1
|
Cui C, Qiao W, Li D, Wang LJ. Dual cross-linked magnetic gelatin/carboxymethyl cellulose cryogels for enhanced Congo red adsorption: Experimental studies and machine learning modelling. J Colloid Interface Sci 2025; 678:619-635. [PMID: 39305629 DOI: 10.1016/j.jcis.2024.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Abstract
To achieve highly efficient and environmentally degradable adsorbents for Congo red (CR) removal, we synthesized a dual-network nanocomposite cryogel composed of gelatin/carboxymethyl cellulose, loaded with Fe3O4 nanoparticles. Gelatin and sodium carboxymethylcellulose were cross-linked using transglutaminase and calcium chloride, respectively. The cross-linking process enhanced the thermal stability of the composite cryogels. The CR adsorption process exhibited a better fit to the pseudo-second-order model and Langmuir model, with maximum adsorption capacity of 698.19 mg/g at pH of 7, temperature of 318 K, and initial CR concentration of 500 mg/L. Thermodynamic results indicated that the CR adsorption process was both spontaneous and endothermic. The performance of machine learning model showed that the Extreme Gradient Boosting model had the highest test determination coefficient (R2 = 0.9862) and the lowest root mean square error (RMSE = 10.3901 mg/g) among the 6 models. Feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that the initial concentration had the greatest influence on the model's prediction of adsorption capacity. Density functional theory calculations indicated that there were active sites on the CR molecule that can undergo electrostatic interactions with the adsorbent. Thus, the synthesized cryogels demonstrate promising potential as adsorbents for dye removal from wastewater.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Weixu Qiao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Fu X, Mao T, Wang Y, Wei L, Sun J, Liu N, An Q, Xiao LP, Shao G. Superparamagnetic composites of lignin regenerated from ionic liquid solutions for the efficient and selective removal of cationic dyes. Int J Biol Macromol 2024; 279:135311. [PMID: 39236948 DOI: 10.1016/j.ijbiomac.2024.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Magnetic lignin nanoparticles (MLNs) were prepared by inducing their self-assembly through lignin regeneration in the [N-methyl-2-pyrrolidone][C1-C4 carboxylic acid] ionic liquids ([NMP]ILs), which are low-cost protic ionic liquid. [NMP]ILs are self-assembling solvent that can enhance the adsorption capacity of MLNs to a greater degree than tetrahydrofuran or H2O. Additionally, the anion types of [NMP]IL greatly influence the physiochemical properties of MLNs. The MLNs prepared through self-assembly with [NMP][formate] (MLN/[NMP][For]) exhibited a higher maximum adsorption capacity (134.53 mg/g) than the [NMP]ILs of C2-C4 carboxylate anions. MLN/[NMP][For] demonstrated stable adsorption within a pH range of 6-10 or at high salt concentrations (0.01-0.5 mol/L), retaining over 80 % of its regeneration efficiency after 5 cycles. In addition, MLN/[NMP][For] selectively removed cationic dyes in mixed binary anionic-cationic dye solutions. This work demonstrated the feasibility of preparing magnetic biosorbents with good selectivity and stability though regeneration and by adjusting the anions of ionic liquids.
Collapse
Affiliation(s)
- Xu Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Tianyou Mao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jian Sun
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Na Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Guolin Shao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Fu X, Cao L, Zhang S, Meng S, Yang Y, Li YC, Liu G, Tong Z. A sustainable lignin-clay nano-absorbent for highly efficient methylene blue removal. Int J Biol Macromol 2024; 282:137030. [PMID: 39486716 DOI: 10.1016/j.ijbiomac.2024.137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Water pollution caused by toxic dyes such as methylene blue (MB) has become a bottleneck for recycling or reusing enormous industrial wastewater. Designing a green and cost-effective bio-absorbent for the highly efficient removal of MB from wastewater is crucial but remains a great challenge. In this study, abundant, inexpensive, and environmentally benign lignin and bentonite were used as starting materials, and quaternary and amphiphilic lignin as a network macromolecule was designed to be inserted into the galleries of the stacked bentonite clay to prepare lignin-bentonite nanohybrids. The specific surface area of the modified nano-absorbent was significantly increased to 45.60 m2/g and owned a type II-like isothermal mechanism. The absorbent showed a maximum removal of MB of 99.7 % at neutral pH and room temperature with a maximum adsorption capacity of 822.22 mg/g, demonstrating the potential of an excellent adsorbent. The MB adsorption process fits well with both Langmuir and Freundlich isotherm models, the adsorption mechanism includes strong electrostatic attraction between absorbent and MB, and physical adsorption in a complicated monolayer and multiple macroporous structures. This study leverages the economic and environmental benefits of lignin and bentonite clay to prepare a cost-effective bio-absorbent for efficient removal of MB from aqueous solutions.
Collapse
Affiliation(s)
- Xiangju Fu
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lulu Cao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shugang Zhang
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shanyu Meng
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China; Department of Soil and Water Sciences, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL 33031, USA
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL 33031, USA
| | - Guodong Liu
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Zhaohui Tong
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| |
Collapse
|
4
|
Ouali A, Anane M. Alginate/clinoptilolite beads as a novel adsorbent for reducing the salinity of industrial wastewater: adsorption kinetics and isotherm study. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39390690 DOI: 10.1080/09593330.2024.2411638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Treatment and desalination of unconventional water are considered important alternatives to combat water scarcity in Tunisia. This study demonstrates a viable approach to the increasing possibility of the salinity reduction of industrial effluent through adsorption. In this work, a novel alginate complex was developed for reducing the salinity of the industrial wastewater to be reinjected and reused again within the industrial process and even in agriculture. The Calcium alginate/clinoptilolite beads (Ca-Alg/Clino beads) were prepared using sodium alginate (2%) solution and calcium chloride (4%) solution as the crosslinking agent with clinoptilolite. Batch experiments were carried out to test the adsorption capacity of the synthetised Ca-Alg/Clino beads. It was found that the salinity reduction process depends strongly on the pH, the adsorbent mass, the interaction time, and the initial salt concentration. The highest reduction efficiency and salinity reduction were achieved at pH (6-7). Batch adsorption experiments indicated that Ca-Alg/Clino beads allow an excellent salinity reduction of up to 96.83% for a dosage adsorbent/water of 2 g/L and a salinity of 6 g/L at a contact time of 20 min. The maximum adsorption capacity (qmax) was 30.1 mg/g. The optimal adsorption pH was 7. The adsorption isotherms data follow well the Langmuir model. The separation factor, RL = 0.74, indicates that the adsorption process is favourable. The kinetics data favour the pseudo-second-order model. The fabricated beads can be reused 5 times without any weight loss. This material has excellent efficiency when applied to real environmental water.
Collapse
Affiliation(s)
- Amira Ouali
- Laboratory of Wastewater and Environment, Water Research and Technologies Center, Soliman, Tunisia
| | - Makram Anane
- Laboratory of Wastewater and Environment, Water Research and Technologies Center, Soliman, Tunisia
| |
Collapse
|
5
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fattahi N, Fattahi T, Kashif M, Ramazani A, Jung WK. Lignin: A valuable and promising bio-based absorbent for dye removal applications. Int J Biol Macromol 2024; 276:133763. [PMID: 39002913 DOI: 10.1016/j.ijbiomac.2024.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
The importance of environmental issues and the existence of humans have led to the recognition of environmental concerns as the main risk to modern life. Notably, one major concern for protecting and managing the environment and human health is the presence of dyes in wastewater. Therefore, before discharging wastewater into mainstream water, it is crucial to remove dyes. Among all lignocellulosic materials, lignin is a highly fragrant biopolymer. Its abundant availability, complex structure, and numerous functional moieties, including hydroxyl, carboxyl, and phenolic, are used in different chemicals and applications. Based on this, lignin is a very useful green material for adsorption, specifically in removing both heavy metals and organic pollutants from wastewater. This article describes the use of lignin-based adsorbents as a recent breakthrough in the removal of dye from aqueous solutions. On the other hand, the review intends to encourage readers to study both established and novel avenues in lignin-based dye removal materials.
Collapse
Affiliation(s)
- Nadia Fattahi
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Tanya Fattahi
- Department of Environmental Health, School of Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Muhammad Kashif
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdo munhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent B-9000, Belgium
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Hu M, Chen J, Liu Y. Structural properties and adsorption performance relationship towards three categories of lignin and their derived biochar. BIORESOURCE TECHNOLOGY 2024; 401:130712. [PMID: 38641300 DOI: 10.1016/j.biortech.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The growing interest in utilizing lignin for dye removal has gained momentum, but there is limited information on the intricate relationship between lignin structural characteristics and adsorption efficacy, especially for its biochar derivatives. This study focused on three types of lignin and their corresponding biochar derivatives. Among them, ZnCl2-activated acidic/alkali densified lignin preparation of lignin-derived active carbon exhibited superior adsorption performance, achieving 526.32 mg/g for methylene blue and 2156.77 mg/g for congo red. Its exceptional adsorption capacity was attributed to its unique structural properties, including low alkyl and O-alkyl group content and high aromatic carbon levels. Furthermore, the adsorption mechanisms adhered to pseudo-second-order kinetics and the Langmuir model, signifying a spontaneous process. Intriguingly, lignin-derived active carbon also demonstrated remarkable recovery capabilities. These findings provide valuable insights into the impact of structural attributes on lignin and its biochar's adsorption performance.
Collapse
Affiliation(s)
- Mingyang Hu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiangwei Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Zhang H, Xue K, Wang B, Ren W, Sun D, Shao C, Sun R. Advances in lignin-based biosorbents for sustainable wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 395:130347. [PMID: 38242243 DOI: 10.1016/j.biortech.2024.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The heavy metals, pesticides and dyes in agriculture and industry caused serious water pollution have increased the urgency for the advancement of biomass-based adsorbents due to their merits of low cost, high efficiency, and environmental sustainability. Thus, this review systematically examines the recent progress of lignin-based adsorbents dedicated to wastewater purification. Commencing with a succinct exposition on the intricate structure and prevalent forms of lignin, the review proceeds to expound rational design strategies tailored for lignin-based adsorbents coupled with adsorption mechanisms and regeneration methods. Emphasis is placed on the potential industrial applications of lignin-based adsorbents, accentuating their capacity for recovery and direct utilization post-use. The future challenges and outlooks associated with lignin-based adsorbents are discussed to provide novel perspectives for the development of high-performance and sustainable biosorbents, facilitating the effective removal of pollutants and the value-added utilization of resources in a sustainable manner.
Collapse
Affiliation(s)
- Hongmei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kai Xue
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfeng Ren
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Xiao D, Jiang H, Zhou Y, Imran A, Zhao H, Bi Y. Preparation of smart magnetic fluids and application in sewage treatment: Copper adsorption, kinetic and isotherm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120142. [PMID: 38306855 DOI: 10.1016/j.jenvman.2024.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
The effective removal of heavy metal ions from sewage remains a critical issue, and applying the operability of magnetic materials to large volume wastewater treatment has been a significant challenge. In this paper, metal ions adsorption induced aggregation strategy is proposed to solve this contradiction. The intelligent magnetic fluid designed in this study is a well-dispersed fluid state when treating sewage, and can efficiently adsorb heavy metal ions in wastewater with high adsorption capacity and ultra-fast adsorption kinetics. More importantly, after saturation of adsorption, the magnetic fluid will transform from a well-dispersed fluid state to an agglomeration state which is easy to precipitate and separate via external magnetic field. In a simple and effective way, the particles size of magnetic nanoparticles was precisely controlled by cellulose derivatives modification to obtain a stable magnetic fluid in water. The Freundlich model best described Cu2+ adsorption on magnetite nanoparticles, the correlation coefficients from the Cu2+ adsorption on the two magnetic fluids are 0.9554 and 0.9336, n are 1.868 and 2.117, revealing a favorable adsorption of Cu2+ onto magnetic fluids. The pseudo second-order model fitted the adsorption kinetic data better, the qe are 0.1948 and 0.1315 mmol/g and the R2 are 0.9999, indicating that the adsorption of Cu2+ onto the magnetic fluid was dominated by chemisorption. Moreover, the removal rate of Cu2+ in tap water and lake water was more than 97.1%, and the removal rate of large volume sewage was 81.7%. The synthetic magnetic fluid has high adsorption capacity, ultra-fast adsorption kinetics, reusability and easy separation, indicating its potential application for the removal of heavy metal ions from large-volume sewage.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing, 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunlin Zhou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Alhassan Imran
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyan Zhao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 210009, China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, China.
| |
Collapse
|
10
|
Wang Q, Qiao J, Xiong Y, Dong F, Xiong Y. A novel ZIF-8@IL-MXene/poly (N-isopropylacrylamide) nanocomposite hydrogel toward multifunctional adsorption. ENVIRONMENTAL RESEARCH 2024; 242:117568. [PMID: 37979930 DOI: 10.1016/j.envres.2023.117568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/20/2023]
Abstract
Phenols, dyes, and metal ions present in industrial wastewater can adversely affect the environment and leach biological carcinogens. Given that the current research focuses only on the removal of one or two of those categories. Herein, this work reports a novel ZIF-8@IL-MXene/Poly(N-isopropylacrylamide) (NIPAM) nanocomposite hydrogel that can efficiently and conveniently absorb and separate multiple pollutants from industrial wastewater. Ionic liquid (IL) was grafted onto MXene surfaces using a one-step method, and then incorporated into NIPAM monomer solutions to obtain the IL-MXene/PNIPAM composite hydrogel via in-situ polymerization. ZIF-8@IL-MXene/PNIPAM nanocomposite hydrogels were obtained by in-situ growth of ZIF-8 on the pore walls of composite hydrogels. As-prepared nanocomposite hydrogel showed excellent mechanical properties and can withstand ten repeated compressions without any damage, the specific surface area increased by 100 times, and the maximum adsorption capacities for p-nitrophenol (4-NP), crystal violet (CV), and copper ion (Cu2+) were 198.40, 325.03, and 285.65 mg g-1, respectively, at room temperature. The VPTTs of all hydrogels ranged from 33 to 35 °C, so the desorption process can be achieved in deionized water at 35-40 °C, and its adsorption capacities after five adsorption-desorption cycles decreased to 79%, 91%, and 29% for 4-NP, CV, and Cu2+, respectively. The adsorption data fitting results follow pseudo-second-order kinetics and Freundlich models, which is based on multiple interactions between the functional groups contained in hydrogels and adsorbent molecules. The hydrogel is the first to realize the high-efficiency adsorption of phenols, dyes and metal ions in industrial wastewater simultaneously, and the preparation process of hydrogels is environmentally friendly. Also, giving hydrogel multifunctional adsorption is beneficial to promote the development of multifunctional adsorption materials.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Qiao
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yukun Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Pang Y, Lin P, Chen Z, Zhou M, Yang D, Lou H, Qiu X. Preparation, characterization, and adsorption performance of porous polyamine lignin microsphere. Int J Biol Macromol 2023; 253:127026. [PMID: 37751818 DOI: 10.1016/j.ijbiomac.2023.127026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
In this study, a porous polyamine lignin microsphere (PPALM) was prepared through the inverse suspension polymerization combined with freeze-drying, during which sodium lignosulfonate and polyetheramine (PEA) were crosslinked with epichlorohydrin (ECH) as the cross-linker. By adjusting the amount of ECH and PEA, the optimized PPALM exhibited suitable crosslinking degree, ensuring a balance of framework flexibility and rigidity, thereby facilitating the formation of abundant and fine pores. PPALM demonstrated good mechanical properties comparable to commercial sulfonated polystyrene cationic resin, with a porosity of 61.12 % and an average pore size of 283.51 nm. The saturation adsorption capacity of PPALM for Pb2+ was measured to be 156.82 mg/g, and it remained above 120 mg/g after five cycles of regeneration. Particularly, the concentration of 50 mg/L Pb2+ solution could be reduced to 0.98 mg/L after flowing through the PPALM packed bed, indicating the great potential of PPALM for application in wastewater treatment.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Peiyi Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Li X, Xu L, Gao J, Yan M, Bi H, Wang Q. Surface modification of chitin nanofibers with dopamine as efficient nanosorbents for enhanced removal of dye pollution and metal ions. Int J Biol Macromol 2023; 253:127113. [PMID: 37774823 DOI: 10.1016/j.ijbiomac.2023.127113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The development of environmentally friendly and low-cost adsorbents with high adsorption capacity remains a challenge. Herein, chitin nanofiber-polydopamine composite materials (CNDA) have been obtained by surface modification of chitin nanofiber using dopamine. According to the results of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and X-ray photoelectron spectrometer (XPS), polydopamine have been successfully coated on the surface of chitin nanofiber (ChNF). The ability to remove methylene blue (MB) has been analyzed via standard adsorption experiments, indicating that the maximum adsorption capacity (qmax) can reach 196.6 mg/g at MB initial concentration of 50 mg/L. Most importantly, the adsorption kinetics, isotherm, and thermodynamics were used to investigate the MB adsorption mechanism on composites. This indicated that the polydopamine on the surface of chitin nanofiber (ChNF) plays an important role in the MB dye adsorption. Moreover, the removal ability of CNDA to metal ions has also been investigated, indicating high capacities for Fe3+, Mn2+, Cu2+, and Ni2+. Based on their biodegradability and good adsorption capacity, the CNDA composite material can be considered a promising adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
13
|
Jin Y, Li Y, Du Q, Zhao S, Jing Z, Pi X, Wang Y, Wang D. Porous metal-organic framework-acrylamide-chitosan composite aerogels: Preparation, characterization and adsorption mechanism of azo anionic dyes adsorbed from water. Int J Biol Macromol 2023; 253:127155. [PMID: 37783255 DOI: 10.1016/j.ijbiomac.2023.127155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Micro- and nano-metal-organic frameworks with different adsorption properties were prepared by a time-modulation hydrothermal method. By comparing the adsorption properties, the most effective MIL-68(Fe)-12 was selected to be mixed with chitosan (CS), and porous metal-organic framework-acrylamide-chitosan composite aerogel (PMACA) was prepared by introducing acrylamide prior to glutaraldehyde crosslinking. The adsorption capacity of PMACA doped with acrylamide was as high as 2086.44 mg·g-1. The adsorption performance of PMACA was 1.48 times higher compared to the porous metal-organic framework-chitosan composite aerogel (PMCA) undoped with acrylamide. With the introduction of acrylamide, the stability of PMACA was improved, making it less prone to dispersion and decomposition. Structural characterization and adsorption properties were analyzed using methods such as XRD, FTIR, TGA, SEM, BET, and Zeta potential. The adsorption performance of PMACA was investigated further through batch tests with variables such as adsorbent dosage, pH, contact time, initial CR solution concentration, and temperature. The model fitting of PMACA was consistent with the pseudo-second-order model and the Sips model. The adsorption thermodynamics showed that high temperature promoted spontaneous adsorption behavior. PMACA showed a recovery rate of approximately 86 % after six cyclic adsorption tests. PMACA maintained a recovery rate of roughly 86 % after six cyclic adsorption tests. The combined effects of electrostatic attraction, hydrogen bonding, and π-π conjugation resulted in excellent adsorption performance, while pore filling also contributed to the efficient adsorption of Congo red (CR).
Collapse
Affiliation(s)
- Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - YuQi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dechang Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
14
|
Li B, Li K. Efficient removal of both heavy metal ion and dyes from wastewater using magnetic response adsorbent of block polymer brush-grafted N-doped biochar. CHEMOSPHERE 2023; 340:139811. [PMID: 37586497 DOI: 10.1016/j.chemosphere.2023.139811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The recovery of biomass from agricultural and forestry waste could realize effective utilization of waste and synthesis of novel adsorbent. Herein, porous biochar was prepared from waste ginkgo biloba leaves and modified by Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT). And the prepared adsorbent exhibited excellent adsorption capacity owing to its abundant functional groups and porous structure. In addition, the adsorption capacities of the prepared adsorbent for Malachite Green (MG), Amaranth (AM) and Cr (Ⅵ) were 422.59, 373.75 and 368.82 mg/g, respectively, surpassing those of many previously reported materials. Subsequently, the influence of various factors on adsorption performance was studied. The results showed that adsorption of MG, AM and Cr (Ⅵ) on adsorbent followed pseudo-second-order and Langmuir models and the adsorbent also displayed excellent cycling performance. The experimental results of application in various water samples showed that the adsorbent had outstanding adsorption performance in real water samples, further proving that the adsorbent had wide application and practicability. Finally, a simple adsorption column was used for filtration experiments to simulate industrial application. The results were exhibited that the adsorbent had great potential in treating wastewater containing MG, AM and Cr (Ⅵ).
Collapse
Affiliation(s)
- Baidan Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610500, PR China.
| |
Collapse
|
15
|
Wang X, Wang J, Jiang L, Jiang Y. Adsorption of Pb 2+ and Cu 2+ in wastewater by lignosulfonate adsorbent prepared from corn straw. Int J Biol Macromol 2023; 247:125820. [PMID: 37451377 DOI: 10.1016/j.ijbiomac.2023.125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The heavy metal ions contained in industrial wastewater are a great threat to human health. Exploring a adsorbent which have low-cost, green environmental friendly, high adsorption capacity, good recycle is key to solve heavy metal ions pollution. Lignin sulfonate was obtained by treating corn stover, and then modified lignin sulfonate was obtained by hydrothermal method. The porous structure makes heavy metal ions occupy more internal adsorption sites. Modified lignosulfonate adsorbent efficiency removes heavy metals in wastewater especially Cu2+ and Pb2+. The adsorption capacity of Cu2+ on modified lignosulfonate is 450.3 mg g-1, Pb2+ is 475.4 mg g-1. In addition, for 40 mg L-1 Cu2+ and Pb2+ using 0.4 g L-1, the adsorption equilibrium is only reached within 60 min. Meanwhile, the removal ratio of Pb is 83 %, Cd is 72 %, Cu is 87 %, Zn is 36 %, Mn is 25 %, Cr is 95 %, and Fe is 99 % in wastewater using 0.4 g L-1 adsorbent in 2 h. This research develops a practical adsorbent to remove heavy metals from actual wastewater.
Collapse
Affiliation(s)
- Xiang Wang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China.
| | - Jiwei Wang
- Chongqing Wanzhou Sanfeng Environmental Protection Power Generation Co., LTD, Wanzhou, 404100 Chongqing, China
| | - Landong Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| | - Yibo Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| |
Collapse
|
16
|
Li X, Li P, Chen W, Ren J, Wu W. Preparation and Adsorption Properties of Lignin/Cellulose Hydrogel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4260. [PMID: 37374444 DOI: 10.3390/ma16124260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
With the development of global industry, industrial wastewater pollution has caused serious environmental problems, and the demand for green and sustainable adsorbents is increasingly strong in the society. In this article, lignin/cellulose hydrogel materials were prepared using sodium lignosulfonate and cellulose as raw materials and 0.1% acetic acid solution as a solvent. The results showed that the optimal adsorption conditions for Congo red were as follows: an adsorption time of 4 h, a pH value of 6, and an adsorption temperature of 45 °C. The adsorption process was in line with the Langmuir isothermal model and a quasi-second-order kinetic model, which belonged to single molecular layer adsorption, and the maximum adsorption capacity was 294.0 mg/g. The optimal adsorption conditions for Malachite green were as follows: an adsorption time of 4 h, a pH value of 4, and an adsorption temperature of 60 °C. The adsorption process was consistent with the Freundlich isothermal model and a pseudo-second-order kinetic model, which belonged to the chemisorption-dominated multimolecular layer adsorption with the maximum adsorption capacity of 129.8 mg/g.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Li L, Liu X, Duan T, Xu F, Abdulkhani A, Zhang X. Construction of Cu-N coordination into natural biopolymer lignin backbone for highly efficient and selective removal of cationic dyes. BIORESOURCE TECHNOLOGY 2023; 376:128841. [PMID: 36898563 DOI: 10.1016/j.biortech.2023.128841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Here, a Cu2+-doped lignin-based adsorbent (Cu-AL) was fabricated via the amination and Cu2+-doping of industrial alkali lignin for massive and selective adsorption of cationic dyes azure B (AB) and saffron T (ST). The Cu-N coordination structures endowed Cu-AL with stronger electronegativity and higher dispersity. Through the electrostatic attraction, π-π interaction, H-bonding, and Cu2+ coordination, the adsorption capacities of AB and ST reached up to 1168 and 1420 mg g-1, respectively. The pseudo-second-order model and Langmuir isotherm model were more relevant to the AB and ST adsorption on Cu-AL. Based on the thermodynamic study, the adsorption progresses were endothermic, spontaneous, and feasible. The Cu-AL maintained high removal efficiency to dyes after 4 reuses (>80%). Importantly, the Cu-AL could efficiently remove and separate AB and ST from dye mixtures even in real time. All the above characteristics demonstrated that Cu-AL was an excellent adsorbent for fast wastewater treatment.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tong Duan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Saharan P, Kumar V, Kaushal I, Mittal A, Shukla SK, Kumar D, Sharma AK, Om H. A comprehensive review on the metal-based green valorized nanocomposite for the remediation of emerging colored organic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45677-45700. [PMID: 36826768 DOI: 10.1007/s11356-023-25998-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 04/15/2023]
Abstract
In today's era, "green" synthesis is an emerging research trend. It has gained widespread attention owing to its dynamic behavior, reliability, simplicity, sustainability, and environment friendly approach for fabricating various nanomaterials. Green fabrication of metal/metal oxides nanomaterials, hybrid materials, and other metal-based nanocomposite can be utilized to remove toxic colored aqueous pollutants. Nanomaterials synthesized by using green approach is considered to be the significant tool to minimize unwanted or harmful by-products otherwise released from traditional synthesis methods. Various kinds of biosynthesized nanomaterials, such as animal waste and plant-based, have been successfully applied and well documented in the literature. However, their application part, especially for the cure of colored organic polluted water, has not been reported as a single review article. Therefore, the current work aims to assemble reports on using novel biosynthesized green metal-based nanomaterials to exclude harmful dyes from polluted water.
Collapse
Affiliation(s)
- Priya Saharan
- Centre of Excellence for Energy and Environment, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Vinit Kumar
- Central Instrumentation Laboratory, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Indu Kaushal
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Alok Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, India
| | - Saroj K Shukla
- Department of Polymer Science, Bhaskaryacharya College of Applied Sciences, Delhi, India
| | - Dharmender Kumar
- Department of Biotechnology, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Ashok K Sharma
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India.
| | - Hari Om
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| |
Collapse
|
19
|
Alfuhaid L, Al-Abbad E, Alshammari S, Alotaibi A, Malek N, Al-Ghamdi A. Preparation and Characterization of a Renewable Starch-g-(MA-DETA) Copolymer and Its Adjustment for Dye Removal Applications. Polymers (Basel) 2023; 15:polym15051197. [PMID: 36904438 PMCID: PMC10007688 DOI: 10.3390/polym15051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Maleic anhydride-diethylenetriamine grafted on starch (st-g-(MA-DETA)) was synthesized through graft copolymerization, and the different parameters (copolymerization temperature, reaction time, concentration of initiator and monomer concentration) affecting starch graft percentage were studied to achieve the maximum grafting percentage. The maximum grafting percentage was found to be 29.17%. The starch and grafted starch copolymer were characterized using XRD, FTIR, SEM, EDS, NMR, and TGA analytical techniques to describe copolymerization. The crystallinity of starch and grafted starch was studied by XRD, confirming that grafted starch has a semicrystalline nature and indicating that the grafting reaction took place typically in the amorphous region of starch. NMR and IR spectroscopic techniques confirmed the successful synthesis of the st-g-(MA-DETA) copolymer. A TGA study revealed that grafting affects the thermal stability of starch. An SEM analysis showed the microparticles are distributed unevenly. Modified starch with the highest grafting ratio was then applied to celestine dye removal from water using different parameters. The experimental results indicated that St-g-(MA-DETA) has excellent dye removal properties in comparison to native starch.
Collapse
Affiliation(s)
- Lolwah Alfuhaid
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eman Al-Abbad
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Renewable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shouq Alshammari
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aljawharah Alotaibi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Azza Al-Ghamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center (BASRC), Renewable Energy Unit, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| |
Collapse
|
20
|
Shao L, Wan H, Wang L, Wang J, Liu Z, Wu Z, Zhan P, Zhang L, Ma X, Huang J. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
21
|
Peng D, Li W, Liang X, Zheng L, Guo X. Enzymatic preparation of hydrophobic biomass with one-pot synthesis and the oil removal performance. J Environ Sci (China) 2023; 124:105-116. [PMID: 36182120 DOI: 10.1016/j.jes.2021.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/16/2023]
Abstract
Oil pollution is causing deleterious damage to aquatic ecosystems and human health. The utilization of agricultural waste such as corn stalk (CS) to produce biosorbents has been considered an ecofriendly and efficient approach for removing oil. However, most previous studies focused on the modification of the whole CS, which is inefficient due to the heterogeneity of CS. In this study, corn stalk pith (CP), which has excellent amphipathic characteristics, was selected to prepare a high-efficiency oil sorbent by grafting dodecyl gallate (DG, a long-chain alkyl) onto CP surface lignin via laccase mediation. The modified biomass (DGCP) shows high hydrophobicity (water contact angle = 140.2°) and superoleophilicity (oil contact angle = 0°) and exhibits a high oil sorption capacity (46.43 g/g). In addition, DGCP has good stability and reusability for adsorbing oil from the aqueous phase. Kinetic and isotherm models and two-dimensional correlation spectroscopy integrated with FTIR analyses revealed that the main sorption mechanism involves the H-bond effect, hydrophobic effect and van der Waals force. This work provides an ecofriendly method to prepare oil sorbents and new insights into the mechanisms underlying the removal of spilled oil from wastewater.
Collapse
Affiliation(s)
- Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Wenjie Li
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China; School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| | - Xujun Liang
- School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou 362000, China; Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 481092125, USA.
| | - Liuchun Zheng
- School of Environment, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
22
|
Zong E, Fan R, Hua H, Yang J, Jiang S, Dai J, Liu X, Song P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int J Biol Macromol 2023; 226:443-453. [PMID: 36473527 DOI: 10.1016/j.ijbiomac.2022.11.317] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It has been always attractive to design a sustainable bio-derived adsorbent based on industrial waste lignin for removing organic dyes from water. However, existing adsorbent strategies often lead to the difficulties in adsorbent separation and recycling. Herein, we report a novel magnetically recyclable bio-adsorbent of Mg(OH)2/Fe3O4/PEI functionalized enzymatic lignin (EL) composite (EL-PEI@Fe3O4-Mg) for removing Congo red (CR) by Mannish reaction and hydrolysis-precipitation. The Mg(OH)2 and PEI functionalized EL on the surface act as active sites for the removal of CR, while the Fe3O4 allows for the easy separation under the help of a magnet. As-obtained EL-PEI@Fe3O4-Mg forms flower-like spheres and has a relatively lager surface area of 24.8 m2 g-1 which is 6 times that of EL. The EL-PEI@Fe3O4-Mg exhibits a relatively high CR adsorption capacity of 74.7 mg g-1 which is 15 times that of EL when initial concentration is around 100 mg L-1. And it can be easily separated from water by applying an external magnetic field. Moreover, EL-PEI@Fe3O4-Mg shows an excellent anti-interference capability according to the results of pH values and salt ions influences. Importantly, EL-PEI@Fe3O4-Mg possesses a good reusability and a removal efficiency of 92 % for CR remains after five consecutive cycles. It is illustrated that electrostatic attraction, π-π interaction and hydrogen binding are primary mechanisms for the removal of CR onto EL-PEI@Fe3O4-Mg. This work provides a novel sustainable strategy for the development of highly efficient, easy separable, recyclability bio-derived adsorbents for removing organic dyes, boosting the efficient utilization of industrial waste lignin.
Collapse
Affiliation(s)
- Enmin Zong
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Earth Science and Engineering, Nanjing University, Nanjing 210093, PR China
| | - Runfang Fan
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Hao Hua
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Jiayao Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengtao Jiang
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Jinfeng Dai
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Xiaohuan Liu
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China.
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia.
| |
Collapse
|
23
|
Shen Q, Yuan J, Luo X, Qin Y, Hu S, Liu J, Hu H, Xu D. Simultaneous Recovery of Nitrogen and Phosphorus from Sewage by Magnesium Ammonium Phosphate Method with Magnesium-Loaded Bentonite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:83-91. [PMID: 36528810 DOI: 10.1021/acs.langmuir.2c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Excessive nitrogen (N) and phosphorus (P) result in serious eutrophication of water. In this study, magnesium modified acid bentonite was prepared by the impregnation method, and nitrogen and phosphorus were simultaneously removed by the magnesium ammonium phosphate method (MAP), which solved the problem of the poor adsorption capacity of bentonite. The morphology and structure of MgO-SBt were characterized by XRD, FT-IR, SEM, EDS, XPS, BET, etc. The results show that the acidified bentonite can increase the distance between bentonite layers, the layer spacing is expanded to 1.560 nm, and the specific surface area is expanded to 95.433 m2/g. After Mg modification, the characteristic peaks of MgO appear at 2θ of 42.95°, 62.31°, and 78.72°, indicating that MgO has been successfully loaded and that MgO bonded to the surface and interior pores of the acidified bentonite, boosting adsorption performance. When the dosage of MgO-SBt is 0.25 g/L, pH = 9, and N/P ratio is 5:1, the maximum adsorption capacity of MgO-SBt for N and P can reach 193.448 mg/g and 322.581 mg/g. In addition, the mechanism of the simultaneous adsorption of nitrogen and phosphorus by MgO-SBt was deeply characterized by the kinetic model, isothermal adsorption model, and thermodynamic model. The results showed that the simultaneous adsorption of nitrogen and phosphorus by MgO-SBt was chemisorption and a spontaneous exothermic process.
Collapse
Affiliation(s)
- Qiqi Shen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Jinhai Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Xuanlan Luo
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Yu Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Shiyue Hu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Junhong Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Haikun Hu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| | - Di Xu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing401331, China
| |
Collapse
|
24
|
Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Xiang H, Dai K, Kou J, Wang G, Zhang Z, Li D, Chen C, Wu J. Selective adsorption of ferulic acid and furfural from acid lignocellulosic hydrolysate by novel magnetic lignin-based adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Chen S, Shao Q, Huang Y, Wu X, Zheng D. Lignin-modulated magnetic negatively charged Fe3O4@lignin nanospheres in removing cationic dyes from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Hu P, Su K, Sun Y, Li P, Cai J, Yang H. Efficient removal of nano- and micro- sized plastics using a starch-based coagulant in conjunction with polysilicic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157829. [PMID: 35932863 DOI: 10.1016/j.scitotenv.2022.157829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution has increasingly become an enormous global challenge due to the ubiquity and uncertain environmental performance, especially for nano- and micro- sized MPs. In this work, the performance and mechanisms in coagulation of 100 nm-5.0 μm sized polystyrene particles using an etherified starch-based coagulant (St-CTA) assisted by polysilicic acid (PSA) were systematically studied on the basis of the changes in MPs removal rates under various pH levels and in the presence of different coexisting inorganic and organic substances, zeta potentials of supernatants, and floc properties. St-CTA in conjunction with PSA had a high performance in coagulation of nano- and micro- sized MPs from water with a lower optimal dose and larger and compacter flocs. Besides, the MPs removal rate can be improved in acidic and coexisting salt conditions. The efficient performance in removal of MPs by this enhanced coagulation was owing to the synergic effect, that is, the effective aggregation of MPs through the charge neutralization of St-CTA followed by the efficient netting-bridging effect of PSA. The effectiveness of this enhanced coagulation was further confirmed by removal of two other typical nano-sized MPs, such as poly(methyl methacrylate) and poly(vinyl chloride), from different water sources including tap water, river water, and sludge supernatant from a sewage treatment plant. This work provided a novel enhanced coagulation technique that can effectively remove nano- and micro- sized MPs from water.
Collapse
Affiliation(s)
- Pan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Kexin Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yibei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Pengwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, PR China.
| |
Collapse
|
28
|
Babar M, Munir HMS, Nawaz A, Ramzan N, Azhar U, Sagir M, Tahir MS, Ikhlaq A, Mohammad Azmin SNH, Mubashir M, Khoo KS, Chew KW. Comparative study of ozonation and ozonation catalyzed by Fe-loaded biochar as catalyst to remove methylene blue from aqueous solution. CHEMOSPHERE 2022; 307:135738. [PMID: 35850223 DOI: 10.1016/j.chemosphere.2022.135738] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Ozone-based processes gained much attention in recent years. However, due to low oxidative stability and utilization rate, single ozonation process (SOP) is insufficient for complete mineralization of pollutants. As a result, the single ozonation process is performed in the presence of a catalyst, a process known as catalytic ozonation process (COP). A promising catalyst (Fe/BC) was prepared by impregnating iron on biochar surface to remove methylene blue from aqueous solution via heterogeneous catalytic ozonation process (HCOP). The prepared Fe/BC features were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller method (BET) before and after HCOP. Furthermore, the effect of various operating parameters such as ozone dose, catalyst dose, initial dye concentration, initial pH on the efficiency of SOP and HCOP were compared. In comparison to single ozonation process, the experimental study found that heterogeneous catalytic ozonation process has the highest efficiency. At pH 7.0, approximately 76% of methylene blue is removed during single ozonation process in 60 min. Heterogeneous catalytic ozonation process showed 95% methylene blue elimination from aqueous solution. The efficiency of heterogeneous catalytic ozonation process was decreased by 52% in the presence of hydroxyl radical (●OH) scavenger, indicating that hydroxyl is the major oxidant during heterogeneous catalytic ozonation process for the removal of methylene blue from aqueous solution. Fe/BC catalyst appears to have a lot of industrial promise, as well as the ability to remove methylene blue from aqueous solution via heterogeneous catalytic ozonation process.
Collapse
Affiliation(s)
- Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan; Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan.
| | - Aamna Nawaz
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Naveed Ramzan
- Chemical Engineering Department, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan.
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Suleman Tahir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan, 64200, Pakistan
| | - Amir Ikhlaq
- Institute of Environmental Engineering and Research, University of Engineering and Technology, Lahore, 54890, Pakistan
| | | | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kit Wayne Chew
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| |
Collapse
|
29
|
Amine-functionalized magnetic microspheres from lignosulfonate for industrial wastewater purification. Int J Biol Macromol 2022; 224:133-142. [DOI: 10.1016/j.ijbiomac.2022.10.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
30
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Tang C, Hu T, Li Y, Hu X, Song K. Weaving Hyper‐crosslinked Polymer from Alkaline Lignin for Adsorption of Organic Dyes from Wastewater. ChemistrySelect 2022. [DOI: 10.1002/slct.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cheng Tang
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province Department of Chemistry and Chemical Engineering Sichuan University of Arts and Science No. 406, Nanbin Road, 3rd Section Dazhou 635000 Sichuan P.R. China
| | - Tao Hu
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province Department of Chemistry and Chemical Engineering Sichuan University of Arts and Science No. 406, Nanbin Road, 3rd Section Dazhou 635000 Sichuan P.R. China
| | - Yanglei Li
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province Department of Chemistry and Chemical Engineering Sichuan University of Arts and Science No. 406, Nanbin Road, 3rd Section Dazhou 635000 Sichuan P.R. China
| | - Xiaoli Hu
- Key Laboratory of Exploitation and Study of Distinctive Plants in Education Department of Sichuan Province Department of Chemistry and Chemical Engineering Sichuan University of Arts and Science No. 406, Nanbin Road, 3rd Section Dazhou 635000 Sichuan P.R. China
| | - Kunpeng Song
- College of Chemistry and Chemical Engineering China West Normal University Shida Road Nanchong 637009 P.R. China
| |
Collapse
|
32
|
Zhao W, Cui Y, Zhou S, Ye J, Sun J, Liu X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Feng Z, Zhai X, Sun T. Sustainable and efficient removal of paraben, oxytetracycline and metronidazole using magnetic porous biochar composite prepared by one step pyrolysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Hu C, Jiang J, Li Y, Wu Y, Ma J, Li H, Zheng H. Eco-friendly poly(dopamine)-modified glass microspheres as a novel self-floating adsorbent for enhanced adsorption of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Heo JW, An L, Chen J, Bae JH, Kim YS. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. CHEMOSPHERE 2022; 295:133815. [PMID: 35104546 DOI: 10.1016/j.chemosphere.2022.133815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Research on low-cost bio-adsorbents for the removal of harmful substances from effluents has recently attracted significant attention. In this study, three types of amino-silane-modified lignins (ASLs) with primary, secondary, and tertiary amine groups were prepared, and their adsorption behavior toward cationic and anionic dyes was investigated. Chemical structural analyses indicated that the three amino-silane reagents resulted in different molecular self-assembly structures on the lignin surface. The ASLs exhibited enhanced thermal stabilities and increased surface areas with different surface charges in different pH ranges. Owing to the high density of primary, secondary, and tertiary amine groups, the ASLs exhibited excellent adsorption capacities for cationic and anionic dyes. Additionally, they selectively adsorb anionic and cationic dyes according to the pH conditions. The ASL with primary amine had the highest adsorption capacity for Methylene blue and Congo red, reaching 187.27 and 293.26 mg·g-1, respectively, followed by ASLs with the secondary amine and tertiary amine. All adsorption processes followed the Langmuir and Temkin isotherms and had pseudo-second-order kinetics. The hypothesized adsorption mechanism mainly involves electrostatic interaction, NH-π interaction, hydrogen bonding interaction and π-π interaction.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Liangliang An
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jiansong Chen
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Ho Bae
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
36
|
The Fast-Efficient Adsorption Process of the Toxic Dye onto Shells Powders of Walnut and Peanut: Experiments, Equilibrium, Thermodynamic, and Regeneration Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00328-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Ieamviteevanich P, Daneshvar E, Eshaq G, Puro L, Mongkolthanaruk W, Pinitsoontorn S, Bhatnagar A. Synthesis and Characterization of a Magnetic Carbon Nanofiber Derived from Bacterial Cellulose for the Removal of Diclofenac from Water. ACS OMEGA 2022; 7:7572-7584. [PMID: 35284749 PMCID: PMC8908360 DOI: 10.1021/acsomega.1c06022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
Engineering and synthesis of novel materials are vital for removing emerging pollutants, such as pharmaceuticals from contaminated water. In this study, a magnetic carbon nanofiber (MCF) fabricated from bacterial cellulose was tested for the adsorption of diclofenac from water. The physical and chemical properties of the synthesized adsorbent were examined by field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, energy-dispersive X-ray spectroscopy (EDS), a vibrating sample magnetometer (VSM), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The characterization results showed that the MCF is a carbon nanofiber with a three-dimensional interconnect network, forming a porous material (mesopores and macropores) with a specific surface area of 222.3 m2/g. The removal of diclofenac (10 mg/L) by the MCF (0.75 g/L) was efficient (93.2%) and fast (in 20 min). According to the Langmuir isotherm model fitting, the maximum adsorption capacity of the MCF was 43.56 mg/g. Moreover, continuous adsorption of diclofenac onto MCF was investigated in a fixed-bed column, and the maximum adsorption capacity was found to be 67 mg/g. The finding of this research revealed that the MCF could be a promising adsorbent used to remove diclofenac from water, while it can be easily recovered by magnetic separation.
Collapse
Affiliation(s)
- Pimchanok Ieamviteevanich
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ehsan Daneshvar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Ghada Eshaq
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
- Petrochemicals
Department, Egyptian Petroleum Research
Institute, Nasr City, Cairo 11727, Egypt
| | - Liisa Puro
- Department of Separation Science, LUT School
of Engineering Science, LUT University, FI-53850 Lappeenranta, Finland
| | - Wiyada Mongkolthanaruk
- Department
of Microbiology, Faculty of Science, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Supree Pinitsoontorn
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute
of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Amit Bhatnagar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
38
|
Fan X, Wang X, Cai Y, Xie H, Han S, Hao C. Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb 2+, Cu 2+ and MB. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127191. [PMID: 34537654 DOI: 10.1016/j.jhazmat.2021.127191] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 05/22/2023]
Abstract
In this work, a porous multi-functional biomass carbon was prepared by acid-base modification method, which realized the reuse of waste cotton material. Then, the modified biochar was combined with the acrylic-based hydrogel by radical polymerization, and the biochar acrylic-based hydrogel (CS/EDTA/CBC) composite with chitosan and ethylenediamine tetraacetic acid was successfully prepared. This not only increases the adsorption performance of the adsorbent but also improves the stability of hydrogel. These characteristics provide high-efficiency adsorption capacity for pollutants (1105.78 mg g-1 for Pb2+, 678.04 mg g-1 for Cu2+, and 590.72 mg g-1 for methylene blue (MB)), which is far superior to most reported adsorbents. Meanwhile, the adsorbent would have a strong chemical interaction with Pb2+ and Cu2+, can form a stable chelating structure, and showed stronger selective adsorption. The adsorption process is more suitable for the Langmuir isotherm and follows a pseudo-second-order kinetic model, which indicates that the adsorption is a single-layer adsorption, and the rate-limiting step is a chemical chelation reaction. XPS results confirmed that surface complexation and electrostatic attraction are the main mechanisms of the adsorption reaction. After five cycles, the adsorption capacity of the adsorbent and the recovery of heavy metal ions remained at a high level.
Collapse
Affiliation(s)
- Xiangbo Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yaotao Cai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Honghao Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shiqi Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
39
|
Hao D, Liang Y. Adsorption of Cu 2+, Cd 2+ and Pb 2+ in wastewater by modified chitosan hydrogel. ENVIRONMENTAL TECHNOLOGY 2022; 43:876-884. [PMID: 32772649 DOI: 10.1080/09593330.2020.1807612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution is extraordinary critical, so it is urgent to develop an effective adsorbent to dispose of such pollution. Modified chitosan was combined with polyacrylic acid to form N-carboxymethyl chitosan hydrogel (NCS-hydrogel) adsorbent. The morphology and structure of NCS-hydrogel were analyzed and identified by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and other characterization methods. NCS-hydrogel adsorption was used to treat water pollution of Cu, Cd and Pb ions, and the influencing factors of adsorption performance were studied. The intrinsic mechanism of adsorption process was discussed by thermodynamic, kinetic and isotherm models. The results show that the adsorption process of metal ions by NCS-hydrogel meets the spontaneous monolayer chemisorption, and the adsorption process is accompanied by heat release.
Collapse
Affiliation(s)
- Dongliang Hao
- Hebei University of Environmental Engineering, Qinhuangdao, People's Republic of China
| | - Yali Liang
- Biology Institute of Shanxi, Taiyuan, People's Republic of China
| |
Collapse
|
40
|
Magnetic Poly(glycidyl methacrylate) Microspheres with Grafted Polypyrrole Chains for the High-Capacity Adsorption of Congo Red Dye from Aqueous Solutions. COATINGS 2022. [DOI: 10.3390/coatings12020168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, novel magnetic poly(glycidyl methacrylate) (PGMA) microspheres with grafted polypyrrole chains (magnetic PGMA-g-PPy) were developed for the high-capacity adsorption of Congo red (CR) from aqueous solutions. The magnetic PGMA-g-PPy was synthesized by the typical dispersion polymerization method and the ring-opening reaction of epoxy groups, producing abundant hydroxyls for the grafting polymerization of pyrrole in the presence of FeCl3 as an oxidizing agent on the surface of the microspheres. The characterization results showed that magnetic PGMA-g-PPy was successfully fabricated. The adsorption equilibrium data of the adsorbents could be well fitted by the Langmuir isotherm model, showing a high maximum adsorption capacity of 502.5 mg/g for CR. The adsorption followed pseudo-second-order kinetics with a fast speed. The adsorbents had no leaching of Fe in the solution at pH 1.0–11.0 for 24 h. The adsorption process was strongly pH-dependent and weakly ionic-strength-dependent. Furthermore, the magnetic microspheres could be easily regenerated, rapidly separated from the solution, and reused for wastewater treatment. The results suggest that magnetic PGMA-g-PPy microspheres are a promising efficient adsorbent for the removal of CR from wastewater.
Collapse
|
41
|
Oke N, Mohan S. Development of nanoporous textile sludge based adsorbent for the dye removal from industrial textile effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126864. [PMID: 34416690 DOI: 10.1016/j.jhazmat.2021.126864] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The development of a novel textile sludge based activated carbon (TSBAC) adsorbent and its performance for the treatment of textile dyeing effluent, have been explained in this paper. TSBAC was prepared by the thermal treatment of textile effluent treatment sludge followed by the chemical activation using phosphoric acid. Characterization of TSBAC resulted in enhanced specific surface area (123.65 m2/g) along with the presence of active surface functional groups including -OH, -COOH, -CO. TSBAC showed superior adsorption capacity for methylene blue (123.6 mg/g), reactive red 198 (101.4 mg/g), and reactive yellow 145 (96.8 mg/g) individually, and from the synthetic textile effluent (106 mg/g). The pseudo-second order model and Langmuir isotherm model were found to be fitted well with batch experimental data. The results of the continuous column studies showed that adsorption capacity for methylene blue, reactive red 198, reactive yellow 145 are 101.8 mg/g, 76.6 mg/g, and 75.1 mg/g respectively, and the synthetic textile effluent resulted in an adsorption capacity value of 79.1 mg/g. The reuse potential of TSBAC was proved by effective dye removal up to six reuse cycles. The leachability studies proved that the used adsorbent could be safely disposed of without any harmful effect to the environment.
Collapse
Affiliation(s)
- Ninad Oke
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| | - S Mohan
- Indian Institute of Technology Madras, Environmental and Water Resources Engineering Division, Department of Civil Engineering, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
42
|
Bai L, Zhou Y, Zhang P, Li S. Construction of a Carbon/Lignosulfonate Adsorbent to Remove Pb 2+ and Cu 2. ACS OMEGA 2022; 7:351-361. [PMID: 35036705 PMCID: PMC8756795 DOI: 10.1021/acsomega.1c04746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/23/2021] [Indexed: 05/28/2023]
Abstract
Removing heavy metal ions from water is an important issue to improve water quality. However, using cost-effective and more environmentally friendly adsorbents to achieve efficient adsorption capacity remains a challenge. Carbon spheres were prepared by the hydrothermal method and then combined with sodium lignosulfonate to form a lignosulfonate carbon (C/SL) adsorbent. C/SL achieved the adsorption of Pb2+ and Cu2+ after 60 min (the adsorption capacity was 281 mg g-1 for Pb2+ and 276mg g-1 for Cu2+) and had good selectivity and reusability (5 cycles). The simulated experimental data show that the pseudo-second-order kinetics and Langmuir isotherm are closer to the actual adsorption. Thermodynamic studies show that the adsorption of Pb2+ and Cu2+ is enhanced by the spontaneous process at higher temperature. This study also shows that functional groups such as hydroxyl and amino groups play an important role in the adsorption process.
Collapse
Affiliation(s)
- Lisen Bai
- Jiangsu
Provincial Academy of Environment Science, 210036 Nanjing, China
| | - Yongyan Zhou
- Jiangsu
Provincial Academy of Environment Science, 210036 Nanjing, China
| | - Peng Zhang
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Suqin Li
- School
of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
43
|
Feng X, Yao Y, Xu N, Jia H, Li X, Zhao J, Chen S, Qu Y. Pretreatment Affects Profits From Xylanase During Enzymatic Saccharification of Corn Stover Through Changing the Interaction Between Lignin and Xylanase Protein. Front Microbiol 2022; 12:754593. [PMID: 35002999 PMCID: PMC8739958 DOI: 10.3389/fmicb.2021.754593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Effective pretreatment is vital to improve the biomass conversion efficiency, which often requires the addition of xylanase as an accessory enzyme to enhance enzymatic saccharification of corn stover. In this study, we investigated the effect of two sophisticated pretreatment methods including ammonium sulfite (AS) and steam explosion (SE) on the xylanase profits involved in enzymatic hydrolysis of corn stover. We further explored the interactions between lignin and xylanase Xyn10A protein. Our results showed that the conversion rates of glucan and xylan in corn stover by AS pretreatment were higher by Xyn10A supplementation than that by SE pretreatment. Compared with the lignin from SE pretreated corn stover, the lignin from AS pretreated corn stover had a lower Xyn10A initial adsorption velocity (13.56 vs. 10.89 mg g−1 min−1) and adsorption capacity (49.46 vs. 27.42 mg g−1 of lignin) and weakened binding strength (310.6 vs. 215.9 L g−1). Our study demonstrated the low absolute zeta potential and strong hydrophilicity of the lignin may partly account for relative weak interaction between xylanase protein and lignin from AS pretreated corn stover. In conclusion, our results suggested that AS pretreatment weakened the inhibition of lignin to enzyme, promoted the enzymatic hydrolysis of corn stover, and decreased the cost of enzyme in bioconversion.
Collapse
Affiliation(s)
- Xiaoting Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yini Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Nuo Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hexue Jia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shicheng Chen
- Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, Rochester, MI, United States
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
44
|
Hu G, Cui G, Zhao J, Han M, Zou R. Pyrazine-cored covalent organic frameworks for efficient CO2 adsorption and removal of organic dyes. Polym Chem 2022. [DOI: 10.1039/d2py00329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational introduction of nitrogen heterocycles to a linker of covalent organic frameworks (COFs) can effectively capture CO2 and remove dyes in sewage. Here we report the designed synthesis of...
Collapse
|
45
|
Cao Y, Sheriff TS. The oxidative degradation of Calmagite using added and in situ generated hydrogen peroxide catalysed by manganese(II) ions: Efficacy evaluation, kinetics study and degradation pathways. CHEMOSPHERE 2022; 286:131792. [PMID: 34388875 DOI: 10.1016/j.chemosphere.2021.131792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Manganese (II) ions (Mn(II)) catalyse the oxidative degradation of Calmagite (CAL, 2-hydroxy-1-(2-hydroxy-5methylphenylazo)-4-naphthalenesulfonic acid) at room temperature using added and in situ generated hydrogen peroxide (H2O2), using 1,2-dihydroxybenzene-3,5-disulfonate, disodium salt and monohydrate (Tiron) as the co-catalyst for the in situ generation of H2O2. The percentage of CAL degradation with the in situ generated H2O2 was 91.1 % after 30 min which is lower than that in the added H2O2/Mn(II) system (96.0 %). A one-eighth-lives method was applied to investigate the kinetic parameters in the added H2O2 system, with and without Mn(II), involving phosphate, carbonate, and two biological buffers at different pHs. Percarbonate (HCO4-) was found to be the main reactive species for CAL degradation in the added H2O2 system buffered by carbonate in the absence of Mn(II). Manganese (IV) = O (Mn(IV) = O) and manganese(V) = O (Mn(V) = O) are the main reactive species in the added H2O2/Mn(II) system buffered by carbonate and non-carbonate buffers respectively. pH 8.5 was the optimum pH for CAL degradation when buffered by carbonate, while pH 10.0 is the best pH for the systems not using carbonate buffer. Using a high performance liquid chromatography/electrospray ionisation mass spectrometer (HPLC/ESI-MS), the degradation intermediates of CAL were identified as 1-amino-2-naphthol-4-sulfonate ion, 1-amino-2-naphthol-4-sulfinic ion, 1-amino-2-naphthol, and 1-nitroso-2-naphthol.
Collapse
Affiliation(s)
- Ye Cao
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Tippu S Sheriff
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
46
|
Abdelfatah A, Abdel-Gawad OF, Elzanaty AM, Rabie AM, Mohamed F. Fabrication and optimization of poly(ortho-aminophenol) doped glycerol for efficient removal of cobalt ion from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
47
|
Xiong Z, Zheng H, Hu Y, Hu X, Ding W, Ma J, Li Y. Selective adsorption of Congo red and Cu(II) from complex wastewater by core-shell structured magnetic carbon@zeolitic imidazolate frameworks-8 nanocomposites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Bisaria K, Sinha S, Singh R, Iqbal HMN. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation - A comprehensive review. CHEMOSPHERE 2021; 284:131263. [PMID: 34198058 DOI: 10.1016/j.chemosphere.2021.131263] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Over the last few years, industrial and anthropogenic activities have increased the presence of organic pollutants such as dyes, herbicides, pesticides, analgesics, and antibiotics in the water that adversely affect human health and the environment worldwide. Photocatalytic treatment is considered a promising, economical, effective, and sustainable process that utilizes light energy to degrade the pollutants in water. However, certain drawbacks like rapid recombination and low migration capability of photogenerated electrons and holes have restricted the use of photo-catalysts in industries. Hence, despite the abundance of lab-scale research, the technology is still not much commercialized in the mainstream. Several structural modifications in the photo-catalysts have been adopted to enhance the pollutant degradation performance to overcome the same. In this context, the present review article outlines the different advanced heterostructures synthesized to date for improved degradation of three major organic pollutants: antibiotics, dyes, and pesticides. Moreover, the article also emphasizes the degradation kinetics of photo-catalysts and the publication trend in the past decade along with the roadblocks preventing the transfer of technology from the laboratory to industry and new age photo-catalysts for the profitable implications in industrial sectors.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, India.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
49
|
Wang X, Li X, Peng L, Han S, Hao C, Jiang C, Wang H, Fan X. Effective removal of heavy metals from water using porous lignin-based adsorbents. CHEMOSPHERE 2021; 279:130504. [PMID: 33892455 DOI: 10.1016/j.chemosphere.2021.130504] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Multifunctional composite materials are the key to improving removal capacity and environmental utility. Here, the adsorbent (SLCA) was obtained by free-radical polymerization of acrylic acid with sodium lignosulfonate and citric acid. FTIR, SEM, TGA and XPS characterization methods were used to prove the structure and properties of SLCA adsorbents. The maximum uptake capacities of the optimized SLCA adsorbent is 276 mg g-1 of Cu2+ and 323 mg g-1 of Pb2+, respectively. The Langmuir isotherm and the second-order kinetic model were established to illustrate that the capture of Cu2+ and Pb2+ by the adsorbent belongs to chemisorption on the monolayer. XPS analysis confirmed that complexation and electrostatic attraction are the mechanism of pollutant removal. Not only that, as-resulting adsorbent revealed no significant adsorption cycle efficiency reduction even after 5 runs of sorption-desorption cycle, manifesting that it is of great stability and could be regarded as a promising candidate adsorbent. The purpose of this research was to develop a green lignin-based adsorbent with strong environmental protection and regeneration ability based on cheap polyacrylic resin.
Collapse
Affiliation(s)
- Xiaohong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lili Peng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shiqi Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Chenglong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Xiangbo Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
50
|
Anuma S, Mishra P, Bhat BR. Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125929. [PMID: 34492859 DOI: 10.1016/j.jhazmat.2021.125929] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
A cobalt oxide graphene nanocomposite functionalized with polypyrrole (COPYGO) having a heterogenous porous structure was synthesized using hydrothermal method. Microscopic imaging of the COPYGO surface revealed its highly porous and ordered features. The adsorption performance of the COPYGO composite was systemically investigated for Methylene Blue (MB), Congo red (CR) dyes and toxic lead (Pb(II)) and Cadmium (Cd(II)) metals. These were selected as they are the common pollutants in industrial wastewater. The COPYGO was found to be thermally stable up to 195 oC with a specific surface area of 133 m2 g-1. Experimental data indicates that the COPYGO follows Langmuir and Temkin adsorption isotherm. The COPYGO was efficient in removing MB (92.8%), CR (92.2%), Pb(II) (93.08%) and Cd(II) (95.28%) pollutants at pH 7.2, 5.0, 5.5 and 6.1 respectively from the simulated effluents. The maximum adsorption capacity (Qmax) observed for MB 663.018 mg g-1, CR 659.056 mg g-1, Pb(II) 780.363 mg g-1 and Cd(II) 794.188 mg g-1 pollutants. The thermodynamic analysis of the COPYGO indicates that the adsorption is endothermic and spontaneous in nature. COPYGO showed very high efficient removal rate for the pollutants in simulated effluents which guaranteed its benefits and efficacy in industrial wastewater treatment.
Collapse
Affiliation(s)
- Saroja Anuma
- Catalysis and Material Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India
| | - Praveen Mishra
- Catalysis and Material Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India
| | - Badekai Ramachandra Bhat
- Catalysis and Material Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka 575025, India.
| |
Collapse
|