1
|
Yang D, Fang W, Zhang H, Sun H, Gu X, Chen H, Luo J. Effects of nZVI on the migration and availability of Cr(VI) in soils under simulated acid rain leaching conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134985. [PMID: 38908184 DOI: 10.1016/j.jhazmat.2024.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Hexavalent chromium, Cr(VI), is a ubiquitous toxic metal that can be reduced to Cr(III) by nano-zero-valent iron (nZVI). Finding out effects of continuous rainfall leaching on the Cr(VI) release and availability remains a problem, needing to be addressed. Whether the Cr(VI) reduction by nZVI and continuous rainfall leaching lead to localized heterogeneity in soil is unclear. Therefore, two in situ high-resolution (HR) techniques of the diffusive gradients in thin-films (DGT) and planar optode were combined with ex situ sampling experiments here. Results demonstrate that nZVI decreased Cr(VI) leaching by 5.60-8.50 % compared to control soils. DGT-measured concentrations of Cr(VI), CDGT-Cr(VI), ranged from 7.31 to 19.4 μg L-1 in the control soils, increasing with depth while CDGT-Cr(VI) in nZVI-treated soils (2.41-6.18 μg L-1) decreased or remained stable with depth. However, simulated acid-rain leaching increases CDGT-Cr(VI) by 1.61-fold in nZVI-treated soils, negatively affecting the remediation. DGT measurements in bulk soils using disc devices are better at capturing the change of Cr(VI) availability at different conditions, whereas 2D-HR DGT mappings did not characterize significant mobilization of Cr(VI) at the micro-scale. These findings emphasize the importance of monitoring Cr(VI) release and availability in remediated soil under acid-rain leaching conditions for effective environment management.
Collapse
Affiliation(s)
- Danxing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Haitao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Haiyi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
2
|
Abdo AI, Li Y, Shi Z, El-Saadony MT, Alkahtani AM, Chen Y, Wang X, Zhang J, Wei H. Biochar of invasive plants alleviated impact of acid rain on soil microbial community structure and functionality better than liming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116726. [PMID: 39047360 DOI: 10.1016/j.ecoenv.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Acid rain and invasive plants have quintessential adverse impacts on terrestrial ecosystems. As an environmentally safe method for disposal of invasive plants, we tested the effect of biochar produced from these plants in altering soil deterioration under acid rain as compared with lime. Given the impacts of the feedstock type and soil properties on the response of soil to the added biochar, we hypothesized that the microbial community and functions would respond differently to the charred invasive plants under acid rain. A pot experiment was conducted to examine the response of soil microbiomes and functions to the biochar produced from Blackjack (Biden Pilosa), Wedelia (Wedelia trilobata), and Bitter vine (Mikania micrantha Kunth), or quicklime (CaO) at a rate of 1 % (w/w) under acid rain. Like soil pH, the nutrient contents (nitrogen, phosphorus, and potassium), calcium, and cation exchange capacity (CEC) were important as dominant edaphic factors affecting soil microbial community and functionality. In this respect, lime decreased nutrients availability, driven by 11-fold, 44 %, and 2-fold increments in calcium content, pH, and C/N ratio. Meanwhile, biochar improved nutrients availability under acid rain owing to maintaining a neutral pH (∼6.5), increasing calcium (by only 2-fold), and improving CEC, water repellency, and aggregation while decreasing the C/N ratio and aluminum content. Unlike biochar, lime decreased the relative abundance of Nitrosomonadaceae (the dominant ammonia-oxidizing bacteria) while augmenting the relative abundance of some fungal pathogens such as Spizellomycetaceae and Sporormiaceae. Given the highest nitrogen and dissolved organic carbon content than other biochar types, Wedelia-biochar resulted in the greatest relative abundance of Nitrosomonadaceae; thus, the microbial carbon and nitrogen biomasses were maximized. This study outlined the responses of the soil biogeochemical properties and the related microbial community structure and functionality to the biochar produced from invasive plants under acid rain. This study suggests that biochar can replace lime to ameliorate the effects of acid rain on soil physical, chemical and biological properties.
Collapse
Affiliation(s)
- Ahmed I Abdo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Yazheng Li
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Yongjian Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Xiaohui Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Rashid MS, Wang Y, Yin Y, Yousaf B, Jiang S, Mirza AF, Chen B, Li X, Liu Z. Quantitative Soil Characterization for Biochar-Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization. TOXICS 2024; 12:535. [PMID: 39195637 PMCID: PMC11359006 DOI: 10.3390/toxics12080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model's predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yanhong Wang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yilong Yin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Shaojun Jiang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Adeel Feroz Mirza
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| |
Collapse
|
4
|
Xiao R, Hu Y, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Acuña JJ, Pan W. Pathogen profile of Baiyangdian Lake sediments using metagenomic analysis and their correlation with environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169628. [PMID: 38159771 DOI: 10.1016/j.scitotenv.2023.169628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Increasing concerns about public health and safety after covid-19 have raised pathogen studies, especially in aquatic environments. However, the extent to how different location and human activities affect geographic occurrence and distribution of pathogens in response to agricultural pollution, boat tourism disturbances and municipal wastewater inflow in a degraded lake remains unclear. Since the surrounding residents depend on the lake for their livelihood, understanding the pathogens reserved in lake sediment and the regulation possibility by environmental factors are challenges with far-reaching significance. Results showed that 187 pathogens were concurrently shared by the nine sediment samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant. The similar composition of the pathogens suggests that lake sediment may act as reservoirs of generalist pathogens which may pose infection risk to a wide range of host species. Of the four virulence factors (VFs) types analyzed, offensive VFs were dominant (>46 % on average) in all samples, with dominant subtypes including adherence, secretion systems and toxins. Notably, the lake sediments under the impact of agricultural use (g1) showed significantly higher diversity and abundance of pathogen species and VFs than those under the impact of boat tourism (g2) and/or municipal wastewater inflow with reed marshes filtration (g3). From the co-occurrence networks, pathogens and pesticides, aggregate fractions, EC, pH, phosphatase have strong correlations. Strong positive correlations between pathogens and diazinon in g1 and ppDDT in g2 and g3 suggest higher pesticide-pathogen co-exposure risk. These findings highlight the need to explore pathogen - environmental factor interaction mechanisms in the human-impacted water environments where the control of pathogen invasion by environmental factors may accessible.
Collapse
Affiliation(s)
- Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Jacquelinne J Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
Abolfazli Behrooz B, Oustan S, Mirseyed Hosseini H, Etesami H, Padoan E, Magnacca G, Marsan FA. The importance of presoaking to improve the efficiency of MgCl 2-modified and non-modified biochar in the adsorption of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114932. [PMID: 37080130 DOI: 10.1016/j.ecoenv.2023.114932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Investigating the effect of presoaking, as one of the most important physical factors affecting the adsorption behavior of biochar, on the adsorption of heavy metals by modified or non-modified biochar and presoaking mechanism is still an open issue. In this study, the water presoaking effect on the kinetics of cadmium (Cd) adsorption by rice husk biochar (produced at 450 °C, B1, and at 600 °C, B2) and the rice husk biochar modified with magnesium chloride (B1 modified with MgCl2, MB1, and B2 modified with MgCl2, MB2) was investigated. Furthermore, the effect of pH (2, 5, and 6), temperature (15, 25, and 35 °C), and biochar particle size (100 and 500 µm) on the kinetics of Cd adsorption was also investigated. Results revealed that the content of Cd adsorbed by the presoaked biochar was significantly higher than that by the non-presoaked biochar. The highest Cd adsorption capacity of MB2 and MB1 was 98.4 and 97.6 mg g-1, respectively, which was much better than that of B1 (7.6 mg g-1) and B2 (7.5 mg g-1). The modeling of kinetics results showed that in all cases pseudo-second-order model was well-fitted (R2>0.99) with Cd adsorption data. The results also indicated that the highest Cd adsorption values were observed at pH 6 in presoaked MB1 with size of 100 µm as well as at the temperature of 35 °C in presoaked MB2, indicating the optimum conditions for this process. The presoaking process was not affected by biochar size and pH, and the difference in adsorbed Cd content between presoaked biochars and non-presoaked ones was also similar. However, the temperature had a negative effect on presoaking. The presoaking process decreased micropores (<10 µm) in the biochars but had no effect on biochar hydrophobicity. Therefore, presoaking, which could significantly increase Cd adsorption and reduce equilibrium time by reducing the micropores of biochars, is suggested as an effective strategy for improving the efficiency of modified biochars or non-modified ones in the adsorption of contaminants (Cd) from aquatic media.
Collapse
Affiliation(s)
- Bahram Abolfazli Behrooz
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Shahin Oustan
- Soil Science Department, Agricultural Faculty, University of Tabriz, Iran
| | - Hossein Mirseyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Elio Padoan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| | - Giuliana Magnacca
- Dipartimento di chimica, Università degli Studi di Torino, Torino, Italy
| | - Franco Ajmone Marsan
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, TO, Italy
| |
Collapse
|
6
|
Shi Y, Zhang F, Du C, Zhao Z, Zhong Y, Li H, Hou H, Wang L, Wu X, Crittenden JC, Chen J. Recycled biochar adsorption combined with CaCl 2 washing to increase rice yields and decrease Cd levels in grains and paddy soils: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161265. [PMID: 36587664 DOI: 10.1016/j.scitotenv.2022.161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Field-scale trials were conducted to remove cadmium (Cd) from paddy soil by using recycled hydroxyapatite modified biochar (HBC) plus low-level CaCl2 washing. Synergistic reduction efficiencies of total and available Cd in soil (45.6 % and 36.8 %) were achieved by the combined amendments compared with only HBC or CaCl2. The release of Cd from soil particulates was facilitated by CaCl2 washing and the increased soluble Cd in soil water (hardly removed by drainage) could be removed efficiently by recycled HBC adsorption. Significantly decreases in Cd translocation and accumulation in rice plants benefited from the decrease of Cd level and availability in soil and the increase of available silicon (Si). As a result, Cd contents in early/late rice grains decreased by ~85 % and met the Chinese national food standard. SOM, CEC, and soil nutrients after remediation were increased due to 10 %-15 % of HBC residual. Grain yields of the early and late rice increased by 34.1 % and 9.91 %, respectively. The collected HBC (>85 % of the total used HBC) was in-situ regenerated and could be used in the next field trials. The generated wastewater together with drainage from field treatment could be reused as irrigation water after the treatment with a small-scale reclamation ecosystem. The work provides a novelty remediation strategy for Cd-contaminated paddy soil. The noticeable remediation efficiency for Cd reduction in soil and grains, and improved productivity-relevant soil properties have important implications for paddy soil with poor fertility, severe desilicification, and Cd contamination in South China whereas the application of biochar or chemical washing alone did not.
Collapse
Affiliation(s)
- Yao Shi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Fengjiao Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chengqiong Du
- Powerchina Zhongnan Engineering Corporation Limited, 16 East Cinnamomum, Changsha 410014, China
| | - Zezhou Zhao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yi Zhong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbo Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
7
|
Cao Y, Ma X, Chen N, Chen T, Zhao M, Li H, Song Y, Zhou J, Yang J. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130079. [PMID: 36242955 DOI: 10.1016/j.jhazmat.2022.130079] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Compared with the widespread and serious heavy metal contamination in soils, microplastic pollution has gained attention only recently. Little is known about how microplastics affect the distribution of heavy metals in soils, especially across soil components level. In this study, a 180-day soil aging experiment and soil density fractionation were performed to investigate the effect of polypropylene (PP) microplastics on the binding behavior of cadmium (Cd) to solid components, i.e. particulate organic matter, organo-mineral complexes (OMC), and mineral. Results showed addition of 2-10% microplastics in soils induced the decomposition of OMC fraction by 10.88-23.10%. Compared to the control, the content of dissolved organic carbon increased, and pH, humic substances, and soil organic matter decreased with microplastics. After 180d of aging, the content of Cd in OMC fraction increased by 17.92%, while microplastics made Cd contents decline by 10.01-19.75%. The impacts strongly depended on the dose and surface characteristic of microplastics. Overall, PP microplastics increased the concentration of bioavailable Cd in soils via decreasing soil retention of Cd by the OMC fraction. These findings based on the solid components level will provide a new perspective for understanding microplastics effects on soil systems and pollutants.
Collapse
Affiliation(s)
- Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Xianying Ma
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Nuo Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jun Yang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
8
|
Sun L, Zhang G, Li X, Zhang X, Hang W, Tang M, Gao Y. Effects of biochar on the transformation of cadmium fractions in alkaline soil. Heliyon 2023; 9:e12949. [PMID: 36820180 PMCID: PMC9938413 DOI: 10.1016/j.heliyon.2023.e12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
To investigate the chemical properties in the biochar-mediated transformation of soil cadmium (Cd) fractions, the effects of biochar applied at different pyrolysis temperatures on soil Cd-fractions, pH value, and soil organic matter (SOM) were studied through an in-lab incubation experiment on contaminated soil. The results showed that the dissolved organic carbon (DOC) of CsBC300 (biochar prepared at 300 °C) was significantly higher (up to 1.31 times) than that of CsBC600 (biochar prepared at 600 °C). However, CsBC600 was more aromatic. Due to the difference in pyrolysis temperatures, the Cd deactivation mechanism of CsBC300 and CsBC600 was mainly to provide a large amount of organic matter and aromatic functional groups to the soil, respectively. The addition of these two biochar types significantly reduced the acid-extracted Cd content, by 76.56-83.52% and 70.48-76.81%, respectively. Contrastingly, it increased the residual Cd content by 2.26-2.36 and 2.08-2.29 times, respectively, which promoted the Cd transformation from the unstable to the stable state. However, CsBC300 had slightly better deactivation effect than CsBC600 on the 120th day, which was due to the decrease of soil pH and the increased SOM content. These study results can provide a theoretical reference for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Lianglun Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Guoquan Zhang
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| | - Xinyu Li
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Xinyu Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Wei Hang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Meizhen Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China,Corresponding author.
| | - Yan Gao
- Shandong Provincial Lunan Geology and Exploration Institute, Jining, Shandong, 272100, China
| |
Collapse
|
9
|
Meng F, Huang Q, Cai Y, Li F, Yuan G. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59043-59051. [PMID: 35381922 DOI: 10.1007/s11356-022-18802-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the benefits to the soil. However, the effects of biochar on the dynamic behavior of soil properties and metal fractions are still unclear. Here, we used two biochars, derived from biowastes (reed and bamboo willow), to treat two cadmium (Cd)-contaminated soils, S1 (loamy sand) and S2 (sandy loam), and determined the dynamic effects. The incubation experiments were designed to investigate the effects of biochar on the dynamic behavior of soil pH, dissolved organic matter (DOM), bioavailable Cd, and the transformation of Cd fractions for 270 days. The results showed that the soil pH, DOM, and bioavailable Cd initially increased and then decreased with incubation time, and the soil pH and DOM were higher, but bioavailable Cd content was lower than the original value. The transformation of the metal fractions changed dynamically, and the exchangeable fraction of Cd decreased with incubation time. Furthermore, the correlation results showed that the DOM can directly control the redistribution of Cd fractions, while soil pH can control it indirectly by regulating the DOM. This study highlighted that biochar can affect soil pH and DOM, redistribute Cd fractions, decrease bioavailable Cd content, and lower the potential risk of heavy metals. This study suggests ways to immobilize heavy metals in contaminated soils using biochar.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China.
| | - Qiuxiang Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Feiyue Li
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
10
|
Cheng Z, Lyu H, Shen B, Tian J, Sun Y, Wu C. Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms. CHEMOSPHERE 2022; 288:132581. [PMID: 34656624 DOI: 10.1016/j.chemosphere.2021.132581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel nanoscale iron oxide (FeOx) modified carbon nanotubes composite (FeOx@CNTs) was synthesized through a combined ball milling-hydrothermal two-step method and tested for aqueous Sb(III) removal efficiency and mechanisms. FeOx nanoparticles was successfully loaded on the surface of CNTs through functional groups such as hydroxyl (-OH), C-H, and C-O to enhance the removal efficiency of Sb(III) through adsorption and surface complexation. At a dosage of 0.02 g, a FeCl3·6H2O-to-CNTs mass ratio of 3:1, and an initial solution pH of 6.3, the amount of Sb(III) removed by the prepared FeOx@CNTs reached 172 mg/g, which was 42.9 times higher than that of the pristine CNTs (4.01 mg/g). Chemical adsorption and oxidation were the main removal mechanisms. At the equilibrium Sb(III) concentration of 6.08 mg/L, 6.56% of initial Sb(III) was adsorbed onto the surface of FeOx@CNTs, and 81.3% of initial Sb(III) was oxidized to Sb(V) with lower toxicity. The pseudo-second-order kinetic model could better describe the adsorption of Sb(III) onto the FeOx@CNTs composite, indicating that adsorption was mainly controlled by chemical sorption. In the adsorption isotherm equation, the Redlich-Peterson model provided a better fit of Sb(III) adsorption onto the FeOx@CNTs composite than the Langmuir and Freundlich models, which further indicated that the adsorption process was a hybrid removal process dominated by chemical sorption. The presence of CO32- slightly promoted the removal of Sb(III) from aqueous solution. The synthesized composite was magnetic and could be easily separated from the solution by an external magnetic field at the end of the sorption experiment. Based on these findings, the FeOx@CNTs nanocomposite is expected to provide an environmentally-friendly adsorbent with a strong sorption capacity for remediating Sb(III) in water environments.
Collapse
Affiliation(s)
- Zi Cheng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China.
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yanfang Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queens University Belfast, Belfast, Northern Ireland, BT7 1NN, United Kingdom
| |
Collapse
|
11
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
12
|
Ding Y, Wang W, Ao S. The regulating effects and mechanism of biochar and maifanite on copper and cadmium in a polluted soil- Lolium perenne L. system. PeerJ 2021; 9:e11921. [PMID: 34434656 PMCID: PMC8359803 DOI: 10.7717/peerj.11921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Arable land polluted by copper (Cu) and cadmium (Cd) is a widespread problem. The use of biochar and/or clay mineral as a soil amendment can effectively solidify heavy metals in the soil. We applied biochar (BC), iron modified biochar (Fe-BC), maifanite (MF, a kind of clay minerals), a combination of BC with MF (BC:MF), and Fe-BC with MF (Fe-BC:MF) at a 2 wt % dose as soil amendments to study their ability to prevent Cu and Cd from accumulating in ryegrass (Lolium perenne L.). We found that after 90 days of cultivation, the Cd and Cu content both significantly decreased in ryegrass shoots from 2.06 and 209.3 mg kg−1 (control) to 1.44–2.01 and 51.50–70.92 mg kg−1, respectively, across treatments (p < 0.05). Similarly, the bioconcentration factor (BCF) for Cd/Cu was significantly smaller (P < 0.05) in all amendments versus control soil. This trend differed among the shoot, BCF, and transportation factor (TF). Combining BC:MF or Fe-BC:MF did not significantly improve the Cd/Cu stabilization in the soil compared to the corresponding single amendment (p > 0.05). Our adsorption balance experiment showed that BC, Fe-BC, and MF physically and chemically adsorbed Cd and Cu by complexation with functional groups (mesoporous nanomaterials) whose porosity measurements ranged from 0.68 to 78.57 m2 g−1. Furthermore, the amorphous crystalline iron oxide binding Cd and Cu was the key to immobilizing these metals in the soil. The amendments applied in our study show promise for enhancing immobilization of Cu and Cd in contaminated paddy soils.
Collapse
Affiliation(s)
- Yuan Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Weiya Wang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Shiying Ao
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
13
|
Munir MAM, Irshad S, Yousaf B, Ali MU, Dan C, Abbas Q, Liu G, Yang X. Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146536. [PMID: 34030257 DOI: 10.1016/j.scitotenv.2021.146536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
This study was designed to examine the combined effect of bamboo-biochar (BC) and water-washed lignite (LGT) at copper mine tailings (CuMT) sites on the concentration of Cu and other metals in pore water (PW), their bioavailability, and change in geochemical speciation. Rapeseed (first cropping-season) and wheat (second cropping-season) were grown for 40-days each and the influence of applied-amendments on both cropping seasons was observed and compared. A significant increase in pH, water holding capacity (WHC), and soil organic carbon (SOC) was observed after the applied amendments in second cropping-seasons. The BC-LGT significantly reduced the concentration of Cu in PW after second cropping seasons; however, the concentration of Pb and Zn were increased with the individual application of biochar and LGT, respectively. BC-LGT and BC-2% significantly reduced the bioavailability of Cu and other HMs in both cropping seasons. The treated-CuMT was subjected to spectroscopic investigation through X-ray photoelectron spectroscopy (XPS), Fourier transform Infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results showed that Cu sorption mainly involved the coordination with hydroxyl and carboxyl functional groups, as well as the co-precipitation or complexation on mineral surfaces, which vary with the applied amendment and bulk amount of Mg, Mn, and Fe released during sorption-process. The co-application of BC-LGT exerted significant effectiveness in immobilizing Cu and other HMs in CuMT. The outcomes of the study indicated that co-application of BC-LGT is an efficacious combination of organic and inorganic materials for Cu adsorption which may provide some new information for the sustainable remediation of copper mine tailing.
Collapse
Affiliation(s)
- Mehr Ahmed Mujtaba Munir
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Samina Irshad
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China; Environmental Engineering Department, Middle East Technical University, Ankara 06800, Turkey.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, and State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China.
| | - Chen Dan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Qumber Abbas
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
14
|
Fan Q, Zou X, Gao J, Cheng Y, Wang C, Feng Z, Ding Y, Zhang C. Assessing ecological risk of organophosphate esters released from sediment with both of total content and desorbable content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144907. [PMID: 33770857 DOI: 10.1016/j.scitotenv.2020.144907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 05/28/2023]
Abstract
This study introduced fractions (labile, stable-adsorbed, tight-adsorbed fractions) of organophosphate esters (OPEs) into ecological risk assessment to evaluate the potential risks of organophosphate esters that released from sediment, and conduct a case study to verify it. The content of desorbable fractions was get from adsorption-desorption experiments. Adsorption process can be divided into fast sorption, gradual sorption, and final equilibrium stage, and labile, stable-adsorbed, tight-adsorbed fractions were formed during adsorption. Approximately 86.21% labile, 73.41% stable-adsorbed, and 43.01% tight-adsorbed TPhP-D can be desorbed from sediments in desorption experiments. According to the results, the value of hazard quotient (HQ) that calculated by desorbable fractions reduced by 13.88% than HQ calculated by the sum of fractions, and result of 29.76% decrease for ∑HQs. The isotherm results demonstrated that the contents of labile and stable-adsorbed fractions increased faster than tight-adsorbed fraction when the concentration of contaminant in water increased from 50 to 400 μg/L, which means ecological risk in areas with high concentration of contaminants are higher than the discreet value. In case study, an additional hotspot was found in areas, where characterized with high proportion of labile fraction, when ecological risk was calculated by desorbable fractions. Indicating that revised ecological risk assessment takes both of total content and desorbable content into consideration.
Collapse
Affiliation(s)
- Qinya Fan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| | - Jianhua Gao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yu Cheng
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Chenglong Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Ziyue Feng
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yongcheng Ding
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Gan CD, Jia YB, Yang JY. Remediation of fluoride contaminated soil with nano-hydroxyapatite amendment: Response of soil fluoride bioavailability and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124694. [PMID: 33278725 DOI: 10.1016/j.jhazmat.2020.124694] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Nano-hydroxyapatite (NHAP), possessing high defluoridation capacity, has been widely used to remove fluoride (F) from polluted water, but little is known about how it affects the bioavailability and toxicity of soil F towards plants. Here, the impact of NHAP (2% w/w) amendment on immobilization, speciation and accumulation of F was studied in a soil-plant system. The results revealed that the NHAP amendment worked effectively to reduce levels of water-soluble F (37.3%-87.8%) and increase available P (76.6%-147%). X-ray photoelectron spectroscopy analysis indicated that the formation of insoluble CaF2 and the ion exchange of F- with OH- into NHAP might be involved in the mechanism of F immobilization and soil pH elevation. Exposure to NHAP significantly decreased the abundance of Cyanobacteria in tested soils, and Gemmatimonadetes abundance in bulk soil was significantly higher than that in rhizosphere soil at 1,000 mg kg-1 F spiked level. Additionally, NHAP amendment decreased F accumulation in wheat shoots (9.10%-18.7%) and roots (3.88%-22.4%), which could mainly be attributed to the reduction of soil bioavailable F and the supplement of Ca from NHAP. These results suggest that NHAP could be a promising amendment to be applied to acidic soil contaminated with F.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Yan-Bo Jia
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
16
|
Changes in surface characteristics and adsorption properties of 2,4,6-trichlorophenol following Fenton-like aging of biochar. Sci Rep 2021; 11:4293. [PMID: 33619317 PMCID: PMC7900105 DOI: 10.1038/s41598-021-82129-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
Abstract
Fenton-like system formed in a natural soil environment deemed to be significant in the aging process of biochar. Aged biochars have distinct physico-chemical and surface properties compared to non-aged biochar. The aged biochar proved to be useful soil amendment due to its improved elements contents and surface properties. The biochar aging process resulted in increased surface area and pore volume, as well as carbon and oxygen-containing functional groups (such as C=O, –COOH, O–C=O etc.) on its surface, which were also associated with the adsorption behavior of 2,4,6-trichlorophenol (2,4,6-TCP). The biochar aging increased the adsorption capacity of 2,4,6-TCP, which was maximum at pH 3.0. The 2,4,6-TCP adsorption capacity of aged-bush biochar (ABB) and aged-peanut shell biochar (APB) was increased by 1.0–11.0% and 7.4–38.8%, respectively compared with bush biochar (BB) and peanut shell biochar (PB) at the same initial concentration of 2,4,6-TCP. All biochars had similar 2,4,6-TCP desorption rates ranging from 33.2 to 73.3% at different sorption temperatures and times. The desorbed components were mainly 2,4,6-TCP and other degraded components, which were low in concentration with small molecule substance. The results indicated that the aged-biochar could be effective for the long-term remediation of naturally organic polluted soils.
Collapse
|
17
|
Wu J, Zhou Q, Huang R, Wu K, Li Z. Contrasting impacts of mobilisation and immobilisation amendments on soil health and heavy metal transfer to food chain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111836. [PMID: 33383336 DOI: 10.1016/j.ecoenv.2020.111836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/03/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal mobilisation or immobilisation have been widely applied in situ for soil remediation. However, the consequences of the mobilisation or immobilisation amendments on soil health and heavy metal transfer are rarely compared. In this study, four mobilisation additives (EDTA, humic acid, oxalic acid and citric acid) and four immobilisation additives (calcium silicate, lime, biochar and pig manure) were applied in soils contaminated with Cd, Zn, and Pb to investigate their effects on soil microbial and nematode communities, chemical speciation of metals in Amaranthus tricolour L., and metal food chain transfer in soil-plant-insect system. We found that mobilisation amendments inhibited plant growth and EDTA reduced microbial biomass indicated by phospholipid fatty acids. In contrast, immobilisation amendments promoted plant growth. However, abundances of microbe and nematode were reduced by calcium silicate and lime, while they were substantially increased by biochar and pig manure. We also realised that the immobilisation amendments shifted the water-soluble and pectate-/protein-associated fractions to phosphate-/oxalate-associated fractions of metals in plant leaves, enhanced detoxification ability of Prodenia litura larvae, and reduced metal transfer along food chain. However, opposite changes were observed in mobilisation treatments. According to redundancy analysis, we found that the addition of biochar or pig manure improved soil health and function by reducing metal availability and increasing soil available N and P concentrations. Our results indicate that organic immobilisation amendments most effectively improve soil health and reduce metal transfer, and should be recommended for remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Jingtao Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Qingqiu Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology, Yunnan University, Kunming 650500, PR China
| | - Rong Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Kejun Wu
- Tourism Development Research Center of Sichuan, School of Tourism, Leshan Normal University, Leshan 614000, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| | - Zhian Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
18
|
Chagas JKM, Figueiredo CCD, Silva JD, Shah K, Paz-Ferreiro J. Long-term effects of sewage sludge-derived biochar on the accumulation and availability of trace elements in a tropical soil. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:264-277. [PMID: 33616977 DOI: 10.1002/jeq2.20183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Thermal treatment by pyrolysis has been proposed as a sustainable alternative to enable the agricultural use of sewage sludge. The solid product obtained via pyrolysis of sewage sludge is called sewage sludge biochar and presents several advantages for its use as a fertilizer or soil conditioner. However, there are concerns about the accumulation and dynamics of trace elements in soil amended with sewage sludge biochar over the years. This study examined the effect of sewage sludge biochar, under field conditions for 5 yr, on the accumulation and availability of trace elements in a tropical soil. For this, 15 t ha-1 of sewage sludge biochar produced at 300 and 500 °C were applied in the first two growing seasons. Application was interrupted from the third to the fifth seasons to assess the residual effect of sewage sludge biochar in the soil. The total and available trace element concentrations were determined. The total contents of trace elements showed the following variation in the soil over the 5 yr (mg kg-1): Cd (16.8-20.0), Co (19.5-21.5), Cr (98.2-125.7), Cu (8.1-17.1), Mn (62.9-85.7), Ni (20.3-35.0), Pb (27.0-52.4), and Zn (20.3-35.8). There was no change in the availability of Cd, Cr, Ni, and Pb over the years. Additionally, a residual effect of the sewage sludge biochar was the increase in availability of trace elements that are considered essential (Cu, Mn, and Zn) and beneficial elements (Co) for plants. Therefore, in relation to contamination by trace elements, the pyrolysis of sewage sludge of domestic origin proved to be an adequate strategy to enable the safe use of this residue in tropical agriculture.
Collapse
Affiliation(s)
| | | | | | - Kalpit Shah
- School of Engineering, RMIT Univ., GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT Univ., GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
19
|
Yan J, Quan G. Sorption behavior of dimethyl phthalate in biochar-soil composites: Implications for the transport of phthalate esters in long-term biochar amended soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111169. [PMID: 32827961 DOI: 10.1016/j.ecoenv.2020.111169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The characteristics and content of organo-mineral complex were confirmed to be changed in agriculture soils under the biochar application with long-term, but the resulting environmental effects in the retention and lasting of agrochemicals and xenobiotic pollutants is far from clear. In this study, biochar-soil composites were prepared by one-step dry ball-milling method, and a sorption case study was proceed to investigate the biochar incorporated affection in soils on the transport of dimethyl phthalate (DMP). More surface oxygen-containing functional groups on ball-milled biochar enhanced its complexation with soil minerals. Sorption isotherms of DMP onto the biochar-soil composites were well described by the Freundlich model, both heterogeneous surface and multilayer interactions occurred simultaneously. The kinetics of sorption could be simulated with the pseudo-second-order model (R2 > 0.98), while the average sorption energy (Ea) calculated from Dubinin-Radushkevich isotherms were found in the range of 3.83-5.60 kJ mol-1, which revealed that the sorption processes coexist of chemisorption and physisorption, and π-π electron donor-acceptor interaction, pore-filling and hydrophobic interactions could be identified as the main sorption mechanisms. Desorption of absorbed DMP appeared obvious nonlinear characteristics and lag effect, the calculated hysteresis index (HI) increased with the application of biochar into soil. Considering the phenomenon of biochar aging and soil complexation, it is important to verify how the transport and natural attenuation of contaminant will be influenced by biochar addition, especially the long-term effect in soil ecosystem.
Collapse
Affiliation(s)
- Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
20
|
Luo J, Lin L, Liu C, Jia C, Chen T, Yang Y, Shen M, Shang H, Zhou S, Huang M, Wang Y, Zhou D, Fan J, Clark JH, Zhang S, Zhu X. Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123055. [PMID: 32526445 DOI: 10.1016/j.jhazmat.2020.123055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
With the aim to develop optimized biochar with minimal contaminants, it is important significance to broaden the understanding of biochar. Here, we disclose for the first time, a highly toxic substance (metal cyanide, MCN, such as KCN or NaCN) in biochar. The cyanide ion (CN-) content in biochar can be up to 85,870 mg/kg, which is determined by the inherent metal content and type in the biomass with K and Na increasing and Ca, Mg and Fe decreasing its formation. Density functional theory (DFT) analysis shows that unstable alkali oxygen-containing metal salts such as K2CO3 can induce an N rearrangement reaction to produce for example, KOCN. The strong reducing character of the carbon matrix further converts KOCN to KCN, thus resulting biochar with high risk. However, the stable Mg, Ca and Fe salts in biomass cannot induce an N rearrangement reaction due to their high binding energies. We therefore propose that high valent metal chloride salts such as FeCl3 and MgCl2 could be used to inhibit the production of cyanide via metal interactive reaction. These findings open a new point of view on the potential risk of biochar and provide a mitigation solution for biochar's sustainable application.
Collapse
Affiliation(s)
- Jiewen Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Litao Lin
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Tianyue Chen
- School of Mathematical Science, Fudan University, Shanghai 200438, China
| | - Yang Yang
- Bioenergy Research Group, European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK
| | - Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shaojie Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - James H Clark
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
21
|
Teng F, Zhang Y, Wang D, Shen M, Hu D. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122977. [PMID: 32474324 DOI: 10.1016/j.jhazmat.2020.122977] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Cationic and anionic heavy metal contamination sometimes co-exists in soil systems, such as mining areas and shooting ranges, seriously threatens human health and ecological stability. In this study, iron-modified rice husk hydrochar showed commendable ability to immobilize both heavy metal cation (Pb) and anion (Sb) simultaneously in soils. Iron-modified rice husk hydrochar (HC12.5-180) (5%) amendment reduced the bioavailability (EX- and CB-fraction) of Pb and Sb by 25 and 40%, respectively, which were 8 and 5 times higher than that of pristine rice husk hydrochar (HC0-180) (5%) amendment. The cation (Pb) immobilization mainly depends on cation exchange with mineral components (K+, Ca2+, Na+, Mg2+), precipitation with nonmetallic anions (Cl- and SO42-), and complexation. Meanwhile, the iron oxides (FeO, Fe2O3, Fe3O4), formed during hydrothermal process, can be easily combined with anion (Sb) to form geochemically stable minerals. In conclusion, this work offered a practical and cost-effective technology based on the iron modification rice husk hydrochar for the immobilization of both anionic and cationic heavy metal contaminants in soils.
Collapse
Affiliation(s)
- Fengyun Teng
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dequan Wang
- Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions, Ministry of Education, Yinchuan 750021, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Duofei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
22
|
Mujtaba Munir MA, Liu G, Yousaf B, Ali MU, Cheema AI, Rashid MS, Rehman A. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114816. [PMID: 32473507 DOI: 10.1016/j.envpol.2020.114816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil-plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC-HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC-HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC-HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC-HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.
Collapse
Affiliation(s)
- Mehr Ahmed Mujtaba Munir
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, And State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Ayesha Imtiyaz Cheema
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Muhammad Saqib Rashid
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Abdul Rehman
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| |
Collapse
|
23
|
Chen H, Yang X, Wang H, Sarkar B, Shaheen SM, Gielen G, Bolan N, Guo J, Che L, Sun H, Rinklebe J. Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110246. [PMID: 32148312 DOI: 10.1016/j.jenvman.2020.110246] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Reclamation of degraded soils such as those with low organic carbon content and soils co-contaminated with toxic elements and phthalic acid esters (PAEs) is of great concern. Little is known about the efficiency of plant- and animal-derived biochars for improving plant growth and physicochemical and biological properties of co-contaminated soils, particularly under low content of organic matter. Hence, a pot trial was carried out by growing pak choi (Brassica chinensis L.) to assess the influence of different doses (0, 0.5, 1, 2, and 4%) of animal (pig carcass) and wood (Platanus orientalis) derived biochars on soil properties, nutrient availabilities, plant growth, and soil enzyme activities in two soils containing low (LOC) and high (HOC) organic carbon contents and co-contaminated with di-(2-ethylhexyl) phthalic acid (DEHP) and cadmium (Cd). Biochar applications improved pH, salinity, carbon content, and cation exchange capacity of both soils. Addition of biochars significantly increased the bioavailability and uptake of phosphorus and potassium in the plants in both soils with greater effects from pig biochar than wood biochar. Biochar additions also significantly enhanced urease, sucrase, and catalase activities, but suppressed acid phosphatase activity in both soils. The impact of pig biochar was stronger on urease and acid phosphatase, while the wood biochar was more effective with sucrase and catalase activities. The biomass yield of pak choi was significantly increased after biochar addition to both soils, especially in 2% pig biochar treatment in the LOC soil. The positive response of soil enzymes activities and plant growth for biochar addition to the Cd and DEHP co-contaminated soils indicate that both biochars, particularly the pig biochar can mitigate the risk of these pollutants and prove to be eco-friendly and low-cost amendments for reclaiming these degraded soils.
Collapse
Affiliation(s)
- Hanbo Chen
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Xing Yang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt
| | - Gerty Gielen
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jia Guo
- Chengbang Eco-Environment Co. Ltd, Hangzhou, Zhejiang, 310008, China
| | - Lei Che
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Huili Sun
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| |
Collapse
|
24
|
Quan G, Fan Q, Cui L, Zimmerman AR, Wang H, Zhu Z, Gao B, Wu L, Yan J. Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption. ENVIRONMENTAL RESEARCH 2020; 183:109241. [PMID: 32062184 DOI: 10.1016/j.envres.2020.109241] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Photochemical/photocatalytic reaction, one of the aging pathway of biochar in soil, not only changed the physicochemical properties of biochar, but also affected the migration and transformation of pollutants. Wheat straw biochar was photocatalytic aged in a Fenton-like system using organic acid as buffer solution under light sources, the organic carbon release and surface chemical changes of biochar were investigated to illustrate the adsorption behaviors. With Fe(III) or α-Fe2O3 added, the total organic carbon (TOC) of aged biochar solution was influenced more by buffer system than light sources, with the highest of 420.59 mg L-1 in citric acid system. The production of the hydroxyl radical (OH·) at citric/Fe(III) system was higher than the oxalic/Fe(III) system under the Hg lamp and showed an increasing trend with time. With light exposure, the porous structure of the biochar altered and surface area increased from 7.613 to 29.74 m2 g-1. Meanwhile, the adsorption of cadmium ion by biochar aged in citric/Fe(III) system also showed an increased adsorption capacity with a maximum of 73.54 mg g-1. So, a well understanding of biochar physicochemical properties changes under natural ecosystem was undoubtedly useful for scientific assessment the long-term feasibility of biochar as soil remediation.
Collapse
Affiliation(s)
- Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Qinya Fan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Zhiyuan Zhu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Limin Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
25
|
Fan Q, Sun J, Quan G, Yan J, Gao J, Zou X, Cui L. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil: Implications for the vertical co-migration of heavy metals. ENVIRONMENT INTERNATIONAL 2020; 136:105439. [PMID: 31918335 DOI: 10.1016/j.envint.2019.105439] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Although interest in biochar remediation is growing, the effects of long-term biochar loading on soil environments have not been clearly confirmed. The contents and characteristics of water-soluble organic matter (WSOM) from soils after eight years of biochar remediation were investigated, and the vertical co-migration of heavy metals controlled by interactions between WSOM, soil and contaminants were also analyzed. The results showed that biochar-leaching WSOM featured high aromaticity. Fluorescence excitation-emission matrix (EEM) spectrophotometry was employed, and three primary components, including fulvic-acid-like (FA-like), tryptophan, and humic-acid-like (HA-like) compounds, were identified in the EEM spectra via parallel factor analysis models. With increasing biochar loading, FA-like and HA-like greatly increased, but tryptophan showed a weak response. Furthermore, the WSOM was freeze dried and analyzed with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the results demonstrated that the BC treatment increased oxygen-containing functional groups and enhanced the complexation capability of the WSOM. Finally, the Cd and Pb concentrations in the WSOM were investigated, and Cd was found to decrease in top-soil WSOM with added BC because of increased complexation, but the Pb content increased because exchangeable and carbonate Pb converted into organic Pb. Further, the Cd and Pb concentrations decreased in sub-soil WSOM. These findings suggest that more efforts should be devoted to studying the effects of long-term biochar loading on soil environments.
Collapse
Affiliation(s)
- Qinya Fan
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China
| | - Jianxiong Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jianhua Gao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|