1
|
Chauhan K, Singh P, Sen K, Singhal RK, Thakur VK. Recent Advancements in the Field of Chitosan/Cellulose-Based Nanocomposites for Maximizing Arsenic Removal from Aqueous Environment. ACS OMEGA 2024; 9:27766-27788. [PMID: 38973859 PMCID: PMC11223156 DOI: 10.1021/acsomega.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Water remediation, acknowledged as a significant scientific topic, guarantees the safety of drinking water, considering the diverse range of pollutants that can contaminate it. Among these pollutants, arsenic stands out as a particularly severe threat to human health, significantly compromising the overall quality of life. Despite widespread awareness of the harmful effects of arsenic poisoning, there remains a scarcity of literature on the utilization of biobased polymers as sustainable alternatives for comprehensive arsenic removal in practical concern. Cellulose and chitosan, two of the most prevalent biopolymers in nature, provide a wide range of potential benefits in cutting-edge industries, including water remediation. Nanocomposites derived from cellulose and chitosan offer numerous advantages over their larger equivalents, including high chelating properties, cost-effective production, strength, integrity during usage, and the potential to close the recycling loop. Within the sphere of arsenic remediation, this Review outlines the selection criteria for novel cellulose/chitosan-nanocomposites, such as scalability in synthesis, complete arsenic removal, and recyclability for technical significance. Especially, it aims to give an overview of the historical development of research in cellulose and chitosan, techniques for enhancing their performance, the current state of the art of the field, and the mechanisms underlying the adsorption of arsenic using cellulose/chitosan nanocomposites. Additionally, it extensively discusses the impact of shape and size on adsorbent efficiency, highlighting the crucial role of physical characteristics in optimizing performance for practical applications. Furthermore, this Review addresses regeneration, reuse, and future prospects for chitosan/cellulose-nanocomposites, which bear practical relevance. Therefore, this Review underscores the significant research gap and offers insights into refining the structural features of adsorbents to improve total inorganic arsenic removal, thereby facilitating the transition of green-material-based technology into operational use.
Collapse
Affiliation(s)
- Kalpana Chauhan
- Chemistry
under School of Engineering and Technology, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - Prem Singh
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Kshipra Sen
- Shoolini
University, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar Singhal
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
2
|
Zhao D, Wang H, Wang Z, Lu S. Understanding competitive Cu 2+ and Zn 2+ adsorption onto functionalized cellulose fiber via experimental and theoretical approach. Int J Biol Macromol 2024; 273:132782. [PMID: 38825284 DOI: 10.1016/j.ijbiomac.2024.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Dezhi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China.
| | - Hexiang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China
| | - Zheng Wang
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Lu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Le Thi AP, Zhe L, Kobayashi T. Arsenic removal adsorbent using limonite-polyethersulfone composite fiber via continuous flow column process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10973. [PMID: 38229448 DOI: 10.1002/wer.10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
This research introduces an enhanced limonite-based composite fiber adsorbent for arsenic (As) removal. The modification involves creating polyethersulfone (PES)-limonite composite fibers loaded with 60 wt% limonite powders, designed to be applicable in water flow environments. The fibers were prepared using a wet-spinning process based on phase inversion, with varying concentrations (10, 20, and 30 wt%) of PES in NMP solution. The composite fiber with 10 wt% NMP exhibited a porous structure and demonstrated efficient absorption of both As(III) and As(V). Adsorption followed the Langmuir model, with qm values of 1.5 mg/g for As(III) and 3.2 mg/g for As(V) at pH 6. In column experiments, As removal rates increased with contact time, attributed to decreased flow rates (1 mL/min). Moreover, increasing fiber column height led to enhanced removal rates, as indicated by the Adams-Bohart model. The mechanism for As(V) removal involved the formation of an inner-sphere complex through ion exchange between α-FeOOH and HAsO4 - and H2 AsO4 2- in an aqueous solution at pH 6.8. PRACTITIONER POINTS: Changing the polyethersulfone ratio in the composite leads to variations in the appearance of limonite within each composite fiber. Limonite composite fibers effectively remove As(III) and As(V) at neutral pH. The adsorption behavior follows Langmuir kinetic model, the qm of 1.5 mg/g for As(III) and 3.2 mg/g for As(V). Longer columns and contact times enhance arsenic (As) removal in practical water treatment systems. Adam-Bohart model aids in predicting breakthrough and saturation time in As adsorption column design.
Collapse
Affiliation(s)
- Anh Phuong Le Thi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Li Zhe
- Department of Material Science and Technology, Nagaoka University of Technology, Nagaoka, Japan
| | - Takaomi Kobayashi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Material Science and Technology, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
4
|
Xiao W, Sun R, Hu S, Meng C, Xie B, Yi M, Wu Y. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications. Int J Biol Macromol 2023; 253:126984. [PMID: 37734528 DOI: 10.1016/j.ijbiomac.2023.126984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The growing shortage of non-renewable resources and the burden of toxic pollutants in water have gradually become stumbling blocks in the path of sustainable human development. To this end, there has been great interest in finding renewable and environmentally friendly materials to promote environmental sustainability and combat harmful pollutants in wastewater. Of the many options, lignocellulose, as an abundant, biocompatible and renewable material, is the most attractive candidate for water remediation due to the unique physical and chemical properties of its constituents. Herein, we review the latest research advances in lignocellulose-based adsorbents, focusing on lignocellulosic composition, material modification, application of adsorbents. The modification and preparation methods of lignin, cellulose and hemicellulose and their applications in the treatment of diverse contaminated water are systematically and comprehensively presented. Also, the detailed description of the adsorption model, the adsorption mechanism and the adsorbent regeneration technique provides an excellent reference for understanding the underlying adsorption mechanism and the adsorbent recycling. Finally, the challenges and limitations of lignocellulosic adsorbents are evaluated from a practical application perspective, and future developments in the related field are discussed. In summary, this review offers rational insights to develop lignocellulose-based environmentally-friendly reactive materials for the removal of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Weidong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Chengzhen Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mengying Yi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
5
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
6
|
Billah REK, Azoubi Z, López-Maldonado EA, Majdoubi H, Lgaz H, Lima EC, Shekhawat A, Tamraoui Y, Agunaou M, Soufiane A, Jugade R. Multifunctional Cross-Linked Shrimp Waste-Derived Chitosan/MgAl-LDH Composite for Removal of As(V) from Wastewater and Antibacterial Activity. ACS OMEGA 2023; 8:10051-10061. [PMID: 36969446 PMCID: PMC10034834 DOI: 10.1021/acsomega.2c07391] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This work synthesized a novel chitosan-loaded MgAl-LDH (LDH = layered double hyroxide) nanocomposite, which was physicochemically characterized, and its performance in As(V) removal and antimicrobial activity was evaluated. Chitosan-loaded MgAl-LDH nanocomposite (CsC@MgAl-LDH) was prepared using cross-linked natural chitosan from shrimp waste and modified by Mg-Al. The main mechanisms predominating the separation of As(V) were elucidated. The characteristic changes confirming MgAl-LDH modification with chitosan were analyzed through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis-differential thermal analysis, and Brunauer-Emmett-Teller measurements. Porosity and the increased surface area play an important role in arsenic adsorption and microbial activity. Adsorption kinetics follows the general order statistically confirmed by Bayesian Information Criterion differences. To understand the adsorption process, Langmuir, Freundlich, and Liu isotherms were studied at three different temperatures. It was found that Liu's isotherm model was the best-fitted model. CsC@MgAl-LDH showed the maximum adsorption capacity of 69.29 mg g-1 toward arsenic at 60 °C. It was observed that the adsorption capacity of the material rose with the increase in temperature. The spontaneous behavior and endothermic nature of adsorption was confirmed by the thermodynamic parameters study. Minimal change in percentage removal was observed with coexisting ions. The regeneration of material and adsorption-desorption cycles revealed that the adsorbent is economically efficient. The nanocomposite was very effective against Staphylococcus aureus and Bacillus subtilus.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Zineb Azoubi
- Laboratory
of Physiopathology and Molecular Genetics, Faculty of Sciences Ben
M’Sick, Hassan II University of Casablanca, Casablanca 20450, Morocco
| | - Eduardo Alberto López-Maldonado
- Faculty
of Chemical Sciences and Engineering, Autonomous
University of Baja, California, CP, Tijuana 22390, Baja
California, Mexico
| | - Hicham Majdoubi
- Materials
Science energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hassane Lgaz
- Innovative
Durable Building and Infrastructure Research Center, Center for Creative
Convergence Education, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Eder C. Lima
- Institute
of Chemistry, Federal University of Rio
Grande do Sul, Porto
Alegre 91501-970, RS, Brazil
| | - Anita Shekhawat
- Department
of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | - Youssef Tamraoui
- Materials
Science energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Mahfoud Agunaou
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Abdessadik Soufiane
- Department
of Chemistry, Faculty of Sciences, Laboratory of Coordination and
Analytical Chemistry, University of Chouaib
Doukkali, El Jadida 24000, Morocco
| | - Ravin Jugade
- Department
of Chemistry, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
7
|
Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int J Biol Macromol 2023; 236:123916. [PMID: 36898461 DOI: 10.1016/j.ijbiomac.2023.123916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Heavy metals are a notable pollutant in aquatic ecosystems that results in many deadly diseases of the human body after enrichment through the food chain. As an environmentally friendly renewable resource, nanocellulose can be competitive with other materials at removing heavy metal ions due to its large specific surface area, high mechanical strength, biocompatibility and low cost. In this review, the research status of modified nanocellulose for heavy metal adsorbents is primarily reviewed. Two primary forms of nanocellulose are cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The preparation process of nanocellulose was derived from natural plants, and the preparation process included noncellulosic constituent removal and extraction of nanocellulose. Focusing on heavy metal adsorption, the modification of nanocellulose was explored in depth, including direct modification methods, surface grafting modification methods based on free radical polymerization and physical activation. The adsorption principles of nanocellulose-based adsorbents when removing heavy metals are analyzed in detail. This review may further facilitate the application of the modified nanocellulose in the field of heavy metal removal.
Collapse
Affiliation(s)
- Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| |
Collapse
|
8
|
Yin F, Yang H, Liu X, Mo Y, Ye T, Cao H, Yuan M, Xu F. Aqueous phase synthesis of ion-imprinted cryogel for paper-based colorimetric detection of As(V) with high selectivity. Mikrochim Acta 2022; 190:35. [PMID: 36542186 DOI: 10.1007/s00604-022-05564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
A novel hydrophilic As(V) ion-imprinted cryogel (IIC) was green prepared by cryogelation in aqueous environment which was coincident with the adsorption condition and can improve the specific recognition performance. The methacrylamido propyl trimethyl ammonium chloride (MPTAC) was selected as the functional monomer and the saturated adsorption capacity of the prepared IIC and NIC were 55.0 mg/g and 29.4 mg/g, and with high imprinting factor of 1.87. Additionally, the prepared IIC showed admirable reusability and high selectivity, and the recovery was in the range 81.2-97.9% with RSD range of 1.9-4.3%, which was similar to the value obtained by hydride generation atomic absorption spectrometry. IIC can be used as solid material for colorimetric detection at the ultraviolet wavelength of 858 nm without color interference of material matrix, in the range 5-200 μg/L (R2 = 0.990) with a detection limit of 0.970 µg/L. Obviously, this synthetic strategy provides a simple, efficient, and green method for the preparation of water-compatible ion-imprinted polymers providing selective separation and detection of trace As(V) in real complex samples.
Collapse
Affiliation(s)
- Fengqin Yin
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongzhi Yang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueting Liu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Yeling Mo
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
9
|
Fortea-Verdejo M, Jiang Q, Bismarck A, Mautner A. Foaming of oxidized nanocellulose for the preparation of high-flux water filters. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-03014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractTreatment of polluted water is an important task to secure access to clean water also for future generations. Filters are an efficient means to reject various pollutants on a wide range of size scales either by size-exclusion or electrostatic interaction, respectively. Commonly, filters and membranes from various synthetic materials are employed for these applications. Recently, filters based on renewable (nano) cellulose papers and coatings emerged as sustainable alternative to synthetic materials usually utilized. However, fabrication of such paper network structures from aqueous suspension by filtration processes is a time-consuming process caused by the high water holding capacity of highly hydrophilic and negatively charged nanocellulose fibrils. To optimize the preparation of nanocellulose coated filters, substitution of water by air and thus generating nanocellulose foams that are collapsed onto a substrate would be an appealing approach. Here we present the development of foams from negatively charged TEMPO-oxidized nanocellulose by screening various surfactants and concentrations to generate a foam stable enough to be transferred onto a viscose substrate. Foams were collapsed by oven consolidation, positive pressure filtration, or hot-pressing, respectively. Consolidated filters were tested for their water permeance and rejection of heavy metal ions using copper ions as model system. Very high permeances competitive to commercial filters based on synthetic polymers were achieved. Furthermore, adsorption capacities for copper of up to 70 mg/g were found. This is close to adsorption capacities reported for negatively charged TEMPO-oxidized nanocellulose in conventional batch-wise static adsorption. However, in the current process adsorption takes place during filtration of water through filters in a continuous process which constitutes a tremendous advantage.
Graphical Abstract
Collapse
|
10
|
Vijayan P. P, Chithra P.G, Krishna S V A, Ansar E.B, Parameswaranpillai J. Development and Current Trends on Ion Exchange Materials. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Poornima Vijayan P.
- Department of Chemistry, Sree Narayana College for Women (affiliated to University of Kerala), Kollam, India
| | - Chithra P.G
- Department of Chemistry, Sree Narayana College for Women (affiliated to University of Kerala), Kollam, India
| | - Anjana Krishna S V
- Department of Chemistry, Sree Narayana College for Women (affiliated to University of Kerala), Kollam, India
| | - Ansar E.B
- Department of chemistry, MES Asmabi College, Kodungallur, Thrissur, India
| | | |
Collapse
|
11
|
Mohamed AH, Yahaya N, Mohamad S, Kamaruzaman S, Osman H, Nishiyama N, Hirota Y. Synthesis of oil palm empty fruit bunch-based magnetic-carboxymethyl cellulose nanofiber composite for magnetic solid-phase extraction of organophosphorus pesticides in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Li M, Song N, Song X, Liu J, Su B, Chen X, Guo X, Li M, Zong Q. Investigating and modeling the toxicity of arsenate on wheat root elongation: Assessing the effects of pH, sulfate and phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113633. [PMID: 35598446 DOI: 10.1016/j.ecoenv.2022.113633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive arsenic in soil and groundwater will not only seriously affect the growth of plants, but also endanger human health through the food chain. However, there are few studies on the effects of metalloid speciation and anion competition on the toxicity of arsenate [As(Ⅴ)]. To investigate the effects of accompanying anions and pH on the toxicity of As(Ⅴ) on wheat root elongation, wheat roots were exposed to the concentrations of As(Ⅴ) in the solution ranged from 0 to 500 mM and different levels of pH (4.5-8.0) and different accompanying anions (H2PO4-, SO42-, NO3- and Cl-) for five days. The root length of wheat was measured and the biotic ligand model (BLM) was developed to predict the potential toxicity of As(V) speciation to wheat roots. The results illustrated that EC50 of total As(V) (EC50{As(Ⅴ)T}) values increased from 6.88 to 33.9 μM with increasing pH values from 4.5 to 8.0, suggesting that increasing pH alleviated As(Ⅴ) toxicity. The EC50{AsO43-} and EC50{HAsO42-} values increased from 0.001 to 4342 μM and from 0.0214 to 27.4 μM, respectively, while the EC50{H2AsO4-} and EC50{H3AsO4} values sharply decreased from 6.62 to 2.68 μM and from 41.8 μM to 5.34 nm, respectively, when pH increased from 4.5 to 8.0. The toxicity of As(Ⅴ) decreased as the H2PO4- and SO42- activities increased but not when the activities of NO3- and Cl- increased, indicating that SO42- and H2PO4- showed competitive effects with As(Ⅴ) on the binding sites. Based on BLM theory, the stability constants were obtained: [Formula: see text] = 3.70; [Formula: see text] = 4.08; [Formula: see text] = 4.77; [Formula: see text] = 6.50; [Formula: see text] = 2.09 and [Formula: see text] = 1.86, with fAsBL50%= 0.30 and β = 1.73. Results implied that BLM performed well in As(Ⅴ) toxicity prediction when coupling toxic species AsO43-, HAsO42-, H2AsO4-, and H3AsO4, and the competition of SO42- and H2PO4- for binding sites. The current study provides a useful tool to accurately predict As(V) toxicity to wheat roots.
Collapse
Affiliation(s)
- Mengjia Li
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Baokun Su
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaodong Chen
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Meng Li
- Shandong Institute of Sericulture, Yantai 264001, China
| | - Quanli Zong
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
13
|
Sadare OO, Yoro KO, Moothi K, Daramola MO. Lignocellulosic Biomass-Derived Nanocellulose Crystals as Fillers in Membranes for Water and Wastewater Treatment: A Review. MEMBRANES 2022; 12:320. [PMID: 35323795 PMCID: PMC8951035 DOI: 10.3390/membranes12030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
The improvement of membrane applications for wastewater treatment has been a focal point of research in recent times, with a wide variety of efforts being made to enhance the performance, integrity and environmental friendliness of the existing membrane materials. Cellulose nanocrystals (CNCs) are sustainable nanomaterials derived from microorganisms and plants with promising potential in wastewater treatment. Cellulose nanomaterials offer a satisfactory alternative to other environmentally harmful nanomaterials. However, only a few review articles on this important field are available in the open literature, especially in membrane applications for wastewater treatment. This review briefly highlights the circular economy of waste lignocellulosic biomass and the isolation of CNCs from waste lignocellulosic biomass for membrane applications. The surface chemical functionalization technique for the preparation of CNC-based materials with the desired functional groups and properties is outlined. Recent uses of CNC-based materials in membrane applications for wastewater treatment are presented. In addition, the assessment of the environmental impacts of CNCs, cellulose extraction, the production techniques of cellulose products, cellulose product utilization, and their end-of-life disposal are briefly discussed. Furthermore, the challenges and prospects for the development of CNC from waste biomass for application in wastewater treatment are discussed extensively. Finally, this review unraveled some important perceptions on the prospects of CNC-based materials, especially in membrane applications for the treatment of wastewater.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Kelvin O. Yoro
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA;
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
14
|
Enhanced water permeability and rejection of As(III) in groundwater by nanochannels and active center formed in nanofibrillated celluloses UF membranes with ZIF-8. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Tewatia P, Kumar V, Samota S, Singhal S, Kaushik A. Sensing and annihilation of ultra-trace level arsenic (III) using fluoranthene decorated fluorescent nanofibrous cellulose probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127722. [PMID: 34865904 DOI: 10.1016/j.jhazmat.2021.127722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Besides presence of heavy metals, especially arsenic in water bodies, northern India is striving to obliterate crop residue, which is otherwise burnt to make the fields ready for subsequent crop, causing acute air pollution. Through this study, an effort has been made to utilize wheat-straw cellulose to develop inexpensive and efficacious sensing cum annihilation system for deleterious arsenite ions As(III) in water by grafting a novel fluorophore, 3-bromofluoranthene on cellulose (BF@CFs). BF@CFs were characterized for structural, morphological and thermal properties using FTIR, XRD, TGA, FESEM, EDS and TEM, which confirmed the successful insertion of fluoranthene molecule on cellulose while preserving its crystalline nanofibrous structure. Fluorescent studies indicated strong affinity of BF@CFs towards arsenite ions exhibiting "turn on" fluorescence response attributed to inhibition of photo induced electron transfer (PET) and metal ion chelation with a limit of detection of 2.8 ng L-1, lower than WHO prescribed limit of 10 μg L-1. Besides sensing, the porous fibrous network of BF@CFs exhibited good adsorption of As(III) ions with maximum adsorption of 171.2 μg g-1 at 35 min under optimized conditions. BF@CFs displayed 95.2% removal efficiency with 2 μg L-1 concentration of As (III) ions at room temperature and neutral pH observed by atomic absorption spectrophotometer coupled with hydride generation assembly (HG-AAS) measurements. BF@CFs retained adsorption 97.3% efficiency after five adsorption/ desorption cycles displaying excellent reusability and stability, strengthening its potential as dual functional sensor and adsorbent.
Collapse
Affiliation(s)
- Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Vijay Kumar
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Sharmistha Samota
- Energy Research Centre, Panjab University, Chandigarh, India; Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India.
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
16
|
Kamali N, Ghasemi JB, Mohamadi Ziarani G, Moradian S, Badiei A. Design, Synthesis, and Nanoengineered Modification of Spherical Graphene Surface by LDH for Removal of As(III) from Aqueous Solutions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 2021; 192:1196-1216. [PMID: 34655588 DOI: 10.1016/j.ijbiomac.2021.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Globally, millions of people have no access to clean drinking water and are either striving for that or oppressed to intake polluted water. Arsenic is considered one of the most hazardous contaminants in water bodies that reaches there due to various natural and anthropogenic activities. Modified chitosan has gained much attention from researchers due to its potential for arsenic removal. This review focuses on the need and potential of chitosan-based biosorbents for arsenic removal from water systems. Chitosan is a low-cost, abundant, biodegradable biopolymer that possesses unique structural aspects and functional sites for the adsorption of contaminants like arsenic species from contaminated water. The chitosan-based biosorbents had also been modified using various techniques to enhance their arsenic removal efficiencies. This article reviews various forms of chitosan and parameters involved in chitosan modification which eventually affect the arsenic removal efficiency of the resultant sorbents. The literature revealed that the modified chitosan-based sorbents could express higher adsorption efficiency compared to those prepared from native chitosan. The sustainability of the chitosan-based sorbents has also been considered in terms of reusability. Finally, some recommendations have been underlined for further improvements in this domain.
Collapse
|
18
|
Rahman MM, Hafez I, Tajvidi M, Amirbahman A. Highly Efficient Iron Oxide Nanoparticles Immobilized on Cellulose Nanofibril Aerogels for Arsenic Removal from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2818. [PMID: 34835582 PMCID: PMC8623684 DOI: 10.3390/nano11112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
The application and optimal operation of nanoparticle adsorbents in fixed-bed columns or industrial-scale water treatment applications are limited. This limitation is generally due to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials in fixed-bed columns, or low adsorption capacity. In this study, magnesium-doped amorphous iron oxide nanoparticles (IONPs) were synthesized and immobilized on the surface of cellulose nanofibrils (CNFs) within a lightweight porous aerogel for arsenic removal from water. The IONPs had a specific surface area of 165 m2 g-1. The IONP-containing CNF aerogels were stable in water and under constant agitation due to the induced crosslinking using an epichlorohydrin crosslinker. The adsorption kinetics showed that both As(III) and As(V) adsorption followed a pseudo second-order kinetic model, and the equilibrium adsorption isotherm was best fitted using the Langmuir model. The maximum adsorption capacities of CNF-IONP aerogel for As(III) and As(V) were 48 and 91 mg As g-IONP-1, respectively. The optimum IONP concentration in the aerogel was 12.5 wt.%, which resulted in a maximum arsenic removal, minimal mass loss, and negligible leaching of iron into water.
Collapse
Affiliation(s)
- Md Musfiqur Rahman
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA; (M.M.R.); (M.T.)
| | - Islam Hafez
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA; (M.M.R.); (M.T.)
| | - Mehdi Tajvidi
- Laboratory of Renewable Nanomaterials, School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA; (M.M.R.); (M.T.)
| | - Aria Amirbahman
- Department of Civil, Environmental and Sustainable Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA;
| |
Collapse
|
19
|
Sheibani E, Hosseini A, Sobhani Nasab A, Adib K, Ganjali MR, Pourmortazavi SM, Ahmadi F, Marzi Khosrowshahi E, Mirsadeghi S, Rahimi-Nasrabadi M, Ehrlich H. Application of polysaccharide biopolymers as natural adsorbent in sample preparation. Crit Rev Food Sci Nutr 2021; 63:2626-2653. [PMID: 34554043 DOI: 10.1080/10408398.2021.1978385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Preparing samples for analyses is perhaps the most important part to analyses. The varied functional groups present on the surface of biopolymers bestow them appropriate adsorption properties. Properties like biocompatibility, biodegradability, presence of different surface functional group, high porosity, considerable absorption capacity for water, the potential for modification, etc. turn biopolymers to promising candidates for varied applications. In addition, one of the most important parts of determination of an analyte in a matrix is sample preparation step and the efficiency of this step in solid phase extraction methods is largely dependent on the type of adsorbent used. Due to the unique properties of biopolymers they are considered an appropriate choice for using as sorbent in sample preparation methods that use from a solid adsorbent. Many review articles have been published on the application of diverse adsorbents in sample preparation methods, however despite the numerous advantages of biopolymers mentioned; review articles in this field are very few. Thus, in this paper we review the reports in different areas of sample preparation that use polysaccharides-based biopolymers as sorbents for extraction and determination of diverse organic and inorganic analytes.
Collapse
Affiliation(s)
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sobhani Nasab
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Kourosh Adib
- Department of Chemistry, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran Iran
| | | | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany.,Centre for Climate Change Research, Toronto, Ontario, Canada.,A.R. Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, Ontario, Canada.,Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
20
|
Xue XD, Fang CR, Zhuang HF. Adsorption behaviors of the pristine and aged thermoplastic polyurethane microplastics in Cu(II)-OTC coexisting system. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124835. [PMID: 33352422 DOI: 10.1016/j.jhazmat.2020.124835] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/14/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
In this work, the hypothesis that thermoplastic polyurethane (TPU) microplastics (MPs) could form complex toxic pollution by absorbing both antibiotics and heavy metals simultaneously was proposed. The unique features of the adsorption of Cu(II) and oxytetracycline (OTC) on the pristine TPU and photo-aged (aged) TPU MPs in single and coexisting system were investigated, which included the kinetics, isothermal equilibrium and thermodynamics. The possibly synergistic or competitive effects between Cu(II) and OTC were also evaluated. The results showed that the adsorption process of Cu(II) and OTC could be described well by pseudo-second-order kinetic equation. The entire process could be divided into two stages: internal diffusion and external diffusion. The Sips model could give good fitting for the isothermal adsorption equilibrium. The thermodynamic parameters depicted the endothermic nature of adsorptions and the process was spontaneous. In the coexisting system, synergistic or competitive effects depended critically on the ratio of concentrations (Cu(II) vs OTC). When the ratio was 1:1, Cu(II) significantly enhanced the adsorption of OTC, while OTC showed a weak effect on Cu(II) adsorption. The synergies could be attributed to the formation of Cu(II)-OTC complex and the bridging effect of Cu(II). Overall, the adsorption capacity of aged TPU was higher than that of pristine TPU, which was due to the differences in morphological characteristics and functional groups. FTIR studies revealed that ester carbonyl and acylamino groups in the TPU may be involved in the adsorption of Cu(II) and OTC.
Collapse
Affiliation(s)
- Xiang-Dong Xue
- School of Civil Engineering and Architecture Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China.
| | - Cheng-Ran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Hai-Feng Zhuang
- School of Civil Engineering and Architecture Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
21
|
Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo DVN, Manan FA. Arsenic removal technologies and future trends: A mini review. JOURNAL OF CLEANER PRODUCTION 2021; 278:123805. [DOI: 10.1016/j.jclepro.2020.123805] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Wang Q, Nielsen UG. Applications of solid-state NMR spectroscopy in environmental science. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 110:101698. [PMID: 33130521 DOI: 10.1016/j.ssnmr.2020.101698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental science is an interdisciplinary field, which integrates chemical, physical, and biological sciences to study environmental problems and human impact on the environment. This article highlights the use of solid-state NMR spectroscopy (SSNMR) in studies of environmental processes and remediation with examples from both laboratory studies and samples collected in the field. The contemporary topics presented include soil chemistry, environmental remediation (e.g., heavy metals and radionuclides removal, carbon dioxide mineralization), and phosphorus recovery. SSNMR is a powerful technique, which provides atomic-level information about speciation in complex environmental samples as well as the interactions between pollutants and minerals/organic matter on different environmental interfaces. The challenges in the application of SSNMR in environmental science (e.g., measurement of paramagnetic nuclei and low-gamma nuclei) are also discussed, and perspectives are provided for the future research efforts.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
23
|
Qiu Z, Chen H, Wang Z, Zhang T, Yang D, Qiu F. Efficient removal of As(Ш) via the synergistic effect of oxidation and absorption by FeOOH@MnO 2@CAM nano-hybrid adsorption membrane. CHEMOSPHERE 2020; 258:127329. [PMID: 32540535 DOI: 10.1016/j.chemosphere.2020.127329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Due to the neutral charge of As(III) oxy-ions that make approaching the traditional adsorbent very improbable compared to the As(V) case, making it harder to be separated. To enhance the adsorption of As(Ш), the FeOOH coated cellulose acetate (CA) membrane doped with MnO2 nanoparticles (FeOOH@MnO2@CAM) was fabricated and then to removes As(Ш) in water through the synergistic effect of oxidation and adsorption, and the maximum adsorption capacity can reach 50.34 mg/g. FeOOH@MnO2@CAM was fabricated with CA as a substrate by dipping-precipitation phase inversion and hydrothermal method. Langmuir and pseudo-second-order model showed that As(Ш) was adsorbed by chemical interactions through the monolayer and thermodynamic showed that As(Ш) adsorption was an exothermic and spontaneous process. The results of the pH study showed that as the pH increases from 3 to 11, the adsorption capacity of As(Ш) decreases from 50.34 to 14.32 mg/g, which was attributed to the acidic environment promoting the protonation of the surface of FeOOH@MnO2@CAM, which increases the electrostatic attraction, and the alkaline environment increases electrostatic repulsion due to deprotonation. The competitive ions exhibited the PO43- significantly reduce the adsorption capacity of As(Ш),and as the PO43- content increases, the adsorption capacity of As(Ш) decreases from 29.76 to 18.57 mg/g, which was attributed to the similar chemical properties of PO43- and arsenate. Importantly, FeOOH@MnO2@CAM still maintains an adsorption capacity of 20.19 mg/g after seven cycles, demonstrating that it is a kind of environmentally friendly material to remove As(Ш) in the water environment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China; Key Laboratory for Functional Molecular Solids of the Education Ministry of China, Anhui Normal University, Wuhu, 241000, China
| | - Huaxian Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Zhuoqun Wang
- Department of Mechanical and Electrical Engineering, Xingtai Polytechnic College, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China; Key Laboratory for Functional Molecular Solids of the Education Ministry of China, Anhui Normal University, Wuhu, 241000, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
24
|
Kim N, Seo JH, Yun YS, Park D. New insight into continuous recirculation-process for treating arsenate using bacterial biosorbent. BIORESOURCE TECHNOLOGY 2020; 316:123961. [PMID: 32795871 DOI: 10.1016/j.biortech.2020.123961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new recirculation column reactor system for arsenate removal using a polyethylenimine coated bacterial biosorbent was developed. Solution pH was the most important factor in process design and operation. In order to control and optimize solution pH favorable for arsenate removal, a pH control and recirculation system was added to a column reactor. The effects of recycle ratio, initial arsenate concentration, and flow rate on the arsenate removal performance of the developed process were examined. Thomas and Yoon-Nelson models were used to interpret the breakthrough curve of arsenate removal. The maximum arsenate adsorption amount of the new reactor was determined to be 50.86 mg/g by the Thomas model. Importantly, the new reactor showed unimpeded adsorption performance compared with that in the batch experiments. The desorption study also showed excellent reusability. The results indicated that the newly developed process could be a promising application prospect for removing arsenate.
Collapse
Affiliation(s)
- Namgyu Kim
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea
| | - Ji Hae Seo
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekje-daero, Jeounju 54896, Republic of Korea
| | - Donghee Park
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea.
| |
Collapse
|
25
|
Chai F, Wang R, Yan L, Li G, Cai Y, Xi C. Facile fabrication of pH-sensitive nanoparticles based on nanocellulose for fast and efficient As(V) removal. Carbohydr Polym 2020; 245:116511. [PMID: 32718622 DOI: 10.1016/j.carbpol.2020.116511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
Abstract
This study reported a facile method to synthesize novel pH-sensitive nanoparticle based on nanocellulose, involving cross-linking polyethyleneimine and glutaraldehyde. The adsorbent was characterized and found to be sensitive to the solution pH, especially at pH 3. Additionally, the biosorbent exhibited rapid adsorption during the initial 10 min and the As(V) adsorption capacity of the nanoparticles reached approximately 255.19 mg g-1 at pH 3, which was five times greater than that achieved with the As(V) solution at its initial pH (44.33 mg g-1). To reflect its performance in actual acidic wastewater, the effects of coexisting anions were also investigated, showing that these anions had little influence on As(V) adsorption. Meanwhile, the adsorbent displayed excellent performance even after eight regeneration cycles. This novel material demonstrates enormous potential for the removal of arsenic contaminants and for the development of pH-sensitive materials.
Collapse
Affiliation(s)
- Fei Chai
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Runkai Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China; Anji Goachieve Environmental Technology Co., Ltd., Huzhou, 313300, China.
| | - Lili Yan
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Guanghui Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China; Anji Goachieve Environmental Technology Co., Ltd., Huzhou, 313300, China.
| | - Yiyun Cai
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Chunyan Xi
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
26
|
Ahmad H, Zhao L, Liu C, Cai C, Ma F. Ultrasound assisted dispersive solid phase microextraction of inorganic arsenic from food and water samples using CdS nanoflowers combined with ICP-OES determination. Food Chem 2020; 338:128028. [PMID: 33091983 DOI: 10.1016/j.foodchem.2020.128028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Direct determination of arsenic species in real samples is challenging due to their trace concentration and spectral interferences by coexisting ions. Herein, we proposed an ultrasound-assisted dispersive solid phase microextraction (DSPME) procedure for the analyses of the trace inorganic arsenic. The hydrothermally synthesized cadmium sulfide nanoparticles (CdS NPs) completely adsorbed both arsenic species within 20 s at the initial arsenic concentration of 100 µg L-1. The detection limit (3 S/m) of the proposed method was found to be 0.5 ± 0.2 and 0.8 ± 0.2 ng L-1 for As(III) and As(V), respectively. The accuracy of the method against the systematic and constant errors was confirmed by the analysis of the Standard Reference Material (SRM) (>95% recovery with <5% RSD). The Student's t-test values were found to be less than the critical Student's t value at a 95% confidence level. The method was successfully employed for the determination of arsenic in food samples.
Collapse
Affiliation(s)
- Hilal Ahmad
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Lihua Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China.
| | - Chaojie Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| | - Fuqing Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Ave., Shenzhen 518055, PR China
| |
Collapse
|
27
|
Goyal N, Gao P, Wang Z, Cheng S, Ok YS, Li G, Liu L. Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122494. [PMID: 32193120 DOI: 10.1016/j.jhazmat.2020.122494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
A fresh adsorbent nanostructured chitosan/molecular sieve 4A hybrid (NSC@MS-4A) was fabricated for the rapid adsorption of strontium (Sr2+) and cesium (Cs+) ions from aqueous solutions. The as-obtained NSC@MS-4A were thoroughly characterized by XRD, FE-SEM, EDS, BET, XPS and FT-IR. The physio-chemical properties and structural aspects revealed that NSC@MS-4A acquires fine surface area (72 m2/g), porous structure as well as compatible functional groups (-P-O-P and -C-O-C) for the admission of Cs+ and Sr2+ ions. The batch adsorption studies concluded that prepared adsorbent displayed a maximum adsorption of 92-94 % within 40 min. Fast adsorption of Cs+ and Sr2+ was achieved at neutral pH (6-7), ambient temperature (25-30 °C) and slow agitation speed (50-60 rpm) which could propose vast benefits such as little power utilization and uncomplicated operation. Among six types of adsorption isotherms, Freundlich isotherm showed the best fit with R2>0.997. Pseudo-second order made a better agreement as compare to other kinetic models. The thermodynamic coefficients suggested the passage of Cs+ and Sr2+ ions through the liquid solid boundary is exothermic and spontaneous. The NSC@MS-4A displayed excellent regenerability properties over five repetitive adsorption/desorption cycles, which specified that as-obtained NSC@MS-4A is a sustainable as well as efficient adsorbent for practical decontamination of radioactive liquid waste.
Collapse
Affiliation(s)
- Nitin Goyal
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Peng Gao
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Zhe Wang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Shuwen Cheng
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Gang Li
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Liying Liu
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
28
|
Li H, Hu J, Yao L, Shen Q, An L, Wang X. Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: Competitive adsorption and mechanism studies. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122127. [PMID: 32005533 DOI: 10.1016/j.jhazmat.2020.122127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
An ultrasonic-assistant fore-modified method was designed to develop the self-functionalized biochar (SFB) with enhanced adsorbability. Characterized by different morphologies, SFB was presenting particular groups of carbon micro-spheres. Possessing ultrahigh surface area of 2368 m2/g, SFB exhibited excellent adsorption capacity (up to 497 mg/g) towards traditional antibiotic. Besides, more functional groups, which played important roles on the solid-liquid interface interaction, posed on the surface of SFB. The removal efficiency of levofloxacin was up to 99.93 % in the competitive system. Adsorption mechanism was analyzed based on the results of FTIR, kinetics, isotherms and competitive adsorption experiments. The chemisorption affinity on the solid-liquid interface was strong enough, which was proved by isotherms, thermodynamics and Kd analyses. Meanwhile, SFB has presented a good resistance against humid acid interference in aqueous environment. Thus, the ultrasonic-assistant fore-modified method was potential in dramatically improving the feature of biochars. SFB presented excellent adsorbability to antibiotics and exhibits extraordinary potential in wastewater treatment.
Collapse
Affiliation(s)
- Huiqin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jingtao Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Emission Trading Management Center of Inner Mongolia, Hohhot, 010011, China
| | - Lifen Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qian Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
29
|
Xu Y, Liu T, Huang Y, Zhu J, Zhu R. Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16612-16623. [PMID: 32128733 DOI: 10.1007/s11356-020-08102-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus removal from wastewater has become urgent because of eutrophication control. Phosphate concentration in control for phosphate removal and recovery by Mg-Fe oxide has been investigated. The results show that the adsorption capacity of phosphate by Mg-Fe oxide calcined at 450 °C was 28.3 mg/g, and it was kept at wide optimal adsorption pH ranges (4-10). The coexisting ions had influenced phosphate adsorption process and the order is CO32- > SO42- > NO3- > Cl-, with the inhibition rate of CO32- being 43%. Interestingly, phosphate concentration plays an important role in phosphate removal by Mg-Fe oxide. Under higher initial phosphate concentrations (200-800 mg/L), Sips model was well fitted. In addition, the adsorption kinetics was well described by the pseudo-second-order kinetic model before 25 min and the pseudo-first-order kinetic model after 25 min. In contrast, Langmuir model and pseudo-second-order kinetic model were fitted under lower initial phosphate concentrations (20-200 mg/L). The results of XRD, XPS, SEM, and TEM characterization show that Mg3(PO4)2 was formed by surface precipitation under 800 mg/L phosphate solution, and Mg-Fe layered structure was present via the unique memory effect under 20 mg/L phosphate solution. Mg-Fe oxide can be recovered through CO32- ion exchange, and the removal efficiency of phosphate was 56% after seven cycles.
Collapse
Affiliation(s)
- Yin Xu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China.
| | - Tingjiao Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Yukun Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Jiayi Zhu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Runliang Zhu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| |
Collapse
|
30
|
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). Int J Biol Macromol 2020; 151:124-135. [DOI: 10.1016/j.ijbiomac.2020.02.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
31
|
Sajid MS, Jabeen F, Hussain D, Gardner QA, Ashiq MN, Najam‐ul‐Haq M. Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides. J Sep Sci 2020; 43:1348-1355. [DOI: 10.1002/jssc.201900983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Muhammad Salman Sajid
- Division of Analytical ChemistryInstitute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| | - Fahmida Jabeen
- Division of Analytical ChemistryInstitute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| | - Dilshad Hussain
- Division of Analytical ChemistryInstitute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| | | | - Muhammad Naeem Ashiq
- Division of Analytical ChemistryInstitute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| | - Muhammad Najam‐ul‐Haq
- Division of Analytical ChemistryInstitute of Chemical SciencesBahauddin Zakariya University Multan Pakistan
| |
Collapse
|
32
|
Affiliation(s)
- Andreas Mautner
- Polymer and Composite Engineering (PaCE) GroupInstitute of Materials Chemistry and Research, University of Vienna Vienna Austria
| |
Collapse
|
33
|
Cui W, Hou H, Chen J, Guo Y, Meng L, Deng T. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Densities of the sodium arsenate aqueous solution with the molality varied from (0.04165 to 0.37306) mol · kg−1 were determined experimentally at temperature intervals of 5 K from 283.15 K to 363.15 K and ambient pressure using a precise Anton Paar Digital vibrating-tube densimeter. The apparent molar volumes (V
ϕ
), thermal expansion coefficient (α) and partial molar volume
(
V
¯
B
)
$({\bar V_{\rm{B}}})$
were obtained based on the results of density measurement. The 3D diagram of apparent molar volume against temperature and molality as well as the diagram of thermal expansion coefficient and partial molar volume against molality were plotted, respectively. On the basis of the Pitzer ion-interaction equation of apparent molar volume model, the Pitzer single-salt parameters (
(
β
M,X
(
0
)
v
,
β
M,X
(
1
)
v
,
β
M,X
(
2
)
v
and
C
M,X
v
,
M
X
=
N
a
3
A
s
O
4
)
$(\beta _{{\rm{M,X}}}^{(0)v},\beta _{{\rm{M,X}}}^{(1)v},{\rm{ }}\beta _{{\rm{M,X}}}^{(2)v}{\rm{ and }}C_{{\rm{M,X}}}^v,MX = N{a_3}As{O_4})$
and their temperature-dependent correlation F(i, p, T) = a
1 + a
2ln(T/298.15) + a
3(T – 298.15) + a
4/(620 – T) + a
5/(T – 227) (where T is temperature in Kelvin, a
i
is the correlation coefficient) for Na3AsO4 were obtained on account of the least-squares method. Predictive apparent molar volumes agree well with the experimental values, and those results indicate that the single-salt parameters and their relational coefficients of temperature-dependence for Na3AsO4 obtained are reliable.
Collapse
Affiliation(s)
- Wanjing Cui
- Tianjin Key Laboratory of Marine Resources and Chemistry , College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457 , P.R. China
| | - Hongfang Hou
- Tianjin Key Laboratory of Marine Resources and Chemistry , College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457 , P.R. China
| | - Jiaojiao Chen
- Tianjin Key Laboratory of Marine Resources and Chemistry , College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457 , P.R. China
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry , College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457 , P.R. China
| | - Lingzong Meng
- School of Chemistry Engineering, Linyi University , Linyi 276000 , P.R. China
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry , College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology , Tianjin 300457 , P.R. China , Tel./Fax: +86-22-60602963
| |
Collapse
|
34
|
Abdel Maksoud M, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213096] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Huang T, Liu L, Zhang S. Electrokinetic removals of arsenate and arsenite from the aqueous environment by a fluidized bed of superparamagnetic iron oxide nanoparticle-coated pyrite microelectrodes. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
- Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, China
| | - Longfei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, Hengyang, China
| |
Collapse
|
36
|
Barakan S, Aghazadeh V. Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120779. [PMID: 31226589 DOI: 10.1016/j.jhazmat.2019.120779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The elevated contamination of arsenic species emitted from gold mine activities causes serious environmental problems. The modification of natural bentonite clay to obtain the adsorbent with high porosity, large surface area, and high adsorption capacity creates a new group of porous and heterostructure materials for immobilization of arsenic species from gold mine wastewater under alkaline condition, owing to the gold cyanidation process. There is a limited approach in alkaline mine wastewater, because of the negative surface charge of most adsorbents. In this research, the adsorbability of arsenic under synthetic and real alkaline wastewater was investigated for the first time. The Visual MINTEQ geochemical modeling software was applied to simulate the arsenic species under different pH, temperature and co-existing ions in mine wastewater obtained from dewatering unit in Zarshuran gold mine. Optimized parameters and better adsorbent were initially determined from synthetic alkaline wastewater, then the efficiency of the adsorption process in real alkaline mine wastewater was measured. In real wastewater treatment, the obtained adsorption efficiency higher than 70% with high reusability in the alkaline condition is an appropriated for only one step process. The major mechanism for adsorption was chemical with complexation in rapid and slow diffusion into the active sites.
Collapse
Affiliation(s)
- Shima Barakan
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran
| | - Valeh Aghazadeh
- Department of Mineral Processing, Faculty of Mining Engineering, Sahand University of Technology, Tabriz, Iran.
| |
Collapse
|
37
|
Kinetics of Arsenic Removal in Waste Acid by the Combination of CuSO4 and Zero-Valent Iron. Processes (Basel) 2019. [DOI: 10.3390/pr7070401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In this study, we investigated the kinetics of arsenic removal from waste acid by the combination of zero-valent iron (ZVI) and CuSO4. ZVI samples were characterized by X-ray diffraction and scanning electron microscopy before and after arsenic removal; the results showed that after the arsenic removal reaction, As2O3 and magnetite phases were detected on the surface of these samples. Kinetic studies were carried out under different reaction temperatures, with different CuSO4 concentrations, and with different iron to arsenic molar ratios (Fe/As). The kinetic data of the arsenic removal were fitted to different kinetic models. The fitting results showed that the arsenic removal process could be described by the shrinking core model, controlled by residual layer diffusion. The apparent activation energy of the reaction was 9.0628 kJ/mol, the reaction order with the CuSO4 concentrations was −0.12681, and the reaction order with the molar ratio of iron to arsenic (Fe/As) was 3.152.
Collapse
|