1
|
Changlor N, Inchana C, Sabar MA, Suyamud B, Lohwacharin J. Effects of relative microplastic-biochar sizes and biofilm formation on fragmental microplastic retention in biochar filters. ENVIRONMENTAL RESEARCH 2025; 268:120834. [PMID: 39800292 DOI: 10.1016/j.envres.2025.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Microplastics (MPs) pose significant risks to aquatic life and human health. Conventional water treatment is ineffective in removing MPs, demanding alternative technologies. Biochar exhibits a potential for removing MPs through adsorption and filtration. The efficiency of biochar derived from macadamia (Macadamia Integrifolia) nutshells on MP removal from contaminated water was assessed in fixed-bed column tests at environmentally relevant MP concentrations in upward flowing regime. Fragmental polyethylene MPs (50-100 and 100-300 μm) were tested on the effects of the operating conditions, the relative MP-biochar size ratios (0.05-0.14 and 0.13-0.36 for small and large MPs), and biofilm formation on their retention in the biochar bed. The interactions between MPs and biochar are apparently electrostatically repulsive. Small biochar demonstrated >78% removal of the MPs at flow rates of 2.78 × 10-5, 2.78 × 10-4, or 1.39 × 10-3 m/s. Increasing the MP influent concentrations significantly increased the MP removal by the filter. The lower flow rates increase the MP removal with both MP influent concentrations and MP sizes, showing a maximum of 96% removal of small MP. The removal of large MPs by biochar filters (i.e. MP-biochar size ratio: 0.13-0.36) is significantly different when the highest flow rate is used. This difference moderates as the flow rates and MP size decline. Biofilm formation at its early stage altered the porous characteristics and surface morphology of the biochar and enhanced the MP removal. Overall, this study provides insights into the application of biochar filters in tertiary wastewater treatment.
Collapse
Affiliation(s)
- Natrasa Changlor
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chutiporn Inchana
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Adnan Sabar
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Bongkotrat Suyamud
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Cao Y, Shao S, Ye Z, Wang C, Pan D, Wu X. Characteristic and mechanism of biological nitrogen and phosphorus removal facilitated by biogenic manganese oxides (BioMnOx) at various concentrations of Mn(II). ENVIRONMENTAL RESEARCH 2024; 252:118943. [PMID: 38631471 DOI: 10.1016/j.envres.2024.118943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. However, characteristics and mechanisms of nitrification-denitrification in biological redox reactions mediated by different concentrations of BioMnOx are still unclear. Fate of nutrients (e.g., NH4+-N, TP, NO3--N) and COD were investigated through different concentrations of BioMnOx produced by Mn(II) in the moving bed biofilm reactor (MBBR). 34% and 89.2%, 37.8% and 89.8%, 57.3% and 88.9%, and 62.1% and 90.4% of TN and COD by MBBR were synchronously removed in four phases, respectively. The result suggested that Mn(II) significantly improved the performance of simultaneous nitrification and denitrification (SND) and TP removal based on manganese (Mn) redox cycling. Characteristics of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and electron transfer system activity (ETSA) were discussed, demonstrating that ROS accumulation reduced the ETSA and GSH-Px activities when Mn(II) concentration increased. Extracellular polymeric substance (EPS) function and metabolic pathway of Mn(II) were explored. Furthermore, effect of cellular components on denitrification was evaluated including BioMnOx performances, indicating that Mn(II) promoted the non-enzymatic action of cell fragments. Finally, mechanism of nitrification and denitrification, denitrifying phosphorus and Mn removal was further elucidated through X-ray photoelectron spectroscopy (XPS), high throughput sequencing, and fourier transform infrared reflection (FTIR). This results can bringing new vision for controlling nutrient pollution in redox process of Mn(II).
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China
| | - Zhiqing Ye
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China
| | - Chunxiao Wang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, Hefei, 230036, China.
| |
Collapse
|
3
|
Fang X, Yan Y, Xu Y, Huang H, Ren H. Advanced electrolysis sulfur-based biofiltration for simultaneous total nitrogen removal and estrogen toxicity reduction from low carbon-to-nitrogen ratio wastewater. BIORESOURCE TECHNOLOGY 2024; 396:130418. [PMID: 38325611 DOI: 10.1016/j.biortech.2024.130418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
A sulfur-based biofilter enhanced by phosphate modified activated carbon as particle electrodes was constructed to simultaneously remove total nitrogen (TN) and estrogen from low carbon-to-nitrogen ratio (C/N) wastewater containing 1 mg/L 17-alpha-ethinylestradiol (EE2). Results showed that the enhanced biofilter achieved outstanding performance in EE2 removal (93.2 %) and TN reduction (effluent < 5 mg/L), demonstrating robustness against C/N fluctuations. It was noteworthy that it successfully reduced both acute toxicity (59.5 %) and estrogenic activity (88.6 %). Comprehensive characterization investigations and microbial community structure analysis revealed that enhanced electron transfer and increased microbial abundance likely contributed to improved biofilter performance. Core microorganisms, such as Pseudomonas and Chryseobacterium were identified as key contributors to synergistic estrogen degradation and denitrification. This study presented a feasible and promising strategy of combined process with three-dimensional electrodes and sulfur-based biofilter, highlighting substantial potential for advanced purification and safe reuse of wastewater.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujie Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
4
|
Hou D, Zhang L, Li C, Chen L, Zou J. Enhancing the Mn-Removal Efficiency of Acid-Mine Bacterial Consortium: Performance Optimization and Mechanism Study. Microorganisms 2023; 11:2185. [PMID: 37764029 PMCID: PMC10535970 DOI: 10.3390/microorganisms11092185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, an acclimated manganese-oxidizing bacteria (MnOB) consortium, QBS-1, was enriched in an acid mine area; then, it was used to eliminate Mn(Ⅱ) in different types of wastewater. QBS-1 presented excellent Mn removal performance between pH 4.0 and 8.0, and the best Mn-removal efficiency was up to 99.86% after response surface methodology optimization. Unlike other MnOB consortia, the core bacteria of QBS-1 were Stenotrophomonas and Achromobacter, which might play vital roles in Mn removal. Besides that, adsorption, co-precipitation and electrostatic binding by biological manganese oxides could further promote Mn elimination. Finally, the performance of the Mn biofilter demonstrated that QBS-1 was an excellent inoculant, which indicates good potential for removing Mn contamination steadily and efficiently.
Collapse
Affiliation(s)
- Dongmei Hou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.Z.); (C.L.); (L.C.)
| | | | | | | | - Jianping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.Z.); (C.L.); (L.C.)
| |
Collapse
|
5
|
Zhang L, Yang Y, Xu X, Deng S, Xiao H, Han X, Xia F, Jiang Y. Efficient utilization of biogenic manganese oxides in bioaugmentation columns for remediation of thallium(I) contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131225. [PMID: 36958163 DOI: 10.1016/j.jhazmat.2023.131225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Little attention has been paid to the in situ-generated biogenic manganese oxides (BMnOx) for practical implementation in continuous groundwater remediation systems. The enrichment effects of manganese oxidizing bacteria (MOB) in bioaugmentation columns and the in situ-generated BMnOx for continuous thallium(I) (Tl(I)) removal from groundwater were investigated. Results indicated that Pseudomonas Putida MnB1 (strain MnB1) attached on the groundwater sediments (GS) can achieve a maximum of 97.37 % Mn(II) oxidation and generate 29.6 mg/L BMnOx, which was superior than that of traditional quartz sand (QS). The in situ-generated BMnOx in MOB_GS column effectively removed 10-100 μg/L Tl(I) under the interference of high concentrations of Fe(II) and Mn(II) in groundwater. Distinctive microbial enrichment effects occurred in the bioaugmentation columns under the competition of indigenous microbes in groundwater. The release of Mn(II) from the BMnOx inhibited with the decrease in Tl(I) removal efficiency. XAFS analysis revealed Tl(I) was effectively adsorbed by BMnOx and Mn-O octahedra with Tl-O tetrahedral coordination existed in BMnOx. This study provides an in-depth understanding of the in situ-generated BMnOx for the Tl(I) removal and contributes to the application of BMnOx in groundwater remediation.
Collapse
Affiliation(s)
- Liangjing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Cheng Q, Tian H, Guo X, Feng S, Du E, Peng M, Zhang J. Advanced synergetic nitrogen removal of municipal wastewater using oxidation products of refractory organic matters in secondary effluent by biogenic manganese oxides as carbon source. WATER RESEARCH 2023; 241:120163. [PMID: 37276654 DOI: 10.1016/j.watres.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Due to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH4+-N in the denitrifying filter was about 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0 mg/L, total nitrogen (TN) in the effluent decreased from about 22 mg/L to 11.00, 7.85, 6.85, 5.20, 4.15 and 2.09 mg/L, and the corresponding removal rate was 49.15, 64.82, 69.40, 76.70, 81.36 and 90.58%, respectively. The proportional contribution of the partial-denitrification anammox pathway to the TN removal was 12.00, 26.45, 39.70, 46.04, 54.97 and 64.01%, and the actual CODcr consumption of removing 1 mg TN was 0.75, 1.43, 1.26, 1.17, 1.08 and 0.99 mg, respectively, which was much lower than the theoretical CODcr consumption of denitrification. Furthermore, CODcr in the effluent decreased to 8.12 mg/L with a removal rate of 72.40%, and the removed organic matters were mainly non-fluorescent organic matters. Kinds of denitrifying bacteria, anammox bacteria, hydrolytic bacteria and manganese oxidizing bacteria (MnOB) were identified in the denitrifying filter, which demonstrated that the advanced synergetic nitrogen removal was achieved. This novel technology presented the advantages of high efficiency of TN and CODcr removal, low operational cost and no secondary pollution.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China.
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
7
|
Combined strategy for 17-α-ethynilestradiol removal, CO2 fixation, and carotenoid accumulation using Thermosynechococcus sp. CL-1 cultivation. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Cheng Q, Liu Z, Huang Y, Feng S, Du E, Peng M, Zhang J. Advanced nitrogen removal performance and microbial community structure of a lab-scale denitrifying filter with in-situ formation of biogenic manganese oxides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117299. [PMID: 36642053 DOI: 10.1016/j.jenvman.2023.117299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Advanced nitrogen removal faces the challenges of high operational cost resulted from the additional carbon source and secondary pollution caused by inaccurate carbon source dosage in municipal wastewater. To address these problems, a novel carbon source was developed, which was the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by in-situ generated biogenic manganese oxides (BMOs) in the denitrifying filter. In the steady phase, the effluent chemical oxygen demand (CODcr), NO3--N and total nitrogen (TN) in the denitrifying filter 2# with BMOs was 11.27, 9.03 and 10.36 mg/L, and the corresponding removal efficiency was 54.79%, 51.85% and 48.03%, respectively, which was significantly higher than those in the control denitrifying filter 1# that the removal efficiency of CODcr, NO3--N and TN was only 32.30%, 28.58% and 29.36%, respectively. Kinds of denitrifying bacteria (Candidatus Competibacter, Defluviicoccus, Dechloromonas, Candidatus Competibacter, Dechloromonas, Pseudomonas, Thauera, Acinetobacter, Denitratisoma, Anaerolineae and Denitratisoma) and anammox bacteria (Pirellula, Gemmata, Anammoximicrobium and Brocadia) were identified in the denitrifying filters 1# and 2#, which explained why the actual CODcr consumption (1.55 and 1.44 mg) of reducing 1 mg NO3--N was much lower than the theoretical CODcr consumption. While manganese oxidizing bacteria (MnOB, Bacillus, Crenothrix and Pedomicrobium) was only identified in the denitrifying filter 2#. This novel technology presented the advantages of no additional carbon source, low operational cost and no secondary pollution. Therefore, the novel technology has superlative application value and broad application prospect.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China; College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Zongyang Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
9
|
Li Y, Liu Y, Feng L, Zhang L. A review: Manganese-driven bioprocess for simultaneous removal of nitrogen and organic contaminants from polluted waters. CHEMOSPHERE 2023; 314:137655. [PMID: 36603680 DOI: 10.1016/j.chemosphere.2022.137655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Water pollutants, such as nitrate and organics have received much attention for their harms to ecological environment and human health. The redox transformation between Mn(Ⅱ) and Mn(Ⅳ) for nitrogen and organics removal have been recognized for a long time. Mn(Ⅱ) can act as inorganic electron donor to drive autotrophic denitrification so as to realize simultaneous removal of Mn(Ⅱ), nitrate and organic pollutants. Mn oxides (MnOx) also play an important role in the adsorption and degradation of some organic contaminants and they can change or create new oxidation pathways in the nitrogen cycle. Herein, this paper provides a comprehensive review of nitrogen and organic contaminants removal pathways through applying Mn(Ⅱ) or MnOx as forerunners. The main current knowledge, developments and applications, pollutants removal efficiency, as well as microbiology and biochemistry mechanisms are summarized. Also reviewed the effects of factors such as the carbon source, the environmental factors and operation conditions have on the process. Research gaps and application potential are further proposed and discussed. Overall, Mn-based biotechnology towards advanced wastewater treatment has a promising prospect, which can achieve simultaneous removal of nitrogen and organic contaminants, and minimize sludge production.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
10
|
Cai Y, Yang K, Qiu C, Bi Y, Tian B, Bi X. A Review of Manganese-Oxidizing Bacteria (MnOB): Applications, Future Concerns, and Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1272. [PMID: 36674036 PMCID: PMC9859543 DOI: 10.3390/ijerph20021272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Groundwater serving as a drinking water resource usually contains manganese ions (Mn2+) that exceed drinking standards. Based on the Mn biogeochemical cycle at the hydrosphere scale, bioprocesses consisting of aeration, biofiltration, and disinfection are well known as a cost-effective and environmentally friendly ecotechnology for removing Mn2+. The design of aeration and biofiltration units, which are critical components, is significantly influenced by coexisting iron and ammonia in groundwater; however, there is no unified standard for optimizing bioprocess operation. In addition to the groundwater purification, it was also found that manganese-oxidizing bacteria (MnOB)-derived biogenic Mn oxides (bioMnOx), a by-product, have a low crystallinity and a relatively high specific surface area; the MnOB supplied with Mn2+ can be developed for contaminated water remediation. As a result, according to previous studies, this paper summarized and provided operational suggestions for the removal of Mn2+ from groundwater. This review also anticipated challenges and future concerns, as well as opportunities for bioMnOx applications. These could improve our understanding of the MnOB group and its practical applications.
Collapse
Affiliation(s)
- Yanan Cai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang G, Hambly AC, Dou Y, Wang G, Tang K, Andersen HR. Polishing micropollutants in municipal wastewater, using biogenic manganese oxides in a moving bed biofilm reactor (BioMn-MBBR). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127889. [PMID: 34863559 DOI: 10.1016/j.jhazmat.2021.127889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) cannot remove organic micropollutants efficiently, and thus various polishing processes are increasingly being studied. One such potential process is utilising biogenic manganese oxides (BioMnOx). The present study operated two moving bed biofilm reactors (MBBRs) with synthetic sewage as feed, one reactor feed was spiked with Mn(II) which allowed the continuous formation of BioMnOx by Mn-oxidising bacteria in the suspended biofilms (i.e. BioMn-MBBR). Spiking experiments with 14 micropollutants were conducted to investigate if BioMnOx combined with MBBR could be utilised to polish micropollutants in wastewater treatment. Results show enhanced removal by BioMn-MBBR over control MBBR (without BioMnOx) for specific micropollutants, such as diclofenac (36% vs. 5%) and sulfamethoxazole (80% vs. 24%). However, diclofenac removal was significantly inhibited when municipal wastewater was fed, and a further batch experiment demonstrates the reduced removal of diclofenac could be due to (unusual) higher pH in municipal wastewater compared to synthetic sewage. A shift in bacterial community was also observe in BioMn-MBBR over long-term operation. Overall, BioMn-MBBR in this study shows great potential for practical application in removing a larger range of micropollutants, which could be applied as an efficient polishing step for typical municipal wastewater.
Collapse
Affiliation(s)
- Guochen Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Yibo Dou
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark.
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
12
|
Yi M, Sheng Q, Lv Z, Lu H. Novel pathway and acetate-facilitated complete atenolol degradation by Hydrogenophaga sp. YM1 isolated from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152218. [PMID: 34890665 DOI: 10.1016/j.scitotenv.2021.152218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 μg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 μg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39-156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29-37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lv
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Sun Y, Zhang Y, Li W, Zhang W, Xu Z, Dai M, Zhao G. Combination of the endophytic manganese-oxidizing bacterium Pantoea eucrina SS01 and biogenic Mn oxides: An efficient and sustainable complex in degradation and detoxification of malachite green. CHEMOSPHERE 2021; 280:130785. [PMID: 33971420 DOI: 10.1016/j.chemosphere.2021.130785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recently, Mn oxides (MnOxs) have been attracting considerable interest in the oxidation of organic pollutants. However, the reduction of MnOx in these reactions leads to the deactivation of the catalyst, which must be frequently regenerated. We evaluated the application of a manganese-oxidizing bacterium (MOB) and MnOx in removing toxic dyes. We studied the co-function of a plant-endophytic MOB, Pantoea eucrina SS01, with its bio-generated MnOx and evaluated the detoxification activity and chemical transformation mechanisms of the complex in malachite green (MG) degradation. We found a synergistic effect between MnOx and the strain. Particularly, strain SS01 could adsorb MG but could not degrade it, whereas the addition of Mn(II) promoted MG degradation by the formation of a complex containing the bacterium and MnOx aggregates (SS01-bio-MnOx), with distinct morphology characteristics. The complex showed a marked sustainability in the degradation of MG into less toxic or non-toxic metabolites. In this process, strain SS01 might have enhanced the regeneration of MnOx, accelerating MG degradation. Our data not only contribute to understanding the mechanism of MG removal by the SS01-bio-MnOx complex, but also provide a scientific basis for the future application of MOB and MnOx.
Collapse
Affiliation(s)
- Yuankai Sun
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yonggang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenzhe Li
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenchang Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Zhenlu Xu
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
14
|
Sochacki A, Kowalska K, Felis E, Bajkacz S, Kalka J, Brzeszkiewicz A, Vaňková Z, Jakóbik-Kolon A. Removal and transformation of sulfamethoxazole in acclimated biofilters with various operation modes - Implications for full-scale application. CHEMOSPHERE 2021; 280:130638. [PMID: 33932905 DOI: 10.1016/j.chemosphere.2021.130638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The knowledge gaps regarding the degradation of sulfamethoxazole (SMX) in biofilters include the effect of aeration, constant feeding with readily biodegradable organic carbon and the presence of reactive media such as manganese oxides (MnOx). Thus, the goal of this study was to assess the removal of SMX in lab-scale biofilters with various operation variables: aeration, presence of MnOx as an amendment of filtering medium and the presence of readily biodegradable organic carbon (acetate). The sand used in the experiment as a filtering medium was previously exposed to the presence of SMX and acetate, which provided acclimation of the biomass. The removal of SMX was complete (>99%) with the exception of the unaerated columns fed with the influent containing acetate, due to apparent slower rate of SMX degradation. The obtained results suggest that bacteria were able to degrade SMX as a primary substrate and the degradation of this compound was subsequent to the depletion of acetate. The LC-MS/MS analysis of the effluents indicated several biotransformation reactions for SMX: (di)hydroxylation, acetylation, nitrosation, deamonification, S-N bond cleavage and isoxazole-ring cleavage. The relative abundance of transformation products was decreased in the presence of MnOx or acetate. Based on the Microtox assay, only the effluents from the unaerated columns filled with MnOx were classified as non-toxic. The results offer important implications for the design of biofilters for the elimination of SMX, namely that biofilters offer the greatest performance when fed with secondary wastewater and operated as non-aerated systems with a filtering medium containing MnOx.
Collapse
Affiliation(s)
- Adam Sochacki
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Katarzyna Kowalska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland; Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland
| | - Arletta Brzeszkiewicz
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland
| | - Zuzana Vaňková
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic
| | - Agata Jakóbik-Kolon
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland
| |
Collapse
|