1
|
Li R, Li Z, Zhang K, Zhang C, Sun Y, Zhang J, Zheng Y, Yao Y, Qin X. The responses of root exudates and microbiome in the rhizosphere of main plant and aromatic intercrops to soil Cr stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125528. [PMID: 39672367 DOI: 10.1016/j.envpol.2024.125528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Soil chromium (Cr) stress has a well-recognized negative impact on plant growth, and intercropping is a commonly used method to mitigate heavy metal toxicity to main plants. However, the responses of root exudates-microbial and their interactions among soil zones to soil Cr stress are always in need of clarification in intercropping system. In this study, three intercropping patterns (CT, Malus only; TM, Malus × Mentha and TA, Malus × Ageratum) with different soil Cr addition levels (NCR, LCR, HCR) were applied, and the rhizosphere ecological traits in the main plant (FRS) and intercrop (ARS) were investigated. The results indicate that intercropping with either Mentha or Ageratum has a positive effect on main plants response to soil Cr stress, and intercropping with Ageratum showing a more significant effect. Importantly, we found that the rhizosphere of main plant tends to alleviate stress by accumulating organic acids and amino acids, while aromatic plants exhibit a broader accumulation of metabolites. Additionally, we identified five core differential microbial genera. Our findings provide novel insights into intercrop Cr detoxification in the main plant.
Collapse
Affiliation(s)
- Rui Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Zhenglin Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Kui Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Cong Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yue Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yi Zheng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Xiaoxiao Qin
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
2
|
Checa-Fernández A, Santos A, Chicaiza KY, Martin-Sanz JP, Valverde-Asenjo I, Quintana JR, Fernández J, Domínguez CM. Exploring the potential of horse amendment for the remediation of HCHs-polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121436. [PMID: 38875985 DOI: 10.1016/j.jenvman.2024.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
This study assessed for the first time the bioremediation potential of an organic horse amendment in soils contaminated with solid wastes of the obsolete pesticide lindane (α-hexachlorocyclohexane (α-HCH) = 80 mg kg-1, β-HCH = 40 mg kg-1, γ,δ,ε-HCH≈10 mg kg-1) searching for a self-sufficient bio-based economy. Four treatments were implemented: polluted (PS, ΣHCHs = 130 mg kg-1) and control (CS, ΣHCHs = 1.24 mg kg-1) soils and the respective amended soils (APS and ACS). A commercial amendment, coming from organic wastes, was used for soil biostimulation (5% dry weight), and the temporal evolution of the enzymatic activity (dehydrogenase, β-glucosidase activity, phenoloxidase, arylamidase, phosphatase, and urease) and HCHs concentration of the soils was evaluated over 55 days under controlled humidity and temperature conditions. The horse amendment positively influenced the physicochemical properties of the soil by reducing pH (from 8.3 to 8) and increasing the organic matter (TOC from 0.5 to 3.3%) and nutrient content (P and NH4+ from 24.1 to 13.7 to 142.1 and 41.2 mg kg-1, respectively). Consequently, there was a notable enhancement in the soil biological activity, specifically in the enzymatic activity of dehydrogenase, phenol-oxidase, phosphatase, and urease and, therefore, in HCH degradation, which increased from <1 to 75% after the incubation period. According to the chlorine position on the cyclohexane ring, the following ranking has been found for HCHs degradation: β-HCH (46%) < ε-HCH (57%) < α-HCH (91%) ≈ δ-HCH (91%) < γ-HCH (100%). Pentachlorocyclohexene (PCCH) and 1,2,4-trichlorobenzene (1,2,4-TCB) were identified as HCHs degradation metabolites and disappeared at the end of the incubation time. Although further research is required, these preliminary findings suggest that organic amendments represent a sustainable, harmless, and cost-effective biostimulation approach for remediating soils contaminated with recalcitrant HCHs, boosting the circular economy.
Collapse
Affiliation(s)
- Alicia Checa-Fernández
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Aurora Santos
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Katherine Yomaira Chicaiza
- Chemical in Pharmaceutical Sciences Department, Faculty of Pharmacy, University Complutense of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Juan P Martin-Sanz
- Chemical in Pharmaceutical Sciences Department, Faculty of Pharmacy, University Complutense of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Inmaculada Valverde-Asenjo
- Chemical in Pharmaceutical Sciences Department, Faculty of Pharmacy, University Complutense of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Jose R Quintana
- Chemical in Pharmaceutical Sciences Department, Faculty of Pharmacy, University Complutense of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Javier Fernández
- Chemical in Pharmaceutical Sciences Department, Faculty of Pharmacy, University Complutense of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - Carmen M Domínguez
- Department of Chemical Engineering and Materials, Faculty of Chemical Sciences, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Yu J, Yu J, Deng S, Huang Z, Wang Z, Zhu W, Zhou X, Liu L, Wu D, Zhang H. Oxidation of chromium(Ⅲ): A potential risk of using chemical oxidation processes for the remediation of 2-chlorophenol contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120973. [PMID: 38703644 DOI: 10.1016/j.jenvman.2024.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.
Collapse
Affiliation(s)
- Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Ze Wang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Xueling Zhou
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Longyu Liu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China
| | - Donghai Wu
- School of Life Sciences, Chongqing University, Chongqing, 400044, PR China
| | - Hanyi Zhang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
4
|
Izhar SK, Rizvi SF, Afaq U, Fatima F, Siddiqui S. Bioprospecting of Metabolites from Actinomycetes and their Applications. Recent Pat Biotechnol 2024; 18:273-287. [PMID: 38817008 DOI: 10.2174/0118722083269904231114154017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 06/01/2024]
Abstract
Actinomycetes are present in various terrestrial and aquatic habitats, predominantly in the soil rhizosphere, encompassing marine and freshwater ecosystems. These microorganisms exhibit characteristics that resemble both bacteria and fungi. Numerous actinomycetes exhibit a mycelial existence and undergo significant morphological transformations. These bacteria are widely recognized as biotechnologically significant microorganisms utilized for the production of secondary metabolites. In all, over 45% of all bioactive microbial metabolites are produced by actinomycetes, which are responsible for producing around 10,000 of them. The majority of actinomycetes exhibit substantial saprophytic characteristics in their natural environment, enabling them to effectively decompose a diverse range of plant and animal waste materials during the process of decomposition. Additionally, these organisms possess a sophisticated secondary metabolic system, which enables them to synthesize almost two-thirds of all naturally occurring antibiotics. Moreover, they can create a diverse array of chemical compounds with medical or agricultural applications, including anticancer, antiparasitic, and antibacterial agents. This review aims to provide an overview of the prominent biotechnological domains in which actinobacteria and their metabolites demonstrate noteworthy applicability. The graphical abstract provides a preview of the primary sections covered in this review. This paper presents a comprehensive examination of the biotechnological applications and metabolites of actinobacteria, highlighting their potential for patent innovations.
Collapse
Affiliation(s)
| | - Shareen Fatima Rizvi
- Protein Research Laboratory, Department of Biosciences, Integral University Lucknow, 226026, India
| | - Uzma Afaq
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Faria Fatima
- Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, 226026, India
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, 226026, India
| |
Collapse
|
5
|
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H. Elucidating Multiple Electron-Transfer Pathways for Metavanadate Bioreduction by Actinomycetic Streptomyces microflavus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19921-19931. [PMID: 37934564 DOI: 10.1021/acs.est.3c07288] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.
Collapse
Affiliation(s)
- Shixiang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huan Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yi Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
6
|
Alotaibi N, Aldahlawi A, Zaher K, Basingab F, Alrahimi J. Optimizing the generation of mature bone marrow-derived dendritic cells in vitro: a factorial study design. J Genet Eng Biotechnol 2023; 21:144. [PMID: 38017248 PMCID: PMC10684437 DOI: 10.1186/s43141-023-00597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Factorial design is a simple, yet elegant method to investigate the effect of multiple factors and their interaction on a specific response simultaneously. Hence, this type of study design reaches the best optimization conditions of a process. Although the interaction between the variables is widely prevalent in cell culture procedures, factorial design per se is infrequently utilized in improving cell culture output. Therefore, we aim to optimize the experimental conditions for generating mature bone marrow-derived dendritic cells (BMDCs). Two different variables were investigated, including the concentrations of the inducing factors and the starting density of the bone marrow mononuclear cells. In the current study, we utilized the design of experiments (DoE), a statistical approach, to systematically assess the impact of factors with varying levels on cell culture outcomes. Herein, we apply a two-factor, two-level (22) factorial experiment resulting in four conditions that are run in triplicate. The two variables investigated here are cytokines combinations with two levels, granulocyte-macrophage colony-stimulating factor (GM-CSF) alone or with interleukin-4 (IL4). The other parameter is cell density with two different concentrations, 2 × 106 and 4 × 106 cells/mL. Then, we measured cell viability using the trypan blue exclusion method, and a flow cytometer was used to detect the BMDCs expressing the markers FITC-CD80, CD86, CD83, and CD14. BMDC marker expression levels were calculated using arbitrary units (AU) of the mean fluorescence intensity (MFI). RESULTS The current study showed that the highest total viable cells and cells yield obtained were in cell group seeded at 2 × 106 cells/mL and treated with GM-CSF and IL-4. Importantly, the expression of the co-stimulatory molecules CD83 and CD80/CD86 were statistically significant for cell density of 2 × 106 cells/mL (P < 0.01, two-way ANOVA). Bone marrow mononuclear cells seeded at 4 × 106 in the presence of the cytokine mix less efficiently differentiated and matured into BMDCs. Statistical analysis via two-way ANOVA revealed an interaction between cell density and cytokine combinations. CONCLUSION The analysis of this study indicates a substantial interaction between cytokines combinations and cell densities on BMDC maturation. However, higher cell density is not associated with optimizing DC maturation. Notably, applying DoE in bioprocess designs increases experimental efficacy and reliability while minimizing experiments, time, and process costs.
Collapse
Affiliation(s)
- Najla Alotaibi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- College of Health, Oregon State University, Corvallis, OR, USA.
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kawther Zaher
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Sun H, Chen Q, Qu C, Tian Y, Song J, Liu Z, Guo J. Occurrence of OCPs & PCBs and their effects on multitrophic biological communities in riparian groundwater of the Beiluo River, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114713. [PMID: 36870171 DOI: 10.1016/j.ecoenv.2023.114713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Persistent Organic Pollutants (POPs) may exert adverse effects on human and ecosystem health. However, as an ecologically fragile zone with strong interaction between river and groundwater, the POPs pollution in the riparian zone has received little attention. The goal of this research is to examine the concentrations, spatial distribution, potential ecological risks, and biological effects of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the riparian groundwater of the Beiluo River, China. The results showed that the pollution level and ecological risk of OCPs in riparian groundwater of the Beiluo River were higher than PCBs. The presence of PCBs (Penta-CBs, Hexa-CBs) and CHLs, respectively, may have reduced the richness of bacteria (Firmicutes) and fungi (Ascomycota). Furthermore, the richness and Shannon's diversity index of algae (Chrysophyceae and Bacillariophyta) decreased, which could be linked to the presence of OCPs (DDTs, CHLs, DRINs), and PCBs (Penta-CBs, Hepta-CBs), while for metazoans (Arthropoda) the tendency was reversed, presumably as a result of SULPHs pollution. In the network analysis, core species belonging to bacteria (Proteobacteria), fungi (Ascomycota), and algae (Bacillariophyta) played essential roles in maintaining community function. Burkholderiaceae and Bradyrhizobium can be considered biological indicators of PCBs pollution in the Beiluo River. Note that the core species of interaction network, playing a fundamental role in community interactions, are strongly affected by POPs pollutants. This work provides insights into the functions of multitrophic biological communities in maintaining the stability of riparian ecosystems through the response of core species to riparian groundwater POPs contamination.
Collapse
Affiliation(s)
- Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Qiqi Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yulu Tian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ziteng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
8
|
Applied of actinobacteria consortia-based bioremediation to restore co-contaminated systems. Res Microbiol 2023; 174:104028. [PMID: 36638934 DOI: 10.1016/j.resmic.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Global industrialization and natural resources extraction have left cocktails of environmental pollutants. Thus, this work focuses on developing a defined actinobacteria consortium able to restore systems co-contaminated with pollutants occurring in Argentinian environments. In this context, five actinobacteria were tested in solid medium to evaluate antagonistic interactions and tolerance against lindane (LIN), Reactive Black B-V (RBV), phenanthrene (Ph) and Cr(VI). The strains showed absence of antagonism, and most of them tolerated the presence of individual pollutants and their mixtures, except Micromonospora sp. A10. Thus, a quadruple consortium constituted by Streptomyces sp. A5, M7, MC1, and Amycolatopsis tucumanensis DSM 45259T, was tested in liquid systems with individual contaminants. The best microbial growth was observed in the presence of RBV and the lowest on Cr(VI). Removals detected were 83.3%, 65.0% and 52.4% for Ph, RBV and LIN, respectively, with absence of Cr(VI) dissipation. Consequently, the consortium performance was tested against the organic mixture, and a microbial growth similar to the biotic control and a LIN removal increase (61.2%) were observed. Moreover, the four actinobacteria of the consortium survived the mixture bioremediation process. These results demonstrate the potential of the defined actinobacteria consortium as a tool to restore environments co-contaminated with organic pollutants.
Collapse
|
9
|
Xu H, Fan Y, Xia X, Liu Z, Yang S. Effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114431. [PMID: 36167113 DOI: 10.1016/j.envres.2022.114431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) is a toxic, teratogenic, and carcinogenic heavy metal element in soil that poses major ecological and human health risks. In this study, microcosm tests combined with X-ray absorption near-edge spectra (XANES) and 16Sr DNA amplification techniques were used to explore the effect of Ginkgo biloba leaves on the removal efficiency of Cr(VI) in soil and its underlying mechanism. Ginkgo biloba leaves had a favorable remediation effect on soil varying in Cr(VI) contamination levels, and the optimal effect was observed when 5% Ginkgo biloba leaves were added. The occurrence state of Cr(VI) in soil before and after the addition of Ginkgo biloba leaves was analyzed by XANES, which revealed that Cr(VI) was fully converted to the more biologically innocuous Cr(III), and the hydroxyl-containing quercetin in Ginkgo biloba leaves was one of the primary components mediating this reduction reaction. The Cr(VI) content was significantly lower in non-sterilized soil than in sterilized soil, suggesting that soil microorganisms play a key role in the remediation process. The addition of Ginkgo biloba leaves decreased the α-diversity and altered the β-diversity of the soil bacterial community. Actinobacteria was the dominant phylum in the soil remediated by Ginkgo biloba leaves; four genera of Cr(VI)-reducing bacteria were also enriched, including Agrococcus, Klebsiella, Streptomyces, and Microbacterium. Functional gene abundances predicted by PICRUST indicated that the expression of glutathione synthesis genes was substantially up-regulated, which might be the main metabolic pathway underlying the mitigation of Cr(VI) toxicity in soil by Cr(VI)-reducing bacteria. In sum, Ginkgo biloba leaves can effectively remove soil Cr(VI) and reduce Cr(VI) to Cr(III) via quercetin in soil, which also functions as a carbon source to drive the production of glutathione via Cr(VI)-reducing bacteria and mitigate Cr(VI) toxicity. The findings of this study elucidate the chemical and microbial mechanisms of Cr(VI) removal in soil by Ginkgo biloba leaves and provide insights that could be used to enhance the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Hefeng Xu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Yanling Fan
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, 100081, Beijing, PR China
| | - Zengjun Liu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Shuo Yang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China
| |
Collapse
|
10
|
Nazari MT, Simon V, Machado BS, Crestani L, Marchezi G, Concolato G, Ferrari V, Colla LM, Piccin JS. Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116220. [PMID: 36116255 DOI: 10.1016/j.jenvman.2022.116220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Rhodococcus is a genus of actinomycetes that has been explored by the scientific community for different purposes, especially for bioremediation uses. However, the mechanisms governing Rhodococcus-mediated bioremediation processes are far from being fully elucidated. In this sense, this work aimed to compile the recent advances in the use of Rhodococcus for the bioremediation of organic and inorganic contaminants present in different environmental compartments. We reviewed the bioremediation capacity and mechanisms of Rhodococcus spp. in the treatment of polycyclic aromatic hydrocarbons, phenolic substances, emerging contaminants, heavy metals, and dyes given their human health risks and environmental concern. Different bioremediation techniques were discussed, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. The use of Rhodococcus strains in the bioremediation of several compounds is a promising approach due to their features, primarily the presence of appropriate enzyme systems, which result in high decontamination efficiencies; but that vary according to experimental conditions. Besides, the genus Rhodococcus contains a small number of opportunistic species and pathogens, representing an advantage from the point of view of safety. Advances in analytical detection techniques and Molecular Biology have been collaborating to improve the understanding of the mechanisms and pathways involved in bioremediation processes. In the context of using Rhodococcus spp. as bioremediation agents, there is a need for more studies that 1) evaluate the role of these actinomycetes on a pilot and field scale; 2) use genetic engineering tools and consortia with other microorganisms to improve the bioremediation efficiency; and 3) isolate new Rhodococcus strains from environments with extreme and/or contaminated conditions aiming to explore their adaptive capabilities for bioremediation purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Viviane Simon
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Larissa Crestani
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Gustavo Concolato
- Faculty of Engineering and Architecture, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
11
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
12
|
Maksimova Y, Bykova Y, Maksimov A. Functionalization of Multi-Walled Carbon Nanotubes Changes Their Antibiofilm and Probiofilm Effects on Environmental Bacteria. Microorganisms 2022; 10:microorganisms10081627. [PMID: 36014045 PMCID: PMC9412586 DOI: 10.3390/microorganisms10081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Releasing multi-walled carbon nanotubes (MWCNTs) into ecosystems affects the biofilm formation and metabolic activity of bacteria in aquatic and soil environments. Pristine (pMWCNTs), oleophilic (oMWCNTs), hydrophilic (hMWCNTs), and carboxylated (cMWCNTs) carbon nanotubes were used to investigate their effects on bacterial biofilm. A pronounced probiofilm effect of modified MWCNTs was observed on the Gram-negative bacteria of Pseudomonas fluorescens C2, Acinetobacter guillouiae 11 h, and Alcaligenes faecalis 2. None of the studied nanomaterials resulted in the complete inhibition of biofilm formation. The complete eradication of biofilms exposed to MWCNTs was not observed. The functionalization of carbon nanotubes was shown to change their probiofilm and antibiofilm effects. Gram-negative bacteria were the most susceptible to destruction, and among the modified MWCNTs, oMWCNTs had the greatest effect on biofilm destruction. The number of living cells in the biofilms was assessed by the reduction of XTT, and metabolic activity was assessed by the reduction of resazurin to fluorescent resorufin. The biofilms formed in the presence of MWCNTs reduced tetrozolium to formazan more actively than the control biofilms. When mature biofilms were exposed to MWCNTs, dehydrogenase activity decreased in Rhodococcus erythropolis 4-1, A. guillouiae 11 h, and A. faecalis 2 in the presence of pMWCNTs and hMWCNTs, as well as in A. guillouiae 11 h exposed to cMWCNTs. When mature biofilms were exposed to pMWCNTs, hMWCNTs, and cMWCNTs, the metabolism of cells decreased in most strains, and oMWCNTs did not have a pronounced inhibitory effect. The antibiofilm and probiofilm effects of MWCNTs were strain-dependent.
Collapse
Affiliation(s)
- Yuliya Maksimova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
- Correspondence:
| | - Yana Bykova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
| | - Aleksandr Maksimov
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, Perm 614081, Russia
- Department of Microbiology and Immunology, Perm State University, Perm 614990, Russia
| |
Collapse
|
13
|
Wang X, Wu H, Dai C, Wang X, Wang L, Xu J, Lu Z. Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119362. [PMID: 35489538 DOI: 10.1016/j.envpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Co-contamination of organic pollutants and heavy metals is universal in the natural environment. Dibutyl phthalate (DBP), a typical plasticizer, frequently coexists with cadmium (Cd) in nature. However, little attention has been given to the impacts of co-contamination by DBP and Cd on microbial communities or the responses of microbes. To address this, a microcosm experiment was conducted by supplying the exogenous DBP-degrading bacterium Glutamicibacter nicotianae ZM05 to investigate the interplay among DBP-Cd co-contamination, the exogenous DBP-degrading bacterium G. nicotianae ZM05, and indigenous microorganisms. To adapt to co-contamination stress, microbial communities adjust their diversity, interactions, and functions. The stability of the microbial community decreased under co-contamination, as evidenced by lower diversity, simpler network, and fewer ecological niches. Microbial interactions were strengthened, as evidenced by enriched pathways related to microbial communications. Meanwhile, interactions between microorganisms enhanced the environmental fitness of the exogenous DBP-degrading bacterium ZM05. Based on co-occurrence network prediction and coculture experiments, metabolic interactions between the non-DBP-degrading bacterium Cupriavidus metallidurans ZM16 and ZM05 were proven. Strain ZM16 utilized protocatechuic acid, a DBP downstream metabolite, to relieve acid inhibition and adsorbed Cd to relieve toxic stress. These findings help to explain the responses of bacterial and fungal communities to DBP-Cd co-contamination and provide new insights for the construction of degrading consortia for bioremediation.
Collapse
Affiliation(s)
- Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Guerrero DS, Romero CM, Polti MA, Dávila Costa JS. Genome sequencing and genomic analysis of Amycolatopsis tucumanensis DSM 45259 applicable in gray, red, and nano-biotechnology. J Basic Microbiol 2022; 62:779-787. [PMID: 35551685 DOI: 10.1002/jobm.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments. Phylogenomic and comparative analysis with the closest phylogenetic neighbor was performed. Our analysis showed the genetic potential of the strain to deal with heavy metals such as copper and mitigate oxidative stress. In addition, the ability to produce copper oxide nanoparticles and the presence of genes potentially involved in the synthesis of secondary metabolites suggest that A. tucumanensis may find utility in gray, red, and nano-biotechnology. To our knowledge, this is the first genomic analysis of an Amycolatopsis strain with potential for different biotechnological fields.
Collapse
Affiliation(s)
- Daiana S Guerrero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Marta A Polti
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - José S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| |
Collapse
|
15
|
Wang C, Li J, Fang W, Chen W, Zou M, Li X, Qiu Z, Xu H. Lipid degrading microbe consortium driving micro-ecological evolvement of activated sludge for cooking wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150071. [PMID: 34509855 DOI: 10.1016/j.scitotenv.2021.150071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, a lipid degrading microbe consortium (LDMC) was assembled to improve the performance of activated sludge (AS) on cooking wastewater purification. LDMC can rapidly degrade high-level oil (efficiency beyond 93.0% at 5.0 g/L) as sole carbon source under various environmental conditions (10.0-45.0 °C, pH 2.0-12.0). With LDMC inoculation, AS' water treatment performance was significantly enhanced, which removed 36.10 and 48.93% more chemical oxygen demand (COD) and ammonia nitrogen from wastewater than control. A better settling property and smaller bulking risk were found with LDMC inoculation, indicated by a lower SV30 and SVI index but a higher MLSS. By GC/MS analysis, a gradual degradation on the end of the fatty acid chain was suggested. LDMC inoculation significantly changed AS's microbial community structure, improved its stability, decreased the microbial community diversity, facilitated the enrichment of lipid degraders and functional genes related to lipid bio-degradation. Lipid degraders including Nakamurella sp. and Stenotrophomona sp., etc. played a crucial role during oil degradation. Sludge structure maintainers such as Kineosphaera sp. contributed largely to the stability of AS under exogenous stress. This study provided an efficient approach for cooking wastewater treatment along with the underlying mechanism exploration, which should give insights into oil-containing environmental remediation.
Collapse
Affiliation(s)
- Can Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Jianpeng Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Weizhen Fang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenjing Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Meihui Zou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Xing Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Zhongping Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
16
|
Mawang CI, Azman AS, Fuad ASM, Ahamad M. Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00679. [PMID: 34660214 PMCID: PMC8503819 DOI: 10.1016/j.btre.2021.e00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Over the past two decades, various eco-friendly approaches utilizing microbial species to clean up contaminated environments have surfaced. In this aspect, actinobacteria have demonstrated their potential in contaminant degradation. The members of actinobacteria phylum exhibits a cosmopolitan distribution, which means that they can be found widely in both aquatic and terrestrial ecosystems. Actinobacteria play important ecological roles in the environment, such as degrading complex polymers, recycling compounds, and producing bioactive molecules. Hence, using actinobacteria to clean up contaminants is an attractive method in the field of biotechnology. This can be achieved through the green technology of bioaugmentation, whereby the degradative capacity of contaminated areas can be greatly improved through the introduction of specific microorganisms. This review describes actinobacteria as an eco-friendly and a promising technology for the bioaugmentation of contaminants, with focus on pesticides and heavy metals.
Collapse
Affiliation(s)
- Christina-Injan Mawang
- Acarology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health Complex, Setia Alam, Shah Alam, Selangor, 40170, Malaysia
| | - Adzzie-Shazleen Azman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia
| | - Aalina-Sakiinah Mohd Fuad
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia Kuantan Campus, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Kuantan, Pahang 25200, Malaysia
| | - Mariana Ahamad
- Acarology Unit, Infectious Disease Research Centre, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health Complex, Setia Alam, Shah Alam, Selangor, 40170, Malaysia
| |
Collapse
|
17
|
Han L, Fang K, Liu Y, Fang J, Wang F, Wang X. Earthworms accelerated the degradation of the highly toxic acetochlor S-enantiomer by stimulating soil microbiota in repeatedly treated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126669. [PMID: 34329120 DOI: 10.1016/j.jhazmat.2021.126669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of earthworms on the enantioselective degradation of chloroacetamide herbicide acetochlor with soil microorganisms in repeatedly treated soils. The S-enantiomer degraded more slowly and exerted stronger inhibition on soil microbial functions than the R-enantiomer in single soil system. A synergistic effect was observed between soil microorganisms and earthworms that accelerated the degradation of both the enantiomers, particularly the highly toxic S-enantiomer, which resulted in the preferential degradation of S-enantiomer in soil-earthworm system. Earthworms stimulated five potential indigenous degraders (i.e. Lysobacter, Kaistobacter, Flavobacterium, Arenimonas, and Aquicell), induced two new potential degraders (i.e. Aeromonas and Algoriphagus), and also significantly strengthened the correlations among these seven dominant potential degraders and other microorganisms. Notably, the relative abundances of Flavobacterium and Aeromonas in soil treated with earthworms for S-enantiomer were higher than those for R-enantiomer. Furthermore, earthworms significantly stimulated overall soil microbial activity and improved three microbial metabolic pathways, and xenobiotics biodegradation and metabolism, signal transduction, cell motility, particularly for the S-enantiomer treatment with earthworms, which alleviated the strong inhibition of S-enantiomer on microbial community functions. This study confirmed that earthworms accelerated the degradation of the highly toxic acetochlor S-enantiomer in soil, providing a potential approach in chloroacetamide herbicide-polluted soil remediation.
Collapse
Affiliation(s)
- Lingxi Han
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Jianwei Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
18
|
Solá MZS, Prado C, Rosa M, Aráoz MVC, Benimeli CS, Polti MA, Alvarez A. Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51217-51231. [PMID: 33982258 DOI: 10.1007/s11356-021-14295-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation techniques have been proposed as ecological methods to clean up contaminated sites. This study is aimed to evaluate the effect of the Streptomyces sp. Waksman & Henrici and Zea mays L. plant system on the dissipation of Cr(VI) and/or lindane from a co-contaminated soil, being 2 mg kg-1 of lindane and 150 mg kg-1 of chromium used. Lindane dissipation was improved in the presence of plant-microorganism association; however, Cr(VI) removal was higher when plants or the microorganism were separately. In co-contaminated systems, chromium content in plant tissues was lower than metal content in plants grown only with Cr(VI), suggesting that lindane could interfere with metal accumulation in the plant. The high malondialdehyde (MDA) concentration detected in non-inoculated plants grown with chromium could be consequence of high metal concentration in plant tissues. Interestingly, plants inoculated with Streptomyces sp. Z38 growing with Cr(VI) showed decrease in MDA concentration, indicating that the bacterium could activate defense mechanisms in the plant. Also, inoculated plants showed the highest value of superoxide dismutase activity. Lettuce plants used as bioindicators grew better in biologically treated soils compared with lettuce grown on non-treated soil. The results presented in this work provide the basis that will allow the optimization of future trials on a larger scale.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Carolina Prado
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Mariana Rosa
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV), CONICET-UNT, Miguel Lillo 205, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - María Victoria Coll Aráoz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
19
|
Aparicio JD, Espíndola D, Montesinos VN, Litter MI, Donati E, Benimeli CS, Polti MA. Evaluation of the sequential coupling of a bacterial treatment with a physicochemical process for the remediation of wastewater containing Cr and organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126307. [PMID: 34130164 DOI: 10.1016/j.jhazmat.2021.126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
A restoration strategy was developed for the treatment of two artificial liquid systems (Minimal Medium, MM, and Water Carbon Nitrogen, WCN) contaminated with Cr(VI), lindane (γ-HCH), phenanthrene (Phe), and reactive black 5 (RB5), through the use of an actinobacteria consortium, coupled with a physicochemical treatment using a column filled with nano-scale zero valent iron particles immobilized on dried Macrocystis pyrifera algae biomass. The Sequential Treatment A (STA: physicochemical followed by biological method) removed the three organic compounds with different effectiveness; however, it was very ineffective for Cr(VI) removal. The Sequential Treatment B (STB: biological followed by the physicochemical method) removed the four compounds with variable efficiencies. The removal of γ-HCH, Phe, and RB5 in both effluents did not present significant differences, regardless of the sequential treatment used. The highest removal of Cr(VI) and total Cr was observed in MM and WCN, respectively. Ecotoxicity tests (L. sativa) of the effluents treated with both methodological couplings demonstrated that the toxicity of WCN only decreased at the end of STA, while that of MM decreased at all stages of both sequential treatments. Therefore, MM would be more appropriate to perform both treatments.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Diego Espíndola
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 Tucumán, Argentina
| | - Víctor Nahuel Montesinos
- Gerencia Química, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Marta Irene Litter
- IIIA (CONICET-UNSAM), Universidad Nacional de General San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650 San Martín, Prov. de Buenos Aires, Argentina
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 Catamarca, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000 Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina.
| |
Collapse
|
20
|
Usmani Z, Kulp M, Lukk T. Bioremediation of lindane contaminated soil: Exploring the potential of actinobacterial strains. CHEMOSPHERE 2021; 278:130468. [PMID: 34126690 DOI: 10.1016/j.chemosphere.2021.130468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Lindane, an organochlorine pesticide, causes detrimental impacts on the environment and human health owing to its high toxicity, low degradation, and bioaccumulation. Its toxic nature can be overcome by biological and eco-friendly approaches involving its degradation and detoxification. The biodegradation of lindane was assessed using actinobacterial species Thermobifida cellulosilytica TB100 (T. cellulosilytica), Thermobifida halotolerans DSM 44931 (T. halotolerans) and Streptomyces coelicolor A3 (S. coelicolor). The degradation conditions of Lindane such as pH, temperature, inoculum volume, glucose concentration and number of days were optimized under broth conditions. Lindane degradation at different concentrations was studied in soil using reverse phase-high performance liquid chromatography over a 30 day period. A bioassay test was performed on seeds of Lactuca sativa (Lettuce) to assess the success of bioremediated soil. Maximum lindane degradation in soil was observed using T. cellulosilytica sp. The degradation trend for different concentrations of lindane using T. halotolerans in sterilized soil was 55 mg kg-1 (82%) ˃ 155 mg kg-1 (75%) ˃ 255 mg kg-1 (70%) after an incubation period of 30 days. Lindane degradation in soil followed the first order reaction kinetics. Phytotoxicity test on seeds of Lactuca sativa showed considerably good vigor index values for the bioremediated sterilized and non-sterilized soil by T. cellulosilytica, T. halotolerans and S. coelicolor in comparison to the contaminated soil without bacteria. This confirms that these actinobacterial species can be implemented in bioaugmentation of contaminated sites to efficiently remediate high lindane concentrations.
Collapse
Affiliation(s)
- Zeba Usmani
- Laboratory of Structural Biology and Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Maria Kulp
- Laboratory of Analytical Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Tiit Lukk
- Laboratory of Structural Biology and Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia.
| |
Collapse
|
21
|
Costa-Gutierrez SB, Saez JM, Aparicio JD, Raimondo EE, Benimeli CS, Polti MA. Glycerol as a substrate for actinobacteria of biotechnological interest: Advantages and perspectives in circular economy systems. CHEMOSPHERE 2021; 279:130505. [PMID: 33865166 DOI: 10.1016/j.chemosphere.2021.130505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Actinobacteria represent a ubiquitous group of microorganisms widely distributed in ecosystems. They have diverse physiological and metabolic properties, including the production of extracellular enzymes and a variety of secondary bioactive metabolites, such as antibiotics, immunosuppressants, and other compounds of industrial interest. Therefore, actinobacteria have been used for biotechnological purposes for more than three decades. The development of a biotechnological process requires the evaluation of its cost/benefit ratio, including the search for economic and efficient substrates for microorganisms development. Biodiesel is a clean, renewable, quality and economically viable source of energy, which also contributes to the conservation of the environment. Crude glycerol is the main by-product of biodiesel production and has many properties, so it has a commercial value that can be used to finance the biofuel production process. Actinobacteria can use glycerol as a source of carbon and energy, either pure o crude. A circular economy system aims to eliminate waste and pollution, keep products and materials in use, and regenerate natural systems. Although these principles are not yet met, some approaches are being made in this direction; the transformation of crude glycerol by actinobacteria is a process with great potential to be scaled on an industrial level. This review discusses the reports on glycerol as a promising source of carbon and energy for obtaining biomass and high-added value products by actinobacteria. Also, the factors influencing the biomass and secondary metabolites production in bioreactors are analyzed, and the tools available to overcome those that generate the main problems are discussed.
Collapse
Affiliation(s)
- Stefanie B Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Juliana Maria Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| | - Marta A Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
22
|
Bian F, Zhong Z, Li C, Zhang X, Gu L, Huang Z, Gai X, Huang Z. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125898. [PMID: 34492836 DOI: 10.1016/j.jhazmat.2021.125898] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Moso bamboo is considered a potential species for heavy metal (HM) phytoremediation; however, the effect of intercropping on rhizosphere and phytoextraction remains to be elucidated. We comparatively investigated rhizobacteria, soil properties, and phytoextraction efficiency of monoculture and intercropping of Moso bamboo and Sedum plumbizincicola in Cu/Zn/Cd-contaminated soil. Compared with monocultures, intercropping increased the bacterial α-diversity indices (Shannon, Chao1) and the number of biomarkers. Intercropping reduced the contents of soil organic matter (SOM), available nutrients, and Cd and Cu in rhizosphere soils, and reduced the Cd and Zn contents in tissues of sedum. By contrast, Cd and Zn contents in tissues of bamboo increased, and the increase of organic acid in root exudates from intercropping could facilitate the HM absorption. The total amount of Cu, Zn, and Cd removed from the soil in intercropping system was 1.2, 1.9, and 1.8 times than those in monoculture bamboo, respectively. The abundances of Proteobacteria, Acidobacteria, Verrucomicrobia and Actinobacteria were higher in intercropping, playing an important role in soil nutrient cycles and HM remediation. These bacterial communities were closely correlated (P < 0.01) with SOM, available nitrogen, available phosphorus, and HMs. The results suggested this intercropping pattern can increase HM removal efficiency from polluted soils.
Collapse
Affiliation(s)
- Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China.
| | - Chengzhe Li
- Key Laboratory for Quality Improvement of Agriculture Products of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, PR China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Lijian Gu
- Hangzhou Linan Taihuyuan Ornamental Bamboo Planting Garden Co., LTD, Lin'an 311306, PR China
| | - Zichen Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou 310012, PR China
| |
Collapse
|
23
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
24
|
Sineli PE, Herrera HM, Aparicio JD, Guerrero DS, Polti MA, Dávila Costa JS. Genomic analysis and proteomic response of the chromium-resistant and phenanthrene-degrading strain Streptomyces sp. MC1. J Appl Microbiol 2021; 131:719-727. [PMID: 33434397 DOI: 10.1111/jam.15002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
AIM Chemically disparate toxic organic and/or inorganic molecules produced by anthropogenic activities often hinder the bioremediation process. This research was conducted to understand the capacity of Streptomyces sp. MC1 to remove chemically disparate toxics such as Cr(VI) or phenanthrene. METHODS AND RESULTS Genomic, metabolic modeling and proteomic approaches were used in this study. Our results demonstrated that Streptomyces sp. MC1 has the genetic determinants to remove Cr(VI) or degrade phenanthrene. Proteomics showed that these genetic determinants were expressed. Metabolic versatility of the strain was confirmed by two metabolic models in complex and minimal media. Interestingly, our results also suggested a connection between the degradation of phenanthrene and synthesis of specialized metabolites. CONCLUSIONS Streptomyces sp. MC1 has the genetic and physiological potential to remove Cr(VI) or degrade phenanthrene SIGNIFICANCE AND IMPACT OF STUDY: The probability of a microorganism to survive in the presence of different contaminants depends on its genetic potential and the ability to express it. The genetic and proteomic profiles obtained for Streptomyces sp. MC1 can be recommended as model and predict if other Streptomyces strains can be used in bioremediation processes. Our work also hypothesized that intermediates of the phenanthrene degradation serve as precursors for the specialized metabolism.
Collapse
Affiliation(s)
- P E Sineli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - H M Herrera
- Universidad Nacional de Tucumán, Argentina, Tucumán, Argentina
| | - J D Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina.,Universidad Nacional de Tucumán, Argentina, Tucumán, Argentina
| | - D S Guerrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - M A Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina.,Universidad Nacional de Tucumán, Argentina, Tucumán, Argentina
| | - J S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
25
|
Aparicio JD, Lacalle RG, Artetxe U, Urionabarrenetxea E, Becerril JM, Polti MA, Garbisu C, Soto M. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. ENVIRONMENTAL RESEARCH 2021; 194:110666. [PMID: 33359700 DOI: 10.1016/j.envres.2020.110666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg-1) and Cr(VI) (100 or 300 mg kg-1). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, 4000, Argentina
| | - Rafael G Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, C/Berreaga 1, Derio, E-48160, Spain
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| |
Collapse
|
26
|
Uniyal S, Sharma RK, Kondakal V. New insights into the biodegradation of chlorpyrifos by a novel bacterial consortium: Process optimization using general factorial experimental design. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111799. [PMID: 33360782 DOI: 10.1016/j.ecoenv.2020.111799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Himalayan mountains are subjected to the intensive and unjudicial application of chlorpyrifos (CP) in agricultural practices; hence it has spurred concerns over food safety and environmental consequences. These low-temperature mountainous regions are foremost ecosystems, representing the large-scale distribution of cold trapped CP residues. A bacterial consortium ECO-M was formed by isolating the CP degrading bacterial strains viz Agrobacterium tumefaciens strain ECO1, Cellulosimicrobium funkei strain ECO2, Shinella zoogloeoides strain ECO3 and Bacillus aryabhattai strain ECO4. At an initial concentration of 50 mg L-1, consortium ECO-M degraded 100% of CP within 6 days. Emergence and subsequent degradation of the two metabolites, 3, 5, 6-trichloro-2-pyridinol (TCP) and 2-hydroxypyridine were confirmed by GC-MS analysis. A degradation pathway of CP by isolated strains has been proposed. A general factorial experimental design was effectuated to prognosticate the optimum biodegradation by manifesting the optimal biological and physicochemical factors. Fitness of the experimental design was affirmed experimentally by employing optimized factors i.e., temperature 30 °C, CP concentration 50 mg L-1 and an inoculum size of 10% (v/v). The model appropriacy and the rationality of the optimization procedure were appraised by installing an in-situ microcosms experiment using the real contaminated soil collected from the Himalayan mountain ecosystem. The augmentation culture seems to be effectively conspicuous in stimulating maximum degradation up to 94.3% in the CP contaminated soil.
Collapse
Affiliation(s)
- Shivani Uniyal
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | | | - Vishnu Kondakal
- Department of Chemical Sciences, University of Huddersfield, UK
| |
Collapse
|
27
|
Costa-Gutierrez SB, Aparicio JD, Delgado OD, Benimeli CS, Polti MA. Use of glycerol for the production of actinobacteria with well-known bioremediation abilities. 3 Biotech 2021; 11:57. [PMID: 33489676 DOI: 10.1007/s13205-020-02588-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/03/2020] [Indexed: 10/24/2022] Open
Abstract
In recent years, there has been an increasing interest in the remediation of contaminated environments, and a suitable solution is in situ bioremediation. To achieve this, large-scale bacterial biomass production should be sustainable, using economic culture media. The main aim of this study was to optimize the physicochemical conditions for the biomass production of an actinobacterium with well-known bioremediation ability using inexpensive substrates and to scale-up its production in a bioreactor. For this, the growth of four strains of actinobacteria were evaluated in minimal medium with glucose and glycerol as carbon and energy sources. In addition, l-asparagine and ammonium sulfate were assayed as alternative nitrogen sources. The strain Streptomyces sp. A5 showed the highest biomass production in shake-flasks culture using glycerol and ammonium sulfate as carbon and nitrogen sources, respectively. Factorial designs with five factors (glycerol concentration, inoculum size, pH, temperature, and agitation) were employed to optimize the biomass production of Streptomyces sp. A5. The maximum biomass production was obtained using 5 g L-1 of glycerol, 0.25 µL of inoculum, pH 7, 30 °C and 200 rpm. Finally, the production was successfully scaled to a 2 L stirred tank bioreactor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02588-5.
Collapse
|
28
|
Raimondo EE, Saez JM, Aparicio JD, Fuentes MS, Benimeli CS. Bioremediation of lindane-contaminated soils by combining of bioaugmentation and biostimulation: Effective scaling-up from microcosms to mesocosms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111309. [PMID: 32882521 DOI: 10.1016/j.jenvman.2020.111309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The scaling-up of lindane-contaminated soils bioremediation from microcosms to mesocosms bioaugmentated with an actinobacteria quadruple culture and biostimulated with sugarcane filter cake (SCFC) was surveyed. Mesocosms of silty loam soil, clayey soil, and sandy soil were polluted with the pesticide, bioaugmented with the mixed culture, biostimulated with adequate amounts of 0.5 mm SCFC particles, and assessed during 63 days maintaining environmental parameters with minimal intervention. Samples were taken to determine residual lindane, heterotrophic microorganisms, enzymatic activities, and bioremediation effectiveness using ecotoxicity tests with Raphanus sativus, Lactuca sativa, and Lycopersicon esculentum. The bioaugmentation and biostimulation of the three soils improved lindane removal, microbial counts, and enzymatic activities, and reduced pesticide T1/2, regarding the values obtained in non-bioremediated controls. The removal process was significantly affected by the soil type, and the highest pesticide dissipation (82.6%) was detected in bioremediated sandy soil. Ecotoxicity tests confirmed the bioremediation success through a rise in the vigor index of seedlings compared to non-treated soils (R. sativus: 12-22%; L. sativa: 12-20%; L. esculentum: 30-45%). Finally, scanning electron microscopy corroborated soil colonization by actinobacteria. Successful scaling-up of the combined application of an actinobacteria quadruple culture and SCFC as an appropriate strategy for restoring lindane-polluted soils at mesocosms-scale was confirmed.
Collapse
Affiliation(s)
- Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Juan D Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina.
| |
Collapse
|
29
|
Birolli WG, da Silva BF, Rodrigues-Filho E. Biodegradation of the fungicide Pyraclostrobin by bacteria from orange cultivation plots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140968. [PMID: 32763599 DOI: 10.1016/j.scitotenv.2020.140968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The pesticides belonging the strobilurin group are among the most common contaminants in the environment. In this work, biodegradation studies of the strobilurin fungicide Pyraclostrobin by bacteria from orange cultivation plots were performed aiming to contribute with the development of a bioremediation method. Experiments were performed in triplicate with validated methods, and optimization was performed by Central Composite Design and Response Surface Methodology. The strains were evaluated in liquid nutrient medium containing 100 mg L-1 of Pyraclostrobin, and decreased concentrations of 61.5 to 100.5 mg L-1 were determined after 5 days at 37 °C and 130 rpm, showing the importance of strain selection. When the five most efficient strains (Bacillus sp. CSA-13, Paenibacillus alvei CBMAI2221, Bacillus sp. CBMAI2222, Bacillus safensis CBMAI2220 and Bacillus aryabhattai CBMAI2223) were used in consortia, synergistic and antagonistic effects were observed accordingly to the employed combination of bacteria, resulting in 64.2 ± 3.9 to 95.4 ± 4.9 mg L-1 residual Pyraclostrobin. In addition, the formation of 1-(4-chlorophenyl)-1H-pyrazol-3-ol was quantified (0.59-0.01 mg L-1), and a new biodegradation pathway was proposed with 15 identified metabolites. Experiments were also performed in soil under controlled conditions (30 °C, 0-28 days, 100 mg kg-1 pesticide), and the native microbiome reduced the pesticide concentration to 70.4 ± 2.3 mg L-1, whereas the inoculation of an efficient bacterial consortium promoted clearly better results, 57.2 ± 3.9 mg L-1 residual Pyraclostrobin. This suggests that the introduction of these strains in soil in a bioaugmentation process increases decontamination. However, the native microbiome is important for a more efficient bioremediation.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| | - Bianca Ferreira da Silva
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| |
Collapse
|
30
|
Sharma B, Shukla P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol Appl Biochem 2020; 69:51-60. [PMID: 33242354 DOI: 10.1002/bab.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Bioremediation is a promising technology for the treatment of environmental contaminants and paving new avenues for the betterment of the environment. Over the last some years, several approaches have been employed to optimize the genetic machinery of microorganisms relevant to bioremediation. Metabolic engineering is one of them that provides a new insight for bioremediation. This review envisages the critical role of these techniques toward exploring the possibilities of the creation of a new pathway, leading to pathway expansion to new substrates by assembling of catabolic modules from different origins in the same microbial cell. The recombinant DNA technology and gene editing tools were also explored for the construction of metabolically engineered microbial strains for the degradation of complex pollutants. Moreover, the importance of CRISPR-Cas system for knock-in and knock-out of genes was described by using recent studies. Further, the idea of the cocultivation of more than one metabolic engineered microbial communities is also discussed, which can be crucial in the bioremediation of multiple and complex pollutants. Finally, this review also elucidates the effective application of metabolic engineering in bioremediation through these techniques and tools.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
31
|
Lacalle RG, Aparicio JD, Artetxe U, Urionabarrenetxea E, Polti MA, Soto M, Garbisu C, Becerril JM. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Heliyon 2020; 6:e04550. [PMID: 32885063 PMCID: PMC7452571 DOI: 10.1016/j.heliyon.2020.e04550] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Gentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended vs. non-amended mixed polluted soils. All soils received the following treatments: (i) no treatment; (ii) bioaugmentation with an actinobacteria consortium; (iii) vermiremediation with Eisenia fetida; (iv) phytoremediation with Brassica napus; (v) bioaugmentation + vermiremediation; (vi) bioaugmentation + phytoremediation; and (vii) bioaugmentation + vermiremediation + phytoremediation. Soil health recovery was determined based on Cr(VI) and lindane concentrations, microbial properties and toxicity bioassays with plants and worms. Cr(VI) pollution caused high toxicity, but some GROs were able to partly recover soil health: (i) the organic amendment decreased Cr(VI) concentrations, alleviating toxicity; (ii) the actinobacteria consortium was effective at removing both Cr(VI) and lindane; (iii) B. napus and E. fetida had a positive effect on the removal of pollutants and improved microbial properties. The combination of the organic amendment, B. napus, E. fetida and the actinobacteria consortium was the most effective strategy.
Collapse
Affiliation(s)
- Rafael G. Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
- Corresponding author.
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491. 4000, Tucumán, Argentina
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, E-48620, Plentzia, Spain
| | - Marta A. Polti
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho, 491. 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, 48940, Leioa, Spain
- Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, E-48620, Plentzia, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, c/Berreaga 1, E-48160, Derio, Spain
| | - José M. Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bº Sarriena s/n, E-48940, Leioa, Spain
| |
Collapse
|
32
|
Zhang T, Qin M, Wei C, Li D, Lu X, Zhang L. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138615. [PMID: 32348945 DOI: 10.1016/j.scitotenv.2020.138615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The bacterial phoD gene encodes alkaline phosphatase plays an important role in the release of bioavailable inorganic phosphorus (P) from organic P in environmental systems. However, phoD gene diversity in suspended particles in shallow freshwater lakes is poorly understood. In this study, we explored the potential relationship between environmental factors and phoD phosphatase gene in suspended particles in different ecosystem types (lake zones) in Lake Taihu, a large shallow eutrophic lake in China. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and the phoD-harboring bacterial community composition. Our results indicate that the distribution of phoD gene abundance in suspended particles had a high spatiotemporal heterogeneity. The phoD gene abundance in each lake zone decreased significantly from June to September. The dominant phoD-harboring phylum in all samples was Actinobacteria, followed by Proteobacteria, Cyanobacteria and Gemmatimonadetes. The first predominant phoD-harboring genera varied among samples, but most of them belonged to phylum Actinobacteria. Driven by different environmental factors, the phoD-harboring bacterial community structure varied with sampling month and ecosystem type. Nitrate and ammonia nitrogen were the main environmental drivers of phoD-harboring bacterial community in suspended particles in the river mouth zone, while water pH and dissolved oxygen were important factors for the algae-dominated, macrophyte-dominated and central lake zones.
Collapse
Affiliation(s)
- Tingxi Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Mengyao Qin
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Chao Wei
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Defang Li
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Xiaoran Lu
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Limin Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| |
Collapse
|
33
|
Kaur P, Balomajumder C. Bioremediation process optimization and effective reclamation of mixed carbamate-contaminated soil by newly isolated Acremonium sp. CHEMOSPHERE 2020; 249:125982. [PMID: 32078848 DOI: 10.1016/j.chemosphere.2020.125982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Global pollution from excessive pesticide use has become a serious environmental and public health problem. The aim of the study was to optimize the fungal mediated simultaneous removal of carbofuran and carbaryl from soil. Carb-PV5 strain was isolated from contaminated soil following enrichment culture technique; based on 18S rRNA sequencing, strain was identified as Acremonium sp. (MK514615); Field Emission Scanning Electron Microscopic analysis reflected its morphology. Towards the development of bioaugmentation strategy for the bioremediation of carbamate-contaminated soil, the process parameters were optimized employing Central Composite Rotatable Method. The experimental studies were performed in the range of biomass (0.2-0.6 g kg-1), temperature (23-33 °C), pH (6-9) and moisture (10-30%). The degradation rate parameters, k and t1/2 were determined to as 0.475, 0.325 d-1 and 5.39, 2.1 d with the corresponding r2 of 0.9491, 0.9964 for zero and first order, respectively. The cube root growth kinetic constant k of Acremonium sp. varied from 0.0469 to 0.0512 (g1/3 L-1/3 h-1) and 0.0378 to 0.0415 (g1/3 L-1/3 h-1) for carbofuran and carbaryl, respectively. To confirm the model appropriacy and sustainability of the optimization procedure, bioremediation experiments were conducted onto real carbamate-contaminated soils. UPLC and GCMS analysis confirmed the successful removal of carbamates. The current study presents the first report on the bioaugmentation studies carried out on the mixed carbamate contaminated soil using newly isolated Acremonium sp.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
34
|
Raimondo EE, Aparicio JD, Bigliardo AL, Fuentes MS, Benimeli CS. Enhanced bioremediation of lindane-contaminated soils through microbial bioaugmentation assisted by biostimulation with sugarcane filter cake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110143. [PMID: 31918254 DOI: 10.1016/j.ecoenv.2019.110143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Lindane is a toxic and persistent organochlorine pesticide, whose extensive use generated its accumulation in different environmental matrices. Bioremediation is a promising technology that can be used combining bioaugmentation and biostimulation processes to soil restoration. The aim of the present work was to determine the conditions of maximum lindane removal by bioaugmentation with an actinobacteria consortium and biostimulation with sugarcane filter cake (SCFC). The assays were carried out on lindane-contaminated silty loam (SLS), clayey (CS), and sandy (SS) soils. Through complete factorial designs, the effects of three abiotic factors (moisture content, proportion and size of SCFC particles) were evaluated on lindane removal. In addition, a response optimizer determined the optimal conditions for pesticide removal in bioaugmented and biostimulated soils, in the range of levels studied for each factor. In these conditions, bioaugmentation of biostimulated soils increased the pesticide removal (SLS: 61.4%, CS: 70.8%, SS: 86.3%), heterotrophic microbial counts, and soil enzymatic activities, and decreased lindane T1/2, regarding the non-bioaugmented biostimulated controls, after 14 days of assay. The values of these parameters confirmed the efficiency of the bioremediation process. Finally, the viability of the four strains was demonstrated at the end of the assay. The results indicate that the simultaneous application of bioaugmentation with the actinobacteria consortium and biostimulation with SCFC constitutes a promising tool for restoring soils contaminated with lindane, by using the optimal conditions obtained through the factorial designs.
Collapse
Affiliation(s)
- Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Juan D Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Ana L Bigliardo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina.
| |
Collapse
|
35
|
Raimondo EE, Saez JM, Aparicio JD, Fuentes MS, Benimeli CS. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types. CHEMOSPHERE 2020; 238:124512. [PMID: 31430718 DOI: 10.1016/j.chemosphere.2019.124512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Lindane is an organochlorine pesticide that, due to its persistence in the environment, is still detected in different matrices. Bioremediation using actinobacteria consortia proved to be promising for the restoration of contaminated soils. Another alternative to remove xenobiotics is to use agricultural residues, which stimulates microbial activity, increasing its capacity to degrade organic pollutants. The present work studies the coupling of sugarcane bagasse biostimulation and bioaugmentation with the actinobacteria consortium composed of Streptomyces sp. A2, A5, A11 and M7 on lindane removal in different soil types. In this sense, factorial designs with three factors (proportion and size of sugarcane bagasse particles, and moisture content) were employed. A response optimizer identified the combination of factors levels that jointly allowed obtaining the maximum lindane removal in the evaluated conditions. In the optimal conditions, the effect of the bioremediation process on soil microbiota was studied by evaluating different parameters. The highest lindane removal percentages were detected in biostimulated microcosms bioaugmented with the microbial consortium, which were accompanied by a decrease in lindane half-life respect to the controls. Also, the bioaugmentation of biostimulated microcosms increased the microbial counts and enhanced soil enzymatic activities, corroborating the bioremediation process efficiency. The survival of the four actinobacteria at the end of the assay confirmed the ability of all Streptomyces strains to colonize amended soils. Bioremediation by simultaneous application of biostimulation with sugarcane bagasse and bioaugmentation with the actinobacteria consortium, in the optimized conditions, represents an efficient strategy to restore lindane contaminated soils.
Collapse
Affiliation(s)
- Enzo E Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - María S Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina.
| |
Collapse
|
36
|
Chen J, Gao H, Wang P, Wang C, Sun S, Wang X. Effects of decabromodiphenyl ether on activity, abundance, and community composition of phosphorus mineralizing bacteria in eutrophic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133785. [PMID: 31421332 DOI: 10.1016/j.scitotenv.2019.133785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are typical persistent organic pollutants (POPs) in the environment. However, little is known about their effects on phosphorus mineralizing bacteria (PMB) in eutrophic lake sediments, despite the critical role of PMB in phosphorus (P) biogeochemical cycling. In this study, we carried out a 60-day microcosm experiment to understand the effects of 2 and 20 mg kg-1 dry weight decabromodiphenyl ether (BDE-209) on the activity, abundance, diversity, and community composition of PMB in the sediment of Taihu Lake, a typical eutrophic lake in China. The results showed that BDE-209 contamination, regardless of the contamination levels, significantly increased the orthophosphate concentration in overlying water and available phosphorus concentration in sediments on day 60. Such increases may be explained by the stimulatory effects of BDE-209 on alkaline phosphatase (ALP) activity and PMB abundance. Moreover, based on Miseq sequencing of the phoD gene encoding ALP, Actinobacteria was the dominant PMB phylum in all treatments, and BDE-209 significantly increased the diversity of PMB and altered their community composition. In particular, the relative abundances of some PMB genera such as Bradyrhizobium were increased significantly after 60 days of the High treatment. A co-occurrence network analysis further revealed that the high level of BDE-209 contamination strengthened the connectivity and interspecific co-operative relationships in the PMB community. These results will help us to understand the effects of POPs on P biogeochemical cycling in eutrophic lakes and the associated microbial mechanisms.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shenghao Sun
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
37
|
Zhao J, Li Y, Li Y, Yang H, Hu D, Jin B, Li Y. Application of humic acid changes the microbial communities and inhibits the expression of tetracycline resistance genes in 4-chlorophenol wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109463. [PMID: 31473396 DOI: 10.1016/j.jenvman.2019.109463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The occurrence and spread of antibiotic resistance genes (ARGs) are concerns that have threatened public health for many years. However, the effects of humic acid (HA) application on the expression of ARGs in chlorophenols wastewater treatment are rarely reported. In this study, we investigated the sludge performance, including the removal of pollutants, changes in the microbial communities, and the expression of tetracycline resistance genes (TRGs), to explore the function of HA in 4-chlorophenol (4-CP) wastewater treatment at different HA concentrations. The results showed that HA application did not significantly stimulate the removal of pollutants, other than the removal of PO43--P. High-throughput sequencing analysis indicated that the application of HA influenced the microbial communities and changed the expression level of TRGs. Quantitative real-time PCR analysis showed that the expression of numerous TRGs (tetC, tetG, tetW, tetX, and intI1) was significantly inhibited by the application of HA (25 mg L-1) during 4-CP wastewater treatment. In summary, HA application played an important role in treating chlorophenols wastewater and reducing the expression of TRGs. This work aimed to provide an efficient method of reducing the expression level of ARGs in industrial wastewater treatment, which has inevitable environmental significance.
Collapse
Affiliation(s)
- Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yahe Li
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Key Laboratory of Marine Biotechnology of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Haojie Yang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Dehuan Hu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Badan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
38
|
Aparicio JD, Garcia-Velasco N, Urionabarrenetxea E, Soto M, Álvarez A, Polti MA. Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:255-263. [PMID: 31200198 DOI: 10.1016/j.ecoenv.2019.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Bioremediation using actinobacterium consortia proved to be a promising alternative for the purification of co-contaminated environments. In this sense, the quadruple consortium composed of Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0 has been able to remove significant levels of Cr(VI) and lindane from anthropogenically contaminated soils. However, the effectiveness of the bioremediation process could not be evaluated only by analytical monitoring, which is complex mainly due to the characteristics of the matrix, producing non-quantitative analyte recoveries, or interferences in the detection stage and quantification. However, the effectiveness of the bioremediation process cannot be evaluated only through analytical monitoring, which is complex due mainly to the characteristics of the matrix, to the recoveries of non-quantitative analytes or to interferences in the detection and quantification stage. For this reason, it is essential to have tools of ecological relevance to assess the biological impact of pollutants on the environment. In this context, the objective of this work was to establish the appropriate bioassays to evaluate the effectiveness of a bioremediation process of co-contaminated soils. For this, five model species were studied: four plant species (Lactuca sativa, Raphanus sativus, Lycopersicon esculentum, and Zea mays) and one animal species (Eisenia fetida). On plant species, the biomarkers evaluated were inhibition of germination (IG) and the length of hypocotyls/steam and radicles/roots of the seedling. While on E. fetida, mortality (M), weight lost, coelomocyte concentration and cell viability were tested. These bioindicators and the battery of biomarkers quantified in them showed a different level of sensitivity, from maximum to minimum: E. fetida > L. esculentum > L. sativa > R. sativus ≫>Z. mays. Therefore, E. fetida and L. esculentum and their respective biomarkers were selected to evaluate the effectiveness of the bioremediation process due to the capability of assessing the effect on the flora and the fauna of the soil, respectively. The joint application of these bioindicators in a field scale bioremediation process is a feasible tool to demonstrate the recovery of the quality and health of the soil.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Nerea Garcia-Velasco
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Erik Urionabarrenetxea
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Manu Soto
- Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Bilbao, E-48080, Basque Country, Spain
| | - Analía Álvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
39
|
Wang J, Shih Y, Wang PY, Yu YH, Su JF, Huang CP. Hazardous waste treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1177-1198. [PMID: 31433896 DOI: 10.1002/wer.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.
Collapse
Affiliation(s)
- Jianmin Wang
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Yujen Shih
- Graduate Institute of Environmental Engineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Po Yen Wang
- Department of Civil Engineering, Weidner University, Chester, Pennsylvania
| | - Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Jenn Fang Su
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
40
|
Simón Solá MZ, Lovaisa N, Dávila Costa JS, Benimeli CS, Polti MA, Alvarez A. Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. CHEMOSPHERE 2019; 222:679-687. [PMID: 30735968 DOI: 10.1016/j.chemosphere.2019.01.197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 05/18/2023]
Abstract
The aims of this study were (1) to isolate new multi-resistant actinobacteria from soil, rhizosphere and plant samples collected from an ancient illegal pesticide storage and (2) to elucidate the effects of these microorganisms developed with maize root exudates on lindane and Cr(VI) removal. Fifty-seven phenotypically different actinobacteria were isolated and four of them, belonging to the genus Streptomyces exhibit tolerance to a mixture of lindane and Cr(VI). Two rhizospheric strains named as Streptomyces sp. Z38 and Streptomyces sp. Z2 were selected to be grown with root exudates because they showed the highest Cr(VI) and lindane removal in co-contaminated medium. When root exudates were the only carbon source, metal dissipation increased significantly either as single or mixed contaminant, compared to metal dissipation with glucose. No significant differences were found on lindane removal with root exudates or glucose, so a higher lindane concentration was evaluated. Despite of this, lindane removal remained stable while metal dissipation was notoriously lower when lindane concentration was enhanced. In addition to a good performance growing with mixed contaminants, Streptomyces strains showed plant growth promoting traits that could improve plant establishment. The results presented in this study show the importance of the screening programs addressed to find new actinobacteria able to grow in co-contaminated systems. It was also evidenced that root exudates of maize improve the growth of Streptomyces strains when they were used as carbon source, being the dissipation of Cr(VI) considerably improved in presence of lower lindane concentration.
Collapse
Affiliation(s)
- María Zoleica Simón Solá
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Nadia Lovaisa
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucuman, Avenida Kirchner 1900, 4000, Tucumán, Argentina
| | - Jose Sebastian Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Avenida Belgrano 300, 4700, Catamarca, Argentina
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
41
|
Montagnolli RN, Lopes PRM, Bidoia ED. Fluorinated waste and firefighting activities: biodegradation of hydrocarbons from petrochemical refinery soil co-contaminated with halogenated foams. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36002-36013. [PMID: 29484621 DOI: 10.1007/s11356-018-1593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Perfluorinated compounds, including fluorotelomers, are important constituents of firefighting foams to extinguish fuel fires in the petrochemical industry, airports, and at fire-training sites. In this study, we monitored the biodegradation process in a co-contamination scenario with monoaromatic hydrocarbons commonly found in fuels (benzene, toluene) and fluorotelomers. The CO2 production rates were evaluated by a factorial design taking into account the effect of seasonality at in situ natural attenuation processes. Headspace analysis by gas chromatography with a thermal conductivity detector (GC-TCD) was applied to detect CO2 production, whereas monoaromatics were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). According to our results, seasonality had a detectable effect during summer, yielding different CO2 production rates. Higher temperatures increased CO2 production rate, while higher concentrations of fluorotelomer inhibited the biodegradation process. On average, benzene and toluene were depleted 17.5 days earlier in control assays without fluorotelomers. Toluene removal efficiency was also notably higher than benzene. The noticeable decrease in degradation rates of monoaromatics was caused by perfluorinated compounds that are possibly linked to metabolic inhibition mechanisms. Fluorotelomer diminished catabolism in all of our batch cultures. In addition to this, an alternative production of by-products could be detected. Thus, we propose that transient components of the benzene and toluene degradation may be differentially formed, causing the benzene, toluene, and perfluorinated co-contaminations to go through switched metabolic stages under the presence of fluoride in a contamination scenario.
Collapse
Affiliation(s)
- Renato Nallin Montagnolli
- Department of Biochemistry and Microbiology, Biosciences Institute, Sao Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Paulo Renato Matos Lopes
- College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, São Paulo, Brazil
| | - Ederio Dino Bidoia
- Department of Biochemistry and Microbiology, Biosciences Institute, Sao Paulo State University (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|