1
|
Kumar A, Indhur R, Bux F, Kumari S. Recent advances in mechanistic insights into microplastics mitigation strategies via emerging advanced oxidation processes: Legislation, challenges, and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177150. [PMID: 39486547 DOI: 10.1016/j.scitotenv.2024.177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Microplastics (MPs) pollution has emerged as a global environmental concern due to its detrimental impacts on ecosystems. Conventional wastewater/water treatment methods are inadequate for MPs removal due to their diminutive size ranging from micrometers to nanometers. Advanced oxidation processes (AOPs) have gained attention as a promising green strategy for the efficient and safe elimination of MPs from aqueous systems. In recent years, various AOPs, including direct photo-degradation, photocatalytic oxidation, electrochemical oxidation, sono-chemical oxidation, ozonation, as well as sulfate radicals-based AOPs (SR-AOPs), and the use of hybrid systems have all been extensively investigated for MP elimination. However, the molecular mechanisms of MP polymer chain scission by AOPs have not been thoroughly studied so far. In this review, we have attempted to provide a thorough overview of molecular mechanisms and highlighted recent advances in the degradation of commonly used MP by AOPs. The characteristics and limitations of each technique are thoroughly examined. Additionally, current policies and legislation on plastic pollution are discussed, emphasizing the need for regulatory frameworks to support effective MPs mitigation strategies. To advance the practical application of AOPs for MPs removal, future research direction should address the transition from controlled laboratory environments to complex field conditions, assess the sustainability of AOPs in terms of catalytic material design, selection of effective oxidants, power consumption, and operational costs. Given these challenges, recommendations for future research directions are proposed based on knowledge gaps in the reported literature. This review could offer a coherent summary of the molecular mechanisms involved in different MP elimination techniques, aiding in the advancement of more dependable AOPs technology with superior removal and degradation efficiency.
Collapse
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Riona Indhur
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
Wang H, Fan S, Wen H, Huang Y, Gan H, Li B. Degradation mechanism and toxicity assessment of clofibric acid by Fe 2+/PS process in saline pharmaceutical wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39607805 DOI: 10.1080/09593330.2024.2433732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
A considerable effort has been made to exploring the oxidation of clofibric acid (CA) in advanced oxidation processes (AOPs). However, few studies are available on degradation mechanism and toxicity assessment of CA in saline pharmaceutical wastewater. Here the effect of chlorine on the degradation kinetics of CA by Fe2+/ persulfate (PS) process were studied. Oxidation efficiency, mineralisation, intermediate by-products, reactive oxygen species (ROS) and toxicity assessment were examined. Notably, a high removal efficiency (70.91%) but low mineralisation (20.99%) of CA were observed at pH 3.0 during the Fe2+/PS system. Furthermore, we found Cl- exerted a beneficial impact on CA degradation. However, the degree of CA mineralisation was relatively minor. Under high salinity (100 mM) condition, the primary reactive species within the Fe2+/PS system were SO 4 ⋅ - , OH·, Cl2/HClO, and Fe(IV). Several undesirable chlorinated by-products were formed. A reasonable degradation pathway was proposed. According to the ecological structure-activity relationship (ECOSAR) programme, some transformation products exhibited higher toxicity levels than CA itself in both acute and chronic toxicity assessment, especially in high-salinity environments. These findings elucidate an increased challenges and ecological risk for CA oxidation by Fe2+/PS treatment in saline pharmaceutical wastewater.
Collapse
Affiliation(s)
- Hongbin Wang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Siyi Fan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Hairong Wen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Ying Huang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province Ningbo, Ningbo, People's Republic of China
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
3
|
Zhang M, Huang S, Liu W, Yang J, Zhu M, Ho SH. Construction of highly dispersed iron active sites for efficient catalytic ozonation of bisphenol A. CHEMOSPHERE 2023; 344:140322. [PMID: 37775059 DOI: 10.1016/j.chemosphere.2023.140322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The essential factor of catalytic ozonation technology relies on an efficient and stable catalyst. The construction of highly dispersed active sites on heterogeneous catalysts is an ideal strategy to combine the merits of homogeneous and heterogeneous catalysis with high activity and stability. Herein, an iron-containing mesoporous silica material (Fe-SBA15) with sufficient iron site exposure and enhanced intrinsic activity of active sites was employed to activate ozone for bisphenol A (BPA) degradation. Approximately 100% of BPA and 36.6% of total organic carbon (TOC) removal were realized by the Fe-SBA15 catalytic ozonation strategy with a reaction constant of 0.076 min-1, well beyond the performance of FeOx/SBA15 mixture and Fe2O3. Radical quenching experiments and electron paramagnetic resonance (EPR) analysis demonstrated that the hydroxyl radicals (HO•) and superoxide radicals (O2•-) played an important role in the degradation process. The iron sites with recyclable Fe(III)/Fe(II) pairs act as both the electron donors and active sites for catalytic ozonation. The mesoporous framework of SBA15 in Fe-SBA15 stabilizes the iron sites that enhance its stability. With high catalytic performance and high reusability for catalytic ozonation of BPA, the Fe-SBA15 is expected to be a promising catalyst in catalytic ozonation for wastewater treatment.
Collapse
Affiliation(s)
- Minxian Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Shiqi Huang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, PR China
| | - Wencong Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China.
| |
Collapse
|
4
|
Wang Z, Zhu Z, Wang G, Ma X, Lu W. Iron (II) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light. ENVIRONMENTAL TECHNOLOGY 2023; 44:3491-3503. [PMID: 35437123 DOI: 10.1080/09593330.2022.2064236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Iron (II) phthalocyanine (FePc) is loaded on the surface of the tourmaline (TM) by the reflow method to obtain FePc/TM. This research effectively prevents the π-π stacking of FePc, increased the effective utilization rate of PMS activation under solar light, and further improved the catalytic performance of the catalytic system. The catalytic oxidation efficiency of FePc/TM on carbamazepine (CBZ) and sulfadiazine (SD) can reach 99% under solar light for 15 and 5 min, the total organic carbon (TOC) removal rate can reach 58% and 69% under solar light for 120 min. After 6 cycles, the CBZ removal rate remained above 95%. In addition, the FePc/TM catalytic system has an excellent removal rate for other pharmaceuticals. The results of spin-trapped electron paramagnetic resonance and classical quenching experiments show that FePc/TM can effectively activate PMS to generate active species under solar light, including superoxide radical (•O2-), singlet oxygen (1O2), hydroxyl radicals(•OH), and sulphate radicals (SO4•-). The intermediates of CBZ were identified by Ultra-high performance liquid chromatography and high resolution mass spectrometry, and the degradation pathway was proposed. As the reaction progresses, all CBZ and intermediates are reduced and converted into small acids, or mineralized to H2O, CO2. This work provides an alternative method for the design of efficient activation of PMS activation catalysts under solar light to eliminate residual pharmaceuticals in actual water bodies.
Collapse
Affiliation(s)
- Zhendong Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Xiaoji Ma
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Teixeira RA, Lima EC, Benetti AD, Naushad M, Thue PS, Mello BL, Dos Reis GS, Rabiee N, Franco D, Seliem MK. Employ a Clay@TMSPDETA hybrid material as an adsorbent to remove textile dyes from wastewater effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86010-86024. [PMID: 37395882 DOI: 10.1007/s11356-023-28568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
A grafting of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions. The clay@TMSPDETA hybrid material was characterized by isotherm of adsorption and desorption of nitrogen, FTIR, elemental analysis, TGA, pHpzc, total acidity, total basicity groups, and hydrophilic balance. The hybrid samples were more hydrophilic than the pristine clay for ratios from 0.1 up to 0.5 due to adding amino groups to the pristine clay. FTIR spectra suggest that TMSPDETA was grafted onto the clay. The hybrid material presents a surface area 2.17-fold (42.7 m2/g) lower than pristine clay (92.7 m2/g). The total volume of pores of hybrid material was 0.0822 cm3/g, and the pristine clay material was 0.127 cm3/g, corresponding to a diminution of the total pore volume (Vtot) of 1.54 times. The kinetic data followed the pseudo-second-order (PSO) model for RB-19 and RG-19 reactive dyes. The equilibrium data were better fitted to the Liu isotherm model, displaying a Qmax as 178.8 and 361.1 mg g-1 for RB-19 and RG-19, respectively, at 20.0 °C. The main mechanism of interactions of the reactive dyes with the hybrid clay is electrostatic interaction. The clay@TMSPDETA has a very good effect on treating synthetic dye-textile wastewater. The removal percentage of simulated wastewater was up to 97.67% and 88.34% using distilled water and plastic industry wastewater as the solvents, respectively. The clay@TMSPDETA-0.1 could be recycled up to 5 cycles of adsorption and desorption of both dyes, attaining recoveries of 98.42% (RB-19) and 98.32% (RG-19) using 0.1 M HCl + 10% ethanol.
Collapse
Affiliation(s)
- Roberta A Teixeira
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil.
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia.
| | - Antônio D Benetti
- Graduate Program in Water Resources and Environmental Sanitation, Hydraulic Research Institute (IPH), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, P.O. Box 2455, Saudi Arabia
| | - Pascal S Thue
- Environmental Science Graduate Program, Engineering Center, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Beatris L Mello
- Graduate Program in Mine, Metallurgical, and Materials Engineering (PPGE3M). School of Engineering, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
| | - Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Dison Franco
- Universidad de La Costa, CUC, Barranquilla, Atlántico, Colombia
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| |
Collapse
|
6
|
Li X, Song H, Zhang G, Zou W, Cao Z, Pan Y, Zhang G, Zhou M. Enhanced organic pollutant removal in saline wastewater by a tripolyphosphate-Fe 0/H 2O 2 system: Key role of tripolyphosphate and reactive oxygen species generation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131821. [PMID: 37315414 DOI: 10.1016/j.jhazmat.2023.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
The effects of tripolyphosphate (TPP) on organic pollutant degradation in saline wastewater using Fe0/H2O2 were systematically investigated to elucidate its mechanism and the main reactive oxygen species (ROS). Organic pollutant degradation was dependent on the Fe0 and H2O2 concentration, Fe0/TPP molar ratio, and pH value. The apparent rate constant (kobs) of TPP-Fe0/H2O2 was 5.35 times higher than that of Fe0/H2O2 when orange II (OGII) and NaCl were used as the target pollutant and model salt, respectively. The electron paramagnetic resonance (EPR) and quenching test results showed that •OH, O2•-, and 1O2 participated in OGII removal, and the dominant ROS were influenced by the Fe0/TPP molar ratio. The presence of TPP accelerates Fe3+/Fe2+ recycling and forms Fe-TPP complexes, which ensures sufficient soluble Fe for H2O2 activation, prevents excessive Fe0 corrosion, and thereby inhibits Fe sludge formation. Additionally, TPP-Fe0/H2O2/NaCl maintained a performance similar to those of other saline systems and effectively removed various organic pollutants. The OGII degradation intermediates were identified using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and density functional theory (DFT), and possible degradation pathways for OGII were proposed. These findings provide a facile and cost-effective Fe-based AOP method for removing organic pollutants from saline wastewater.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Huajing Song
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Gaili Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Wei Zou
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Zhigguo Cao
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Guoqing Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
7
|
Xiong M, Chai B, Fan G, Zhang X, Wang C, Song G. Immobilization CoOOH nanosheets on biochar for peroxymonosulfate activation: Built-in electric field mediated radical and non-radical pathways. J Colloid Interface Sci 2023; 638:412-426. [PMID: 36758254 DOI: 10.1016/j.jcis.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The strong electron interaction between metal oxide-carbon-based catalyst components plays a vital role in the peroxymonosulfate (PMS) activation for pollutant degradation. Herein, a novel CoOOH nanosheets anchored on rape straw-derived biochar (BC) surface (labeled as CoOOH/BC) as an efficient PMS activator toward degrading sulfamethoxazole (SMX) was synthesized. Experimental results indicated that integrating CoOOH nanosheets on the BC surface could inhibit CoOOH aggregation to increase the specific surface areas, exert a component synergistic effect to enhance activation degradation activity, and improve the catalyst stability. As a result, a 96 % degradation efficiency of SMX was achieved within 20 min over 20 wt% CoOOH/BC composite catalyst under the optimal conditions. Density functional theory (DFT) calculations disclosed that a built-in electric field (BIEF) pointing from BC to CoOOH was constructed at their interface, which could mediate PMS activation for reactive oxygen species (ROS) generation and induce direct electron transfer from SMX to PMS, resulting in efficient SMX degradation via both radical and non-radical pathways. Moreover, quenching experiments and electron paramagnetic resonance (EPR) measurements confirmed that single oxide (1O2) and superoxide radical (O2·-) are the dominant active species in the current system. Additionally, the possible SMX degradation routes were reasonably proposed based on liquid chromatography-mass spectrometry (LC-MS) results. This work provides an in-depth understanding of the role of BIEF in PMS activation, and expands the application of biochar-based materials in the field of environmental remediation.
Collapse
Affiliation(s)
- Minghui Xiong
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bo Chai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaohu Zhang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chunlei Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
8
|
Cai C, Liu Y, Xu R, Zhou J, Zhang J, Chen Y, Liu L, Zhang L, Kang S, Xie X. Bicarbonate enhanced heterogeneous activation of peroxymonosulfate by copper ferrite nanoparticles for the efficient degradation of refractory organic contaminants in water. CHEMOSPHERE 2023; 312:137285. [PMID: 36403810 DOI: 10.1016/j.chemosphere.2022.137285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the treatment of residual refractory organic contaminants (ROCs) is a huge challenge for environmental remediation. In this study, a potential process is provided by copper ferrite catalyst (CuFe2O4) activated peroxymonosulfate (PMS, HSO5-) in the bicarbonate (HCO3-) enhanced system for efficient removal of Acid Orange 7 (AO7), 2,4-dichlorophenol, phenol and methyl orange (MO) in water. The impact of key reaction parameters, water quality components, main reactive oxygen species (ROS), probable degradation mechanism, rational degradation pathways and catalyst stability were systematically investigated. A 95.0% AO7 (C0 = 100 mg L-1) removal was achieved at initial pH (pH0) of 5.9 ± 0.1 (natural pH), CuFe2O4 dosage of 0.15 g L-1, PMS concentration of 0.98 mM, HCO3- concentration of 2 mM, and reaction time of 30 min. Both sulfate radical (SO4-•) and hydroxyl radical (•OH) on the surface of catalyst were proved as the predominant radical species through radical quenching experiments and electron paramagnetic resonance (EPR) analysis. The buffer nature of HCO3- was partially contributed for the enhanced degradation of AO7 under CuFe2O4/PMS/HCO3- system. Importantly, according to 13C nuclear magnetic resonance (NMR) and EPR analysis, the positive effect of bicarbonate may be mainly attributed to the formation of peroxymonocarbonate (HCO4-), which may enhance the generation of •OH. The magnetic CuFe2O4 particles can be well recycled and the leaching concentration of Cu was acceptable (<1 mg L-1). Considering the widespread presence of bicarbonate in water environment, this work may provide a safe, efficient, and sustainable technique for the elimination of ROCs from practical complex wastewater.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| | - Yangfan Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Rui Xu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jiaheng Zhou
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jin Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Yu Chen
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lingyu Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lexiang Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
9
|
Qi Z, Li G, Wang M, Chen C, Xu Z, An T. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water. WATER RESEARCH 2022; 215:118240. [PMID: 35287060 DOI: 10.1016/j.watres.2022.118240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The occurrence and proliferation of antibiotic-resistance genes (ARGs) / antibiotic-resistant bacteria (ARB) have been currently aggravating due to the increase of antibiotic residues in the aquatic environment. The interaction of ARB/ARGs with antibiotics inevitably occurred during water purification, yet their synergistic purification mechanism remains unclear. Herein, a systematic approach was developed to understand, in-depth, the synergistic mechanism in the coexisted E. coli DH5α (TET) inactivation and tetracycline hydrochloride (TET) degradation using photoelectrocatalysis (PEC) as a model technology. Results showed that low dosage (0 - 40 ppm) of TET exerted a negative influence on ARB inactivation with prolonged bactericidal time from 60 to 160 min. Addition of TET in environmental concentration (5 - 60 ppm) resulted in sub-lethal damage and prolonged PEC treatment time (100 - 160 min), accounting for inhibition effects on ARB inactivation. The major reactive species (RSs) involved in ARB inactivation and TET degradation were evidenced as photogenerated hole, •OH and O2•-, whereas hole and O2•- were demonstrated to be the major disinfectants for ARB/ARG inactivation. The bacterial defense system displayed increased antioxidative activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to protect ARB cells against oxidative stress. Exposure to 60 ppm TET was a threshold where certain ARB cells were induced into viable but nonculturable bacterial cell (VBNC) state, as evidenced by plate counting and ATP activity analysis, together with the integral cell membranes observed by flow cytometry (FCM) and scanning electron microscope (SEM). These findings appeal for appropriate technical adjustments for water and wastewater treatment to ensure safety of water.
Collapse
Affiliation(s)
- Zhenlian Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Miao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunliang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
10
|
Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118871. [PMID: 35066106 DOI: 10.1016/j.envpol.2022.118871] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 05/16/2023]
Abstract
The existence of heavy metals and emerging organic contaminants in wastewater produces serious toxic residues to the environment. Developing cheap and efficient materials to remove these persistent pollutants is crucial. Iron-based materials are cost-effective and environmentally friendly catalysts, and their applications in the environmental field deserve attention. This paper critically reviewed the removal mechanisms of heavy metals and emerging organic pollutants by different influencing factors. The removal of pollutants (heavy metals and emerging organic pollutants) in a multi-component system was analyzed in detail. The mechanisms of synergism, antagonism and non-interference were discussed. This paper had a certain reference value for the research of wastewater remediation technology which could simultaneously remove various pollutants by iron-based materials.
Collapse
Affiliation(s)
- Yishu Gong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Naipeng Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ruotong Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meidan Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
11
|
Mahato BN, Krithiga T. Recent developments in metal-doped SBA-15 catalysts for heterogeneous catalysis and sustainable chemistry. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of new advanced sustainable materials for heterogeneous catalysis requires control of the structural parameters of the active sites. Mesoporous silica, especially SBA-15, has some unique and important features such as highly ordered mesopores, greater hydrothermal stability, greater wall thickness, large surface area, and adjustable pore volume. All these properties render it a promising material for catalysis, adsorption, supporting materials, biomedical applications, and environmental remediation. However, pure SBA-15 lacks acidic characteristics, which hinders its catalytic activity. Therefore, the functionalized SBA-15 improves the catalytic activity for versatile applications. Thus, in this study, we attempted to summarize the synthesis procedures, various functionalization processes, and application of metal-modified SBA-15 in organic synthesis, fine chemical synthesis, photocatalysis, and decontamination of water. Furthermore, the physicochemical properties, sustainability, and efficacy are discussed in detail for future reference and scope of studies.
Collapse
Affiliation(s)
- Birendra Nath Mahato
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - T. Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
12
|
Gravity-driven Fe-doped CoTiO3/SiO2 fiber membrane with open catalytic network: Activation of peroxymonosulfate and efficient pollutants removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Luo J, Dai Y, Xu X, Liu Y, Yang S, He H, Sun C, Xian Q. Green and efficient synthesis of Co-MOF-based/g-C 3N 4 composite catalysts to activate peroxymonosulfate for degradation of the antidepressant venlafaxine. J Colloid Interface Sci 2021; 610:280-294. [PMID: 34922080 DOI: 10.1016/j.jcis.2021.11.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022]
Abstract
Based on single metal-organic framework (MOF) composite catalyst ZIF-67/g-C3N4 (ZG), the composite catalysts ZIF-67/MOF-74(Ni)/g-C3N4 (ZNG) and ZIF-67/MIL-100(Fe)/g-C3N4 (ZMG) with double MOFs were synthesized, used to effectively activate peroxymonosulfate (PMS) for degrade venlafaxine (VEN). Various characterization methods (XRD, FT-IR, Raman, SEM, EDS, TEM and TG) showed that ZIF-67 and g-C3N4; ZIF-67, MOF-74(Ni) and g-C3N4; as well as ZIF-67, MIL-100(Fe) and g-C3N4 successfully formed heterostructures. The series of catalytic degradation results showed that within 120 min, the degradation rate of VEN by ZMG achieved 100% and the mineralization rate reached 51.32%. The removal rate of VEN by ZNG was 91.38%, while that by ZG was only 27.75%. Free radical quenching tests and EPR further confirmed the production of OH and SO4-, which could be conducive to the degradation of VEN. The mechanism analysis of PMS activation confirmed that the interaction of Fe2+/Co3+ was stronger than that of Ni2+/Co3+, and it was an important driving force to significantly enhance the synergistic effect. Finally, Gauss theory calculation and HPLC-MS/MS were used to analyze the intermediate products of VEN. It was verified that the main chemical reactions in the degradation process of VEN were hydroxylation, dehydration, demethylation and tertiary amine substitution.
Collapse
Affiliation(s)
- Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaoming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Yazi Liu
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, PR China
| | - Shaogui Yang
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, PR China
| | - Huan He
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210046, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
14
|
Wang W, Chen M, Wang D, Yan M, Liu Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145522. [PMID: 33571779 DOI: 10.1016/j.scitotenv.2021.145522] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
With the continuous development of industrialization, a growing number of refractory organic pollutants are released into the environment. These contaminants could cause serious risks to the human health and wildlife, therefore their degradation and mineralization is very critical and urgent. Recently sulfate radical-based advanced oxidation technology has been widely applied to organic pollutants treatment due to its high efficiency and eco-friendly nature. This review comprehensively summarizes different methods for persulfate (PS) and peroxymonosulfate (PMS) activation including ultraviolet light, ultrasonic, electrochemical, heat, radiation and alkali. The reactive oxygen species identification and mechanisms of PS/PMS activation by different approaches are discussed. In addition, this paper summarized the toxicity of degradation intermediates through bioassays and Ecological Structure Activity Relationships (ECOSAR) program prediction and the formation of toxic bromated disinfection byproducts (Br-DBPs) and carcinogenic bromate (BrO3-) in the presence of Br-. The detoxification and mineralization of target pollutants induced by different reactive oxygen species are also analyzed. Finally, perspectives of potential future research and applications on sulfate radical-based advanced oxidation technology in the treatment of organic pollutants are proposed.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
15
|
Hou J, He X, Zhang S, Yu J, Feng M, Li X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145311. [PMID: 33736411 DOI: 10.1016/j.scitotenv.2021.145311] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted increasing attention for the degradation of organic contaminants in water. The oxidants of SR-AOPs could be activated to generate different kinds of reactive oxygen species (ROS, e.g., hydroxyl radicals (OH), sulfate radicals (SO4-), singlet oxygen (1O2), and superoxide radicals (O2-)) by various catalysts. As one of the promising catalysts, cobalt-based catalysts have been extensively investigated in catalytic activity and stability during water remediation. This article mainly summarizes recent advances in preparation and applications of cobalt-based catalysts on peroxydisulfate (PDS)/peroxymonosulfate (PMS) activation since 2016. The review covers the development of homogeneous cobalt ions, cobalt oxides, supported cobalt composites, and cobalt-based mixed metal oxides for PDS/PMS activation, especially for the latest nanocomposites such as cobalt-based metal-organic frameworks and single-atom catalysts. This article also discussed the activation mechanisms and the influencing factors of different cobalt-based catalysts for activating PDS/PMS. Finally, the future perspectives on the challenges and applications of cobalt-based catalysts are presented at the end of this paper.
Collapse
Affiliation(s)
- Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiudan He
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengqi Zhang
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jialin Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingbao Feng
- College of Environment & Ecology, Xiamen University, Xiamen 361102, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Huang L, Zhang H, Zeng T, Chen J, Song S. Synergistically enhanced heterogeneous activation of persulfate for aqueous carbamazepine degradation using Fe 3O 4@SBA-15. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144027. [PMID: 33321411 DOI: 10.1016/j.scitotenv.2020.144027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The exploration of low-cost, high-performance and stable catalytic materials for sulfate radical-based advanced oxidation processes (SR-AOPs) is of great importance. This study presents Fe3O4-wrapped SBA-15 mesoporous silica catalyst (Fe3O4@SBA-15) for persulfate (PS) activation. The Fe3O4@SBA-15 with an Fe3O4 to SBA-15 weight ratio of 3:1 exhibited an impressive carbamazepine (CBZ) removal efficiency of ~100% after 30 min of SR-AOP at an initial pH of 3.0, a temperature of 25 °C, an initial PS concentration of 300 mg L-1 and a catalyst concentration of 0.50 g L-1. The primary oxidizing species produced in the system were identified as SO4- and HO by electron paramagnetic resonance spectra and radical quenching experiments. Benefiting from the synergetic effects of improved Fe3O4 dispersion and enhanced adsorption of CBZ and PS by SBA-15, the as-obtained heterogeneous Fe3O4@SBA-15 catalysts offer large numbers of active sites for free radical generation and high surface concentrations of CBZ and PS for SR-AOPs, as verified by physicochemical characterization and Langmuir-Hinshelwood model analysis. In addition, the activity of Fe3O4@SBA-15 was maintained throughout six successive cycling tests. Various inorganic anions, including Cl-, NO3-, HCO3-, and CO32-, as well as organic material in natural water, exert a negative impact on the Fe3O4@SBA-15 catalyzed SR-AOPs and deserve special attention.
Collapse
Affiliation(s)
- Lu Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Hang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jianmeng Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Shuang Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China.
| |
Collapse
|
17
|
Cai C, Kang S, Xie X, Liao C, Duan X, Dionysiou DD. Efficient degradation of bisphenol A in water by heterogeneous activation of peroxymonosulfate using highly active cobalt ferrite nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122979. [PMID: 32497686 DOI: 10.1016/j.jhazmat.2020.122979] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Cobalt ferrite CoFe2O4 catalyst was fabricated and systematically investigated as an efficient peroxymonosulfate (PMS, HSO5-) activator for the degradation of recalcitrant organic contaminants (ROCs) in water treatment. Both SO4- and OH on the surface of catalyst were unveiled to be primarily responsible for bisphenol A (BPA) degradation by a comprehensive study using electron paramagnetic resonance (EPR), radical scavengers and quantification of SO4-, and the negligible contribution of singlet oxygen (1O2) was also observed. BPA degradation was accelerated in the presence of humic acid, and it increased first but then decreased with the further addition of fulvic acid. Moreover, the presence of chloride and bicarbonate ions can enhance both BPA and TOC removal. The toxicity of the target aqueous solution ascended slowly at the early stage but then declined dramatically and almost vanished as the reaction proceeded. The removal efficiencies of other typical ROCs (clofibric acid, 2,4-dichlorophenol, etc.) and the decontamination of natural surface water spiked with BPA were also evaluated. This CoFe2O4/PMS process could be well applied as a safe, efficient, and sustainable approach for ROCs remediation in complex wastewater matrix.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China; Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan 430074, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaodi Duan
- Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, OH, 45221-0071, United States.
| |
Collapse
|
18
|
Sustainable activation of peroxymonosulfate by the Mo(IV) in MoS2 for the remediation of aromatic organic pollutants. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Dual surfactants coassisted synthesis of CuO nanoleaves for activation of peroxymonosulfate to degrade acid orange 7. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|