption and accumulation capacity of HMs and can be potentially utilized. The most important biomechanisms which are involved in HM tolerance and removal by fungi are bioaccumulation, bioadsorption, biosynthesis, biomineralisation, bioreduction, bio-oxidation, extracellular precipitation, intracellular precipitation, surface sorption, etc. which vary from species to species. However, the time, pH, temperature, concentration of HMs, the dose of fungal biomass, and shaking rate are the most influencing factors that affect the bioremediation of HMs and vary with characteristics of the fungi and nature of the HMs. In this review, we have discussed the application of fungi, involved tolerance and removal strategies in fungi, and factors affecting the removal of HMs.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Shiv Kumar Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
32
|
Wang S, He T, Xu F, Li X, Yuan L, Wang Q, Liu H. Analysis of physiological and metabolite response of Celosia argentea to copper stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:391-399. [PMID: 32722892 DOI: 10.1111/plb.13160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Copper-tolerant (Cu) plants with high ornamental value play an important role in the ecological restoration of the copper tail mining area. We first discovered Celosia argentea adaptability in a copper mine area in China; however, its resistance to Cu and the underlying mechanism are not clear. In this study, C. argentea was selected for pot culture experiments. Its heavy metal accumulation and translocation, physiological and metabolic products were analysed under different growth concentrations of Cu (0-2400 mg.kg-1 ) stress. Our results indicated that roots strongly accumulated Cu2+ . Oxidative stress defence mechanisms were activated in leaves under Cu treatment. Higher Cu concentrations triggered higher electrolyte leakage (EL), Malondialdehyde (MDA), superoxide dismutase (SOD) and peroxidase (POD) activity, and consequently a higher capacity to scavenge oxygen radicals and maintain cellular membrane integrity. In the citrate cycle, some amino acids and sugars related to biological pathways were altered in C. argentea exposed to Cu stress. Metabolomics data revealed that C. argentea used elevated sugar content as an antioxidant to regulate reactive oxygen species (ROS). Some organic acids and amino acids were up-regulated compared with the control, indicating that these may chelate Cu in cells to remove excess Cu2+ . The up-regulation of polyamines and some organic acids may mitigate oxidative stress. These results indicate that C. argentea could be used as a Cu-tolerant plant in Cu mine restoration. Its Cu tolerance mechanism also provides a basis for future plant improvement or breeding for use in mine restoration.
Collapse
Affiliation(s)
- S Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - T He
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - F Xu
- Collage of Life Sciences, Shangrao Normal University, Shangrao, China
| | - X Li
- The Institute of Advanced Studies in Coastal Ecology, Ludong University, Yantai, China
| | - L Yuan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Q Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - H Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| |
Collapse
|
33
|
Mleczek M, Gąsecka M, Budka A, Siwulski M, Mleczek P, Magdziak Z, Budzyńska S, Niedzielski P. Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4430-4442. [PMID: 32940836 PMCID: PMC7835311 DOI: 10.1007/s11356-020-10788-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 05/13/2023]
Abstract
The study monitored the content of 55 elements in 21 wood-growing mushroom species collected between 2013 and 2019 from Lower and Upper Silesia in Poland. Only 27 of the elements (Ag, Al, Ba, Ca, Cd, Cu, Fe, In, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Pr, Pt, Rh, Sr, Ti, Tm, V, Y, Zn, and Zr) were detected in all mushroom species, while others (As, Au, B, Be, Bi, Ce, Co, Cr, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, Ir, Li, Lu, Mo, Os, Pb, Rb, Re, Ru, Sb, Sc, Se, Sm, Tb, Te, Th, Tl, Tm, U, and Yb) were below the limit of detection in the fruit bodies of at least one species. Wide ranges for major elements in the whole population of all the mushroom species were as follows: 15.4-470 (Ca), 6580-44,600 (K), 314-2150 (Mg), 38.0-319 (Na), and 1100-15,500 (P) mg kg-1 dm, respectively. The rank sum revealed that M. giganteus fruit bodies were the most enriched with all detectable elements, while A. mellea had the lowest content of the majority of elements. Mushrooms belonging to the Hymenochaetaceae family were characterized as some of the most enriched with the studied elements, while mushrooms of the Fomitopsidaceae family had the lowest content of elements. Similarities as well as differences between the obtained results and the available literature data confirm the important role of both mushroom species and the tree on which the fungus has grown.
Collapse
Affiliation(s)
- Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland.
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Anna Budka
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Poznań, Poland
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, Poznań, Poland
| | - Patrycja Mleczek
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94c, 60-649, Poznań, Poland
| | - Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | - Sylwia Budzyńska
- Department of Chemistry, Poznan University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
34
|
Göçenoğlu Sarıkaya A. Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. ENVIRONMENTAL TECHNOLOGY 2021; 42:72-80. [PMID: 31107633 DOI: 10.1080/09593330.2019.1620867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In the present study, biomass of Agaricus campestris was tested to evaluate its effectivity as a biosorbent for the removal of Cr (VI) ions from aqueous solutions. The influence of various process parameters such as pH, temperature, contact time, biosorbent dosage and desorption were studied. Pseudo-first order, pseudo-second order, Ritchies and intraparticle diffusion model were used to present the adsorption kinetics. Results obtained indicate that the adsorption process is fast and spontaneous within the first 60 min. The experimental data supports pseudo-second order model. The sorption data conformed well to the Langmuir isotherm model. The maximum adsorption capacity (q max) onto A. campestris was 56.21 mg g-1 for Cr(VI) at 45°C when 0.1 g biomass was used. In addition, the mean values of thermodynamic parameters of standard free energy (ΔG0 = -1.635 kJ mol-1 at 45°C), standard enthalpy (ΔH0 = -9.582 kJ mol-1) and standard entropy (ΔS0 = -24.992 J mol-1K-1) of the adsorption mechanism were determined.
Collapse
|
35
|
Zhang X, Li X, Tang L, Peng Y, Qian M, Guo Y, Rui H, Zhang F, Hu Z, Chen Y, Xia Y, Shen Z. The root iron transporter 1 governs cadmium uptake in Vicia sativa roots. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122873. [PMID: 32768815 DOI: 10.1016/j.jhazmat.2020.122873] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a non-essential element for plants and that inhibits plant growth and development. The Zhangye Mawan (ZM) variety of Vicia sativa is more sensitive to Cd toxicity than that Lanjian 3# (L3) variety, but the underlying mechanism is not fully understood. Here, we demonstrated that ZM showed higher Cd accumulation than L3 based on root Cd content and Cd fluorescence intensity in root protoplasts. VsRIT1, a member of the ZIP (ZRT/IRT-like protein) family, showed expression levels in ZM roots 8-fold higher than those in L3 roots under Cd exposure. VsRIT1 expression increased Cd transport and accumulation in Arabidopsis and yeast. These suggests that VsRIT1 participates in Cd uptake by V. sativa roots. Furthermore, ZM root tips have a higher capacity for transient Cd influx than L3 roots when exposed to Cd alone or Cd and iron (Fe) together, owing to the higher VsRIT1 expression in ZM. Our findings also imply that Cd may compete with Fe or/and zinc (Zn) for uptake via VsRIT1 in V. sativa or yeast.
Collapse
Affiliation(s)
- Xingxing Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Guangdong Engineering Research Center for Pesticide & Fertilizer, Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, 510316, China
| | - Xin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yizhe Peng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Meng Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafang Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyun Rui
- Taizhou University, Taizhou, 225300, China
| | - Fenqin Zhang
- College of Agriculture and Biotechnology, Hexi University, Zhangye, 734000, China
| | - Zhubing Hu
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China.
| |
Collapse
|
36
|
Wang Y, Yang H, Zhang G, Kang J, Wang C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Gao Y, Wang Y, Qian J, Si W, Tan Q, Xu J, Zhao Y. Melatonin enhances the cadmium tolerance of mushrooms through antioxidant-related metabolites and enzymes. Food Chem 2020; 330:127263. [DOI: 10.1016/j.foodchem.2020.127263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 01/26/2023]
|
38
|
Albert Q, Baraud F, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Garon D. Use of soil fungi in the biosorption of three trace metals (Cd, Cu, Pb): promising candidates for treatment technology? ENVIRONMENTAL TECHNOLOGY 2020; 41:3166-3177. [PMID: 30924724 DOI: 10.1080/09593330.2019.1602170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Trace metal contamination is a widespread and complex environmental problem. Because fungi are capable of growing in adverse environments, several fungal species could have an interesting potential in remediation technologies for metal contaminated environments. This study proposes to test the ability to tolerate and biosorb three trace metals (Cd, Cu and Pb) of 28 fungal isolates collected from different soils. First, a tolerance assay in agar medium was performed. Each isolate was grown in the presence of Cd, Cu, and Pb at different concentrations. Then, we exposed each soil fungus to 50 mg L-1 of Cd, Cu, or Pb during 3 days in liquid medium. Parameters such as biomass production, pH, and biosorption were evaluated. The results showed that responses to metal exposure are very diverse even with fungi isolated from the same soil sample, or belonging to the same genera. Several isolates could be considered as good metal biosorbents and could be used in future mycoremediation studies. Among the 28 fungi tested, Absidia cylindrospora biosorbed more than 45% of Cd and Pb, Chaetomium atrobrunneum biosorbed more than 45% of Cd, Cu, Pb, and Coprinellus micaceus biosorbed 100% of Pb.
Collapse
Affiliation(s)
- Quentin Albert
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | - Lydia Leleyter
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | | | | | - Lucile Sage
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Cedex, France
| | - David Garon
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
39
|
Nouri H, Kamyabi A, Ghorbannezhad H, Moghimi H. Detoxification impact of Trichosporon cutaneum in saline condition for efficient reduction of phenol co-contaminated with cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29636-29643. [PMID: 32445143 DOI: 10.1007/s11356-020-09286-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Treatment strategies applied for co-contaminated environments may not work due to a mixture of organic and inorganic contaminants. Here, we study the efficiency of simultaneous phenol and cadmium removal by Trichosporon cutaneum in saline condition. Initially, phenol degradation and cadmium removal were analyzed separately. The results showed the high potential of T. cutaneum for phenol degradation and almost all the phenol (1250 mg/L) was degraded in the presence of 5% NaCl. Cadmium removal by T. cutaneum indicated a direct relation to NaCl concentration. Increasing salt concentration from 0 to 5% caused an increase in cadmium adsorption from 57.3 to 80.2%. In the simultaneous remediation of phenol and cadmium, T. cutaneum showed a delay in the growth curve and phenol degradation, probably because of toxicity effect of cadmium, but at the end of a week, almost the same amount of phenol was removed (> 99% in 1250 mg/L phenol). T. cutaneum showed good efficiency in cadmium removal in simultaneous remediation and removed 90, 89, and 75% of cadmium in the existence of 5% NaCl in 750, 1000, and 1250 mg/L initial concentration of phenol, respectively. Our findings support the high activity of T. cutaneum in the bioremediation of polluted saline areas that phenol coexists with cadmium.
Collapse
Affiliation(s)
- Hoda Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Aliyeh Kamyabi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Ghorbannezhad
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
40
|
Zhang J, Wang P, Xiao Q. Cadmium (Cd) chloride affects the nutrient uptake and Cd-resistant bacterium reduces the adsorption of Cd in muskmelon plants. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis study investigated the effect of cadmium (Cd) chloride on the uptake of N, P, and K and evaluate the effect of Cd-resistant bacterium “N3” on reducing the adverse effect of Cd in grafted and nongrafted plants. The shoot and total dry weights of the nongrafted muskmelon plants decreased under 50 and 100 µM Cd treatments. The scion and shoot dry weights of the grafted plants increased significantly, whereas their root dry weight increased by nearly onefold compared with those of the CK-grafted plants regardless of Cd concentration. The N, P, and K contents in the nongrafted plants decreased under Cd treatments but increased under 50 µM Cd treatment when inoculated with “N3”. The N, P, and K contents in the grafted plants were lower than those treated with only Cd. The grafted and nongrafted plants exhibited low Cd accumulation in the scion or shoot part compared with the root tissues. “N3” inoculation reduced the Cd concentration in all tissues of the grafted and nongrafted plants. Our results demonstrated great variation in Cd accumulation in the grafted and nongrafted muskmelon plants, thereby promoting food safety under Cd contamination conditions.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Qingqing Xiao
- Department of Biological and Environmental Engineering, Hefei University, Hefei, 230601 Anhui Province, China
| |
Collapse
|
41
|
Nowakowski P, Naliwajko SK, Markiewicz‐Żukowska R, Borawska MH, Socha K. The two faces of Coprinus comatus-Functional properties and potential hazards. Phytother Res 2020; 34:2932-2944. [PMID: 32462723 PMCID: PMC7754439 DOI: 10.1002/ptr.6741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Mushrooms have been used for centuries not only as food but also in traditional medicine as a source of components with pro‐health activity. One of them is Coprinus comatus (O.F.Müll.) Pers. also called shaggy mane, chicken drumstick mushroom, or lawyer's wig. In Asian countries, C. comatus (CC) is approved as edible mushroom and often cultivated for consumption, whereas in many other countries, although it is widespread, it is unrecognized and not used. In this review, for the first time, we discussed about the composition related to functional properties as well as the potential risks associated with consumption of CC by reviewing scientific literature. The information has been collected in order to get to know this species thoroughly. Various studies show many of the physiological activities, such as antioxidant, anticancer, antiandrogenic, hepatoprotective, acetylcholinesterase inhibitory, antiinflammatory, antidiabetic, antiobesity, antibacterial, antifungal, antinematode, and antiviral. Besides positive physiological properties, CC has also negative features, for example, skin reactions in patients with dermatitis and atopic predisposition, risk of confusion with poisonous mushrooms, quick autolysis after collection, and contamination of toxic elements.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory MedicineMedical University of BialystokBialystokPoland
| | - Sylwia K. Naliwajko
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory MedicineMedical University of BialystokBialystokPoland
| | - Renata Markiewicz‐Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory MedicineMedical University of BialystokBialystokPoland
| | - Maria H. Borawska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory MedicineMedical University of BialystokBialystokPoland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory MedicineMedical University of BialystokBialystokPoland
| |
Collapse
|
42
|
Hassan A, Pariatamby A, Ossai IC, Hamid FS. Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Modkovski TA, Scapini T, Dalastra C, Kubeneck S, Frumi Camargo A, Bordin ER, Venturin B, Jacques RJS, de Andrade N, Bellé C, Haminiuk CWI, Fongaro G, Treichel H. Hexavalent Chromium Removal Using Filamentous Fungi: Sustainable Biotechnology. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tatiani Andressa Modkovski
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Curitiba, PR, Brazil
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Thamarys Scapini
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Caroline Dalastra
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Simone Kubeneck
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Aline Frumi Camargo
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Eduarda Roberta Bordin
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Curitiba, PR, Brazil
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| | - Bruno Venturin
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
- Departamento de Recursos Hídricos e Saneamento, Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil
| | | | - Nariane de Andrade
- Departamento de Solos/CCR, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiano Bellé
- Departamento de Solos/CCR, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Gislaine Fongaro
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Florianópolis, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratório de Microbiologia e Bioprocessos, Universidade Federal da Fronteira Sul, Erechim, RS, Brazil
| |
Collapse
|
44
|
Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochem J 2019; 476:3385-3400. [DOI: 10.1042/bcj20190606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the bioremediation efficiency of phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 isolated from rice seeds. In this study, we tested RWL-1 against various heavy metals (Cu, Cr, Pb, and Cd). Among the tested heavy metals, RWL-1 showed the highest tolerance for Cu stress and we observed alterations in growth kinetics with various Cu concentrations (1, 2.5, and 5 mM). We confirmed the biosorption potential of RWL-1 by scanning electron microscopy coupled with energy-dispersive X-ray spectrometry showing that Cu ions were adsorbed on RWL-1 cell surfaces. We further tested RWL-1 for its plant growth promoting and stress reliance efficiency in response to a dose-dependent increase in soil Cu (1, 2.5, and 5 mM). The RWL-1 inoculation significantly increased seedling biomass and growth attributes compared with non-inoculated control seedlings with and without Cu stress. Moreover, RWL-1 inoculation significantly promoted a physiochemical response in seedlings with and without Cu stress by reducing Cu uptake, improving carbohydrate levels (glucose, sucrose, fructose, and raffinose), enhancing amino acids regulation, and augmenting antioxidant levels (POD, PPO, and GHS). Levels of stress-responsive phytohormones such as abscisic acid (ABA) and jasmonic acid were significantly reduced in RWL-1-inoculated seedlings as compared with non-inoculated control seedlings under normal condition and same levels of Cu stress. In conclusion, the inoculation of B. amyloliquefaciens RWL-1 can significantly improve plant growth in Cu-contaminated soil and reduce metal accumulation, thus making plants safer for consumption. This approach could be tremendously helpful for safe and sustainable agriculture in heavy metal-contaminated areas.
Collapse
|
45
|
Bilal S, Shahzad R, Khan AL, Al-Harrasi A, Kim CK, Lee IJ. Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120824. [PMID: 31271935 DOI: 10.1016/j.jhazmat.2019.120824] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
This study investigates the stress-mitigating effects of endophytic Penicillium funiculosum LHL06 on soybean roots via modulation of physio-biochemical, molecular, and proteomic responses to combined heavy metal (Ni, Cu, Pb, Cr, and Al) toxicity. Preliminary screening revealed that LHL06 can tolerate and remediate combined heavy metal contamination in its media and upregulate gibberellins (GA1, GA3, GA4, GA7 and GA9) and indole-3-acetic acid (IAA) production. Inoculation of LHL06 resulted in marked reduction of metals uptake in roots and shoots by downregulating heavy metal ATPase genes (GmHMA13, GmHMA14, GmHMA19) and GmMATE1 compared to non-inoculated plants; in turn, this decreased abscisic acid and jasmonic acid levels. Moreover, triggering of free amino acid metabolism in LHL06-inoculated roots significantly upregulated expression of stress-related proteins (glutathione S-transferase L3, isoflavone reductase-like, chalcone isomerase A, NAD(P)H dehydrogenase (quinone), FQR1-like 1 isoform X2, and Peroxidase 3) to combat metals toxicity. Compared to non-inoculated-plants, LHL06-inoculated-plants exhibited higher antioxidant activity and transcript accumulation of glutathione S-transferase (GmGST8 and GmGST3), G6PDH, and GmSOD1[Cu-Zn], which decreased metal-induced reactive oxygen species. Therefore, LHL06-inoculation remediate combined metal contamination in soil, activate signaling network of stress-responsive hormones and antioxidant systems for promoting growth and tolerance, and reduce metal-accumulation, thereby making plants safer for consumption.
Collapse
Affiliation(s)
- Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raheem Shahzad
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea.
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
46
|
Qiao K, Liang S, Wang F, Wang H, Hu Z, Chai T. Effects of cadmium toxicity on diploid wheat (Triticum urartu) and the molecular mechanism of the cadmium response. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:1-10. [PMID: 30974226 DOI: 10.1016/j.jhazmat.2019.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a widespread soil contaminant that readily accumulates in wheat, and posing a potential threat to human health. Our aim is to investigate Cd toxicity effect and molecular mechanisms for wheat. In this study, the physiological indexes, morphology, and gene expression patterns of diploid wheat (Triticum urartu) seedlings were evaluated after 2 and 5 d of a Cd treatment (10 μM CdSO4). The Cd treatment resulted in increased proline and glutathione contents in shoots and roots, slight damage to leaf tips, severe damage to root tips, and increased root secretions. Transcriptome analysis showed that there were significantly more differentially expressed genes (DEGs) in shoots and roots after 5 d of Cd stress than after 2 d of Cd stress, and the DEGs of the shoots were more different than the roots. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the pathways enriched under Cd treatment were "DNA replication" and "phenylpropanoid biosynthesis". These findings provide information about the responses to Cd stress in wheat, and provide a theoretical basis for reducing Cd toxicity and protecting food safety.
Collapse
Affiliation(s)
- Kun Qiao
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuang Liang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Fanhong Wang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Insights into Anammox activity inhibition under trivalent and hexavalent chromium stresses. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Effects of Pb(II) and Cr(VI) Stress on Phosphate-Solubilizing Bacteria ( Bacillus sp. Strain MRP-3): Oxidative Stress and Bioaccumulation Potential. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122172. [PMID: 31248202 PMCID: PMC6616545 DOI: 10.3390/ijerph16122172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022]
Abstract
The aim of this work was to ascertain the effects of Pb(II) and Cr(VI) on bacterial growth, generation of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), and catalase (CAT), as well as the localization of bioaccumulated heavy metals in a phosphate-solubilizing bacterium. The results showed that the ROS increased from 1.4-fold to 1.8-fold of control under Pb(II) stress and decreased from 1.6-fold to 1.1-fold of control under Cr(VI) stress corresponding to metal concentrations (0.5–5 mmol·L−1). The SOD activities were ROS dependent; however, the CAT activities increased under both Pb(II) and Cr(VI) stress, from 11.4 to 21.8 U·mg−1 and 11.4 to 32.9 U·mg−1, respectively. Intra/extracellular accumulation were investigated by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and it was calculated that extracellular accumulated Pb accounted for 61.7–95.9% of the total accumulation, while extracellular accumulated Cr only accounted for up to 3.6% of the total accumulation. Attenuated total reflection/Fourier-transform infrared spectroscopy (ATR-FTIR) analysis confirmed that the functional groups involved in those extracellular accumulation were not located in the loosely bound extracellular polysaccharides substances.
Collapse
|
49
|
Wang Y, Yi B, Sun X, Yu L, Wu L, Liu W, Wang D, Li Y, Jia R, Yu H, Li X. Removal and tolerance mechanism of Pb by a filamentous fungus: A case study. CHEMOSPHERE 2019; 225:200-208. [PMID: 30875503 DOI: 10.1016/j.chemosphere.2019.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Currently, Pb pollution has become a severe environmental problem and filamentous fungi hold a promising potential for the treatment of Pb-containing wastewater. The present study showed that the strain Pleurotus ostreatus ISS-1 had a strong ability to tolerate Pb at high concentration and reached a removal rate of 53.7% in liquid media. Pb was removed by extracellular biosorption, intracellular bioaccumulation by mycelia, or precipitation with extracellular oxalic acids. On the cellular level, Pb was mainly distributed in the cell wall, followed by vacuoles and organelles. Fourier transform infrared spectroscopy (FTIR) analysis indicated that hydroxyl, amides, carboxyl, and sulfhydryl groups provided binding sites for Pb. Furthermore, Pb was found on the cell surface in the form of PbS and PbCO3 through X-ray diffraction (XRD). Intracellular chelates such as thiol compounds and oxalic acid, as well as extracellular oxalic acid, might play an important role in the tolerance of Pb. In addition, isobaric tags for relative and absolute quantitation (iTRAQ) analysis showed that ATP-binding cassette (ABC) transporter, cytochrome P450, peroxisome, and the calcium signaling pathway might participate in both accumulation and detoxification of Pb. These results have successfully provided a basis for further developing Pb polluted water treatment technology by fungi.
Collapse
Affiliation(s)
- Youjing Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Baizhu Yi
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaowei Sun
- Henan Academy of Forestry, Zhengzhou, 450008, China
| | - Lei Yu
- Henan Academy of Forestry, Zhengzhou, 450008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Daichang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yilun Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui Jia
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hao Yu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
50
|
Zhang J, Tian H, Wang P, Xiao Q, Zhu S, Jiang H. Variations in pH significantly affect cadmium uptake in grafted muskmelon (Cucumis melo L.) plants and drive the diversity of bacterial communities in a seedling substrate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:132-140. [PMID: 30889478 DOI: 10.1016/j.plaphy.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Substrates are fundamental prerequisites for growing grafted seedlings. In this study, substrates with different pH levels (5.0, 5.5, 6.0, 6.5, 7.0, and 8.0) were set up to elucidate the effect of pH on cadmium (Cd) uptake in grafted muskmelon (Cucumis melo L.) plants. Bacterial diversity was also investigated. Results showed that pH and high Cd concentration greatly affected the growth of grafted plants. The chlorophyll content of the muskmelon leaves decreased at 100 μM Cd. The majority of the Cd ions accumulated in the rootstock rather than in the shoot tissue in all of the treatments. The shoots and roots showed the highest Cd content at pH 5.5 and the lowest Cd content at pH 8.0 regardless of the Cd concentration. The operational taxonomic units belonging to Proteobacteria and Bacteroidetes were significantly (p < 0.05) enriched at different substrate pH levels compared with those at pH 5.0. The operational taxonomic units belonging to the phyla Firmicutes, Acidobacteria, and Chloroflexi were significantly decreased. The available nitrogen, phosphorus, Cd, and pH were strongly linked to bacterial community compositions. On the contrary, the available potassium was weakly correlated with the bacterial structure. This study demonstrates that pH greatly affects Cd uptake in grafted muskmelon plants and predicts microbial community structures in breeding substrates with different pH levels. Our results suggest that Cd accumulation in grafted plants can be reduced by setting the appropriate substrate pH. This work can serve as a reference for growing high-quality grafted plants and ensuring food safety in the presence of Cd contamination.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China.
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China.
| | - Qingqing Xiao
- Department of Biological and Environmental Engineering, Hefei University, 230601, Anhui Province, China
| | - Shoujing Zhu
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi Province, China
| | - Haikun Jiang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031, Anhui Province, China; School of Horticulture, Anhui Agricultural University, Hefei, 230036, Anhui Province, China
| |
Collapse
|