1
|
Xu Y, Yu W, Wang X, Tao K, Bian Z, Wang H, Wei Y. Impact of low-dose free chlorine on the conjugative transfer of antibiotic resistance genes in wastewater effluents: Identifying key environmental factors for predictive modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136824. [PMID: 39667151 DOI: 10.1016/j.jhazmat.2024.136824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/13/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Reclaimed water disinfection results in the coexistence of antibiotic resistance genes (ARGs) and low-dose free chlorine in receiving environments. However, the impact of low-dose free chlorine on ARGs conjugative transfer and the key factors influencing the transfer under complex environmental conditions remain unclear, hindering the establishment of an effective monitoring system for resistance pollution in reclaimed water. This study investigated ARGs conjugative transfer under the influence of free chlorine at environmentally relevant concentrations and key interactive factors using machine learning models. The results showed that low-dose free chlorine (0.05-0.3 mg/L) promoted ARGs conjugative transfer, with 0.15 mg/L having a greater promoting effect than free chlorine concentrations of 0.05 and 0.3 mg/L. Additionally, different exposure patterns of low-dose chlorine affected ARGs conjugative transfer, with intermittent exposure posing a higher risk of ARGs dissemination. SVM linear model performed best in predicting ARGs conjugative transfer (RMSE=0.012, R2=0.975), and the SHapley Additive Explanations (SHAP) method revealed that key factors such as HCO3-, SAA, NO3-, and HA had positive SHAP values, indicating a positive influence on ARGs transfer under low-dose chlorine, making them the key features for predicting the ARGs conjugative transfer under the low-dose chlorine exposure. This study also revealed potential mechanisms of ARGs transfer under continuous low-dose free chlorine exposure, including intracellular reactive oxygen species (ROS), enzyme activity, cell membrane permeability, and gene expression. The integration of the machine learning model and post-hoc interpretation methods clarified the key drivers of ARGs conjugative transfer in reclaimed water-replenished environments, providing new insights for the safe reuse of reclaimed water and the development of river monitoring indicators.
Collapse
Affiliation(s)
- Ye Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Wenchao Yu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiaowen Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Kang Tao
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Yuansong Wei
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
2
|
Zhang J, Lei H, Huang J, Wong JWC, Li B. Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137559. [PMID: 39965334 DOI: 10.1016/j.jhazmat.2025.137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
The burgeoning of antibiotic resistance has emerged as a pressing global challenge. To gain a deeper understanding of the interactions between antibiotic resistance genes (ARGs), biocide and metal resistance genes (BRGs&MRGs), and mobile genetic elements (MGEs), this study utilized metagenomics and metatranscriptomics to investigate their co-occurrence and co-expression in two consortia subjected to long-term exposure to chloramphenicol and lincomycin. Long-term exposure to these antibiotics resulted in significant disparities in resistance profiles: ConsortiumCAP harbored 130 ARGs and 150 BRGs&MRGs, while ConsortiumLIN contained 57 ARGs and 32 BRGs&MRGs. Horizontal gene transfer (HGT) events were predicted at 125 and 300 instances in ConsortiumCAP and ConsortiumLIN, respectively, facilitating the emergence of multidrug-resistant bacteria, such as Caballeronia (10 ARGs, 2 BRGs&MRGs), Cupriavidus (2 ARGs, 10 BRGs&MRGs), and Bacillus (14 ARGs, 21 BRGs&MRGs). Chloramphenicol exposure significantly enriched genes linked to phenicol resistance (floR, capO) and co-expressed ARGs and BRGs&MRGs, while lincomycin exerted narrower effects on resistance genes. Additionally, both antibiotics modulated the expression of degradation genes and virulence factors, highlighting their role in altering bacterial substrate utilization and pathogenic traits. This study provides quantitative insights into the impact of antibiotics on microbial resistance profiles and functions at both DNA and RNA levels, highlighting the importance of reducing antibiotic pollution and limiting the spread of resistance genes in the environment.
Collapse
Affiliation(s)
- Jiayu Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Huang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jonathan W C Wong
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
3
|
Liu Y, Shan X, Liu C, Chen H. Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137398. [PMID: 39874760 DOI: 10.1016/j.jhazmat.2025.137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water.
Collapse
Affiliation(s)
- Yiyi Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Xin Shan
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| |
Collapse
|
4
|
Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, Ismail A, Bux F, Kumari S. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137180. [PMID: 39847933 DOI: 10.1016/j.jhazmat.2025.137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The ever-increasing microplastics (MPs) and antibiotic-resistance genes (ARGs) in aquatic ecosystems has become a serious global challenging issue. However, the impact of different pollution sources on microbiome and antibiotic resistome in surface water (SW) and plastisphere (PS) remains largely elusive. Here, shotgun metagenomics was used to analyze microbiome structure and antibiotic resistome in SW and PS under the influence of different pollution sources. Pseudomonas were the most abundant genus, followed by Flavobacterium, Acinetobacter, Acidovorax, and Limnohabitans. However, their relative abundance varied significantly both across the sampling sites and habitats i.e. SW and PS (p < 0.05). Additionally, various ARGs were detected in SW and PS, with PS (372) having significantly more potential ARGs than SW (293). The results further showed significant variations in the relative abundance of potential pathogenic bacteria across the sampling sites and habitats (p < 0.05). Further moreover, significant differences were observed in antibiotic resistome risk scores, ARGs and MGEs across different habitats. Over all, this study suggests that pollution source and water quality parameters had a significant impact on microbiome composition and antibiotic resistome in SW and PS.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Malambule Nomalihle
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Jonathan Featherston
- Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm10 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa.
| |
Collapse
|
5
|
Chen J, Su Z, Li F, Cao F, Xiong F, Jiang B, Xing Y, Wen D. The variation of resistome, mobilome and pathogen in domestic and industrial wastewater treatment systems. ENVIRONMENT INTERNATIONAL 2024; 193:109051. [PMID: 39418785 DOI: 10.1016/j.envint.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Wastewater treatment plants (WWTPs), including both domestic and industrial facilities, are key contributors to antibiotic resistance genes (ARGs) and human pathogens in the environment. However, the characteristics and dissemination mechanisms of ARGs in domestic (SD) and industrial (SI) wastewater treatment systems remain unclear, leading to uncertainties in risk assessment. Based on metagenomic analysis, we observed significant differences in the compositions of resistome (ARGs and metal resistance genes, MRGs), mobilome (mobile genetic elements, MGEs), and bacterial community between SD and SI. SI exhibited lower diversity of ARGs but higher abundance of MRGs compared to SD. The removal efficiency of resistome was lower in the SI than that in the SD. MGEs emerged as the primary driver of ARG dissemination in the WWTPs, followed by the bacterial community. Environmental conditions (physicochemical parameters, heavy metals, and antibiotics) indirectly influenced the variation of resistome. Significantly, environmental conditions and MGEs highly influenced the composition of resistome in the SI, while bacterial community more associated with resistome in the SD. Additionally, we identified 36 human bacterial pathogens as potential hosts of ARGs, MRGs, and MGEs in wastewater samples. This study provides new insights on the dissemination mechanisms and risk assessment of antimicrobial resistance in the different types of WWTPs.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Feifei Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Fuzhong Xiong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Zhang X, Zhao B, Zhang Y, Zhang J, Li Y, Zhong J, Diao J, Ma F, Liu H, Duan K. Sources, interactions, influencing factors and ecological risks of microplastics and antibiotic resistance genes in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175226. [PMID: 39098429 DOI: 10.1016/j.scitotenv.2024.175226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are gaining increasing attention as they pose a threat to the ecological environment and human health as emerging contaminants. MPs has been proved to be a hot spot in ARGs, and although it has been extensively studied in water environment, the results of bibliometrics statistical analysis in this paper showed that relevant studies in soil ecological environment are currently in the initial stage. In view of this, the paper provides a systematic review of the sources, interactions, influencing factors, and ecological risks associated with MPs and ARGs in soil environments. Additionally, the mechanism and influencing factors of plastisphere formation and resistance are elaborated in detail. The MPs properties, soil physicochemical properties, soil environmental factors and agricultural activities are the primarily factors affecting the interaction between MPs and ARGs in soil. Challenges and development directions of related research in the future are also prospected. It is hoped that the review could assist in a deeper comprehension and exploration of the interaction mechanism between MPs and ARGs in soil as well as the function of MPs in the transmission process of ARGs among diverse environmental media and organisms, and provide theory basis and reference for the MPs and ARGs pollution control and remediation in soil.
Collapse
Affiliation(s)
- Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China.
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jinkui Zhong
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Jingru Diao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Hui Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| |
Collapse
|
7
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
8
|
Li N, Fan XY, Li X. Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135194. [PMID: 39003808 DOI: 10.1016/j.jhazmat.2024.135194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water.
Collapse
Affiliation(s)
- Na Li
- China Architecture Design and Research Group, Beijing 100044, PR China; Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Mosaddegh A, Angel CC, Craig M, Cummings KJ, Cazer CL. An exploration of descriptive machine learning approaches for antimicrobial resistance: Multidrug resistance patterns in Salmonella enterica. Prev Vet Med 2024; 230:106261. [PMID: 38964208 DOI: 10.1016/j.prevetmed.2024.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Salmonellosis is one of the most common foodborne diseases worldwide, with the ability to infect humans and animals. Antimicrobial resistance (AMR) and, particularly, multidrug resistance (MDR) among Salmonella enterica poses a risk to human health. Antimicrobial use (AMU) regulations in livestock have been implemented to reduce AMR and MDR in foodborne pathogens. In this study, we used an integrated machine learning approach to investigate Salmonella AMR and MDR patterns before and after the implementation of AMU restrictions in agriculture in the United States. For this purpose, Salmonella isolates from cattle in the National Antimicrobial Resistance Monitoring System (NARMS) dataset were analysed using three descriptive models consisting of hierarchical clustering, network analysis, and association rule mining. The analysis showed the impact of the United States' 2012 extra-label cephalosporin regulations on AMR trends and revealed a distinctive MDR pattern in the Dublin serotype. The results also indicated that each descriptive model provides insights on a specific aspect of resistance patterns and, therefore, combining these approaches make it possible to gain a deeper understanding of AMR.
Collapse
Affiliation(s)
- Abdolreza Mosaddegh
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Claudia Cobo Angel
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Maya Craig
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kevin J Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Casey L Cazer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
10
|
Xiao X, He M, Ma L, Lv W, Huang K, Yang H, Li Y, Zou L, Xiao Y, Wang W. Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133811. [PMID: 38382341 DOI: 10.1016/j.jhazmat.2024.133811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored.
Collapse
Affiliation(s)
- Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Miao He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kang Huang
- Biological Systems Engineering, Washington State University, Pullman, USA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanbin Li
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Likou Zou
- College of Resources and Environment, Sichuan Agricultural University, Chengdu, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
11
|
Hu Y, Wei J, Yuan Y, Wei H, Zhou Y, Xiao N, Xiong J, Ren Z, Peng J, Cui C, Zhou Z. Intervention effects of fructooligosaccharide and astragalus polysaccharide, as typical antibiotic alternatives, on antibiotic resistance genes in feces of layer breeding: advantages and defects. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133172. [PMID: 38071777 DOI: 10.1016/j.jhazmat.2023.133172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Although antibiotic alternatives are widely used in livestock and poultry breeding industry after in-feed antibiotics ban, their intervention effects on antibiotic resistance genes (ARGs) in these food animals' feces remain poorly understood. Here effects of fructooligosaccharide (FOS) and astragalus polysaccharide (APS), as typical antibiotic alternatives in China, on ARGs in layer feces were estimated by performing metagenomic sequencings and fluorescence quantitative PCR. Fructooligosaccharide significantly reduced sum abundance of ARGs and mobile genetic elements (MGEs) by increasing Lactobacillus clones and reducing Escherichia clones which had relatively higher abundances of ARG subtypes and MGE subtypes in layer feces. However, at least parts of core ARGs and MGEs categories were not reduced by FOS, such as aminoglycosides- and tetracyclines-resistant genes, Tn916, Integrase, and so on. MGEs and microbiome, especially Escherichia genus and Lactobacillus genus, were the key factors affecting ARGs' sum abundance. MGEs had a higher correlation coefficient with ARGs' sum abundance than Escherichia genus and Lactobacillus genus. These findings firstly reveal the defects of antibiotic alternatives in controlling bacterial resistance in livestock and poultry breeding after in-feed antibiotics ban, and more strategies are needed to control pollutions and risks of core ARGs and MGEs in food animals' feces under a special environment.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, Huazhong Agricultural University, WuHan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Zhang Y, Xu Z, Chu W, Zhang J, Jin W, Ye C. Tracking the source of antibiotic resistome in the stormwater network drainage in the presence of sewage illicit connections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168989. [PMID: 38036118 DOI: 10.1016/j.scitotenv.2023.168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Stormwater pipes are illicitly connected with sewage in many countries, which means that sewage enters stormwater pipes and the drainage is discharged to surface water without any treatment. Sewage contains more pathogens and highly risky antibiotic resistance genes (ARGs) than surface runoff. Therefore, sewage may alter the microbial and ARG compositions in stormwater pipe drainage, which in turn leads to an increased risk of resistance in surface water. However, the effects of sewage on ARGs in the drainage of stormwater networks have not been systematically studied. This study characterized the microbial and ARG composition of several environmental compartments of a typical stormwater network and quantified their contributions to those in the drainage. This network transported ARGs and microorganisms from sewage, sediments in stormwater pipes, and surface runoff into the drainage and thus into the river. According to metagenomic analysis, multidrug resistance genes were most abundant in all samples and the numbers and relative abundance of ARGs in the drainage collected during wet weather were comparable to that of sewage. The results of SourceTracker showed that the relative contribution of sewage was double that of rainwater and surface runoff in the drainage during wet weather for both microorganisms and ARGs. Desulfovibrio, Azoarcus, and Sulfuritalea were connected with the greatest number of ARGs and were most abundant in the sediments of stormwater pipes. Furthermore, stochastic processes were found to dominate ARG and microbial assembly, as the effects of high hydrodynamic intensity outweighed the effects of environmental filtration and species interactions. The findings of this study can increase our understanding of ARGs in stormwater pipe drainage, a crucial medium linking ARGs in sewage to environmental ARGs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Wenhai Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Cheng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Yin S, Gao L, Fan X, Gao S, Zhou X, Jin W, He Z, Wang Q. Performance of sewage sludge treatment for the removal of antibiotic resistance genes: Status and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167862. [PMID: 37865259 DOI: 10.1016/j.scitotenv.2023.167862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Wastewater treatment plants (WWTPs) receive wastewater containing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs), which are predominant contributors to environmental pollution in water and soil. Of these sources, sludge is a more significant contributor than effluent. Knowing how sludge treatment affects the fate of ARGs is vital for managing the risk of these genes in both human and natural environments. This review therefore discusses the sources and transmission of ARGs in the environment and highlights the risks of ARGs in sludge. The effects of co-existing constituents (heavy metals, microplastics, etc.) on sludge and ARGs during treatment are collated to highlight the difficulty of treating sludge with complex constituents in ARGs. The effects of various sludge treatment methods on the abundances of ARGs in sludge and in soil from land application of treated sludge are discussed, pointing out that the choice of sludge treatment method should take into account various potential factors, such as soil and soil biology in subsequent land application. This review offers significant insights and explores the abundances of ARGs throughout the process of sludge treatment and disposal. Unintentional addition of antibiotic residues, heavy metals, microplastics and organic matter in sludge could significantly increase the abundance and reduce the removal efficiency of ARGs during treatment, which undoubtedly adds a barrier to the removal of ARGs from sludge treatment. The complexity of the sludge composition and the diversities of ARGs have led to the fact that no effective sludge treatment method has so far been able to completely eliminate the ecological risk of ARGs. In order to reduce risks resulting by transmission of ARGs, technical and management measures need to be implemented.
Collapse
Affiliation(s)
- Shiyu Yin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Le Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiumin Fan
- Shenzhen Ecological and Environmental Intelligent Management and Control Center, Shenzhen 518034, China
| | - Shuhong Gao
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Wenbiao Jin
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhongqi He
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
14
|
Jiang C, Almuhtaram H, McKie MJ, Andrews RC. Assessment of Biofilm Growth on Microplastics in Freshwaters Using a Passive Flow-Through System. TOXICS 2023; 11:987. [PMID: 38133388 PMCID: PMC10748376 DOI: 10.3390/toxics11120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Biofilms that colonize on the surface of microplastics (MPs) in freshwaters may pose a potential health risk. This study examined factors that influence MP-associated biofilm growth, including polymer type, degree of weathering, and source water quality. Weathered MPs produced in-lab were employed in biofilm trials conducted on site using a passive flow-through system with raw water at drinking water treatment facility intakes. Adenosine triphosphate (ATP) was used to quantify biofilm abundance; biofilm composition was assessed via metagenomic sequencing. Biofilm growth was observed on all polymer types examined and most prevalent on polyvinyl chloride (PVC), where ATP levels were 6 to 12 times higher when compared to other polymers. Pathogen-containing species including Salmonella enterica and Escherichia coli were present on all polymers with relative abundance up to 13.7%. S. enterica was selectively enriched on weathered MPs in specific water matrices. These findings support the need to research the potential accumulation of pathogenic organisms on microplastic surfaces.
Collapse
Affiliation(s)
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | | | | |
Collapse
|
15
|
Jing K, Li Y, Yao C, Jiang C, Li J. Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165554. [PMID: 37454845 DOI: 10.1016/j.scitotenv.2023.165554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
16
|
Zhang Y, Kitazumi A, Liao YT, de los Reyes BG, Wu VCH. Metagenomic investigation reveals bacteriophage-mediated horizontal transfer of antibiotic resistance genes in microbial communities of an organic agricultural ecosystem. Microbiol Spectr 2023; 11:e0022623. [PMID: 37754684 PMCID: PMC10581182 DOI: 10.1128/spectrum.00226-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/10/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Antibiotic resistance has become a serious health concern worldwide. The potential impact of viruses, bacteriophages in particular, on spreading antibiotic resistance genes is still controversial due to the complexity of bacteriophage-bacterial interactions within diverse environments. In this study, we determined the microbiome profiles and the potential antibiotic resistance gene (ARG) transfer between bacterial and viral populations in different agricultural samples using a high-resolution analysis of the metagenomes. The results of this study provide compelling genetic evidence for ARG transfer through bacteriophage-bacteria interactions, revealing the inherent risks associated with bacteriophage-mediated ARG transfer across the agricultural microbiome.
Collapse
Affiliation(s)
- Yujie Zhang
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| | - Yen-Te Liao
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| | | | - Vivian C. H. Wu
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Western Regional Research Center, Albany, California, USA
| |
Collapse
|
17
|
Gu Q, Lin T, Wei X, Zhang Y, Wu S, Yang X, Zhao H, Wang C, Wang J, Ding Y, Zhang J, Wu Q. Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118396. [PMID: 37331316 DOI: 10.1016/j.jenvman.2023.118396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China.
| |
Collapse
|
18
|
Jia Y, Niu H, Zhao P, Li X, Yan F, Wang C, Qiu Z. Synergistic biocontrol of Bacillus subtilis and Pseudomonas fluorescens against early blight disease in tomato. Appl Microbiol Biotechnol 2023; 107:6071-6083. [PMID: 37540249 DOI: 10.1007/s00253-023-12642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023]
Abstract
Early blight of tomato caused by Alternaria solani results in significant crop losses. In this study, Bacillus subtilis J3 and Pseudomonas fluorescens J8 were co-cultured as a synthetic microbial community (BCA) for synergistic biocontrol of A. solani, and the inhibition mechanism was investigated. BCA presented an inhibition ration against A. solani at 94.91%, which lowered the disease incidence by 38.26-42.87%; reduced peroxidase, catalase, superoxide dismutase activity of tomatoes by 73.11-90.22%; and promoted the biomass by 66.91-489.21%. With BCA protection, the relative expression of tomato resistance genes (including gPAL2, SWRKY, PR-10, and CHI) in roots and leaves was 12.83-90.70% lower than without protection. BCA also significantly altered the rhizosphere and phyllosphere microbial community. The abundance of potentially beneficial bacteria, including Bacillus, Pseudomonas, Arthrobacter, Lysobacter, and Rhizobium, elevated by 6.58-192.77%. They were negatively correlated with resistance gene expression, indicating their vital involvement in disease control. These results provided essential information on the synergistic biocontrol mechanism of bacteria against pathogens, which could contribute to developing novel biocontrol strategies. KEY POINTS: • Bacillus and Pseudomonas present a synergistic biocontrol effect against A. solani. • Biocontrol prevents pathogen damage and improves tomato growth and systemic resistance. • Beneficial bacteria thrive in the rhizosphere is the key to microbial regulation.
Collapse
Affiliation(s)
- Yinxue Jia
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Huan Niu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Peng Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, 617000, Sichuan, People's Republic of China
| | - Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Li S, Niu Z, Zhang Y. The prevalence of extra- and intra- cellular antibiotic resistance genes and the relationship with bacterial community in different layers of biofilm in the simulated drinking water pipelines. JOURNAL OF WATER PROCESS ENGINEERING 2023; 53:103780. [DOI: 10.1016/j.jwpe.2023.103780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Cao K, Wang Y, Bai X, Wang J, Zhang L, Tang Y, Thuku RC, Hou W, Mo G, Chen F, Jin L. Comparison of Fecal Antimicrobial Resistance Genes in Captive and Wild Asian Elephants. Antibiotics (Basel) 2023; 12:859. [PMID: 37237762 PMCID: PMC10215966 DOI: 10.3390/antibiotics12050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants.
Collapse
Affiliation(s)
- Kaixun Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yepeng Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xuewei Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jishan Wang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Liting Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Yongjing Tang
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Hou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (K.C.)
| | - Fei Chen
- Asian Elephant Research Center of National Forestry and Grassland Administration, Kunming 650031, China
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
21
|
Pan XR, Chen L, Zhang LP, Zuo JE. Characteristics of antibiotic resistance gene distribution in rainfall runoff and combined sewer overflow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30766-30778. [PMID: 36441318 DOI: 10.1007/s11356-022-24257-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Rainfall runoff and combined sewer overflow (CSO) converge with organic waste, nutrients, and microbes from the ground and wastewater. These pollutants promote the spread and transformation of antibiotic resistance genes (ARGs). In this study, four rainfall runoff and one CSO outfall were chosen, and samples were collected to explore the occurrence and distribution of ARGs. The ARGs were extracted from suspended solids and analyzed using metagenomic sequencing. A total of 888 ARG subtypes, belonging to 17 ARG types, were detected in all samples. Eleven ARG types were shared by all the samples. Multidrug resistance genes had the highest relative abundance. Their total relative abundance reached 1.07 ratio (ARG copy number/16S rRNA gene copy number) and comprised 46.6% of all the ARGs. In all samples, the CSO outfall had the highest total relative abundance (8.25 × 10-1 ratio) of ARGs, with a ratio ranging ND (not detected)-3.78 × 10-1 ratio. Furthermore, the relationship between ARG types and environmental factors was determined using redundancy analysis. The results showed that chemical organic demand (COD) and bacterial abundance were positively correlated with most ARG types, including multidrug, bacitracin, aminoglycoside, β-lactam, tetracycline, and sulfonamide. NH3-N, TN, and TP were positively correlated with rifamycin, fosmidomycin, and vancomycin resistance genes. The relationship among the ARG subtypes was investigated using network analyses. The multidrug resistance gene subtypes had the highest frequency of co-occurrence. This study provides insights into the occurrence and distribution of ARGs under non-point source pollution and may contribute to the control of ARGs.
Collapse
Affiliation(s)
- Xin-Rong Pan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lei Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Li-Ping Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Tarek MH, Garner E. A proposed framework for the identification of indicator genes for monitoring antibiotic resistance in wastewater: Insights from metagenomic sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158698. [PMID: 36108825 DOI: 10.1016/j.scitotenv.2022.158698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is one of the greatest threats to global human and animal health of our time. Municipal wastewater has been identified as a hotspot of antibiotic resistance contamination to water bodies. However, there are numerous potential antibiotic resistant pathogens and their associated antibiotic resistance genes (ARGs), making it difficult to implement routine monitoring that addresses the breadth of the problem. The objective of this study was to identify candidate indicator ARGs for monitoring antibiotic resistance in wastewater and receiving water bodies. We developed a framework to identify indicator ARGs that incorporated clinical relevance, abundance in wastewater, geographic ubiquity, environmental relevance, ARG mobility, associations with mobile genetic elements, and the availability of quantitative analytical methods. To identify indicator ARGs, published metagenomic sequencing data from 191 wastewater samples originating from 64 countries across the world were obtained from online public repositories. Through ARG annotation and network analysis, this framework revealed 56 candidate indicator ARGs distributed across four modules of strongly correlated ARGs, with one ARG from each module (oqxA, ermB, sul1, and mexE) proposed as a minimally redundant monitoring target. The results of this study provide the basis for antibiotic resistance surveillance and monitoring framework in wastewater and contaminated waterways.
Collapse
Affiliation(s)
- Mehedi Hasan Tarek
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States of America
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, United States of America.
| |
Collapse
|
23
|
Zhang L, Ju Z, Su Z, Fu Y, Zhao B, Song Y, Wen D, Zhao Y, Cui J. The antibiotic resistance and risk heterogeneity between urban and rural rivers in a pharmaceutical industry dominated city in China: The importance of social-economic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158530. [PMID: 36063953 DOI: 10.1016/j.scitotenv.2022.158530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Rivers are important environmental sources of human exposure to antibiotic resistance. Many factors can change antibiotic resistance in rivers, including bacterial communities, human activities, and environmental factors. However, the systematic comparison of the differences in antibiotics resistance and risks between urban rivers (URs) and rural rivers (RRs) in a pharmaceutical industry dominated city is still rare. In this study, Shijiazhuang City (China) was selected as an example to compare the differences in antibiotics resistance and risks between URs and RRs. The results showed higher concentrations of total quinolones (QNs) antibiotics in both water and sediment samples collected from URs than those from RRs. The subtypes and abundances of antibiotic resistance genes (ARGs) in URs were significantly higher than those in RRs, and most emerging ARGs (including OXA-type, GES-type, MCR-type, and tet(X)) were only detected in URs. The ARGs were mainly influenced by QNs in URs and social-economic factors (SEs) in RRs. The composition of the bacterial community was significantly different between URs and RRs. The abundance of antibiotic-resistant pathogenic bacteria (ARPBs) and virulence factors (VFs) were higher in URs than those in RRs. Therein, 371 and 326 pathogen types were detected in URs and RRs, respectively. Most emerging ARGs showed a significantly positive correlation with priority ARPBs. Variance partitioning analysis revealed that SEs were the main driving factors of ARGs (80 %) and microbial communities (92 %) both in URs and RRs. Structural equation models indicated that antibiotics (QNs) and microbial communities were the most direct influence of ARGs in URs and RRs, respectively. The cumulative resistance risk of QNs was high in URs, but relatively low in RRs. Enrofloxacin and flumequine posed the highest risk in water and sediment, respectively. This study could help us to better manage and control the risk of antibiotic resistance in different rivers.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China; College of Environmental Science and Engineering, Peking University, 100871 Beijing, China.
| | - Zejia Ju
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Zhiguo Su
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Fu
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Bo Zhao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Donghui Wen
- College of Environmental Science and Engineering, Peking University, 100871 Beijing, China
| | - Yu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| |
Collapse
|
24
|
Huang H. Captivity and geography influence the antibiotic resistome of non-human primates. Front Vet Sci 2022; 9:1020276. [PMID: 36467639 PMCID: PMC9716204 DOI: 10.3389/fvets.2022.1020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2024] Open
Abstract
INTRODUCTION Antibiotic resistance poses a serious threat for animals and humans health worldwide. Yet a comprehensive exploration of the influence of captivity and geography on non-human primate (NPH) gut antibiotic resistance remains incomplete. METHODS In this study, 131 metagenomic sequencing datasets of five species of NHPs included different regions and lifestyles were selected to perform the antibiotic resistance analysis. RESULTS Nineteen related resistance antibiotics and 325 antibiotic resistance genes (ARGs) were obtained. A significantly higher abundance and diversity index of ARGs in the captive NHPs than in the wild was found but not for all of the samples. The biomarker-tracking of ARGs analysis identified key ARGs related to aminoglycoside resistance genes and tetracycline resistance genes. DISCUSSION These results suggest that captivity and geography changes associated with human activities can lead to marked changes in the ecology of the NHP gut flora ARGs.
Collapse
Affiliation(s)
- Hongli Huang
- Clinical Biological Specimen Bank, Discipline Construction Office, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Zieliński W, Hubeny J, Buta-Hubeny M, Rolbiecki D, Harnisz M, Paukszto Ł, Korzeniewska E. Metagenomics analysis of probable transmission of determinants of antibiotic resistance from wastewater to the environment - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154354. [PMID: 35259375 DOI: 10.1016/j.scitotenv.2022.154354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/23/2023]
Abstract
During mechanical-biological treatment, wastewater droplets reach the air with bioaerosols and pose a health threat to wastewater treatment plant (WWTP) employees and nearby residents. Microbiological pollutants and antimicrobial resistance determinants are discharged to water bodies with treated wastewater (TWW), which poses a potential global epidemiological risk. In the present study, the taxonomic composition of microorganisms was analyzed, and the resistome profile and mobility of genes were determined by metagenomic next-generation sequencing in samples of untreated wastewater (UWW), wastewater collected from an activated sludge (AS) bioreactor, TWW, river water collected upstream and downstream from the wastewater discharge point, and in upper respiratory tract swabs collected from WWTP employees. Wastewater and the emitted bioaerosols near WWTP's facilities presumably contributed to the transmission of microorganisms, in particular bacteria of the phylum Actinobacteria and the associated antibiotic resistance genes (ARGs) (including ermB, ant(2″)-I, tetM, penA and cfxA2) to the upper respiratory tract of WWTP employees. The discharged wastewater increased the taxonomic diversity of microorganisms and the concentrations of various ARGs (including bacA, emrE, sul1, sul2 and tetQ) in river water. This study fills in the knowledge gap on the health risks faced by WWTP employees. The study has shown that microbiological pollutants and antimicrobial resistance determinants are also in huge quantities discharged to rivers with TWW, posing a potential global epidemiological threat.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn Plac Łódzki 1, 10-721 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland.
| |
Collapse
|
26
|
Zhao C, Li C, Wang X, Cao Z, Gao C, Su S, Xue B, Wang S, Qiu Z, Wang J, Shen Z. Monitoring and evaluation of antibiotic resistance genes in three rivers in northeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44148-44161. [PMID: 35122641 DOI: 10.1007/s11356-022-18555-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in selected original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Twenty types of ARG were detected in the water samples. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16S rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide-lincosamide-streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion. The composition of ARGs in three different rivers was similar, indicating that climate plays an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological and geographical distribution characteristics should be further explored.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoming Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhuosong Cao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Chao Gao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Sicong Su
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
27
|
Gao Y, Guo L, Jin C, Zhao Y, Gao M, She Z, Wang G. Metagenomics and network analysis elucidating the coordination between fermentative bacteria and microalgae in a novel bacterial-algal coupling reactor (BACR) for mariculture wastewater treatment. WATER RESEARCH 2022; 215:118256. [PMID: 35278913 DOI: 10.1016/j.watres.2022.118256] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
To achieve the goal of treating mariculture wastewater economically and efficiently, a novel bacterial-algal coupling reactor (BACR) integrating acidogenic fermentation and microalgae cultivation was firstly investigated for mariculture wastewater treatment. Volatile fatty acids (VFAs) generated in the dark chamber migrated into the photo chamber for microalgal utilization, which alleviated the pH drop and feedback inhibition of the acidogenic fermentation. The maximum dry cell weight (DCW) of microalgae was 1.46 g/L, and pollutants such as chemical oxygen demand (COD), ammonium (NH4+-N) and total phosphorus (TP) in the BACR were effectively removed under the mixotrophic culture condition. Furthermore, bacterial community profiles and functional genes in the BACR and single acidogenic fermentation reactor were identified. Compared with the single acidogenic fermentation reactor, most of the fermentative bacteria (e.g., Ruminococcus, Christensenellaceae R-7 group, Exiguobacterium, Pseudomonas and Levilinea) were enriched by the BACR. From the genetic perspective, the abundances of dominant genes (ackA, acs and atoD) associated with acetic, propionic and butyric acid production were greatly enhanced in the BACR. In the fatty acid biosynthesis pathway (ko00061), three kinds of high-abundance acetyl-CoA carboxylase genes and eight kinds of downstream functional genes were up-regulated in the BACR. Finally, based on co-occurrence network analysis, the coordination between fermentative bacteria and microalgae in the BACR was revealed. This study provided a deep insight into the advantage and potential of the BACR in mariculture wastewater treatment.
Collapse
Affiliation(s)
- Yedong Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
28
|
Wang L, Yuan L, Li ZH, Zhang X, Leung KMY, Sheng GP. Extracellular polymeric substances (EPS) associated extracellular antibiotic resistance genes in activated sludge along the AAO process: Distribution and microbial secretors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151575. [PMID: 34767888 DOI: 10.1016/j.scitotenv.2021.151575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are important sources of antibiotic resistance genes (ARGs). Increasing attention has been paid to extracellular ARGs in cell-free form due to their horizontal gene transfer via transformation. However, the fate of the adsorbed form of extracellular ARGs that exist in extracellular polymeric substances (EPS) of activated sludge in WWTP remains largely unknown. Herein, seven EPS-associated ARGs along the anaerobic-anoxic-aerobic (AAO) process were quantified using quantitative polymerase chain reaction. Results show that the absolute abundances of EPS-associated ARGs were 0.69-4.52 logs higher than those of cell-free ARGs. There was no significant difference in the abundances of EPS-associated ARGs along the AAO process. Among these target genes, the abundances of EPS-associated sul genes were higher than those of EPS-associated tet and bla genes. Proteobacteria and Bacteroidetes were identified as the major secretors of EPS-associated ARGs, and they may play an important role in the proliferation of extracellular ARGs. Moreover, the transformation efficiencies of EPS-associated ARGs were 3.55-4.65 logs higher than those of cell-free ARGs, indicating that EPS-associated ARGs have higher environmental risks. These findings have advanced our understanding of EPS-associated ARGs and are useful for the control and risk assessment of ARGs in WWTPs.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
29
|
Gu Q, Sun M, Lin T, Zhang Y, Wei X, Wu S, Zhang S, Pang R, Wang J, Ding Y, Liu Z, Chen L, Chen W, Lin X, Zhang J, Chen M, Xue L, Wu Q. Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. Front Microbiol 2022; 12:798442. [PMID: 35273579 PMCID: PMC8902363 DOI: 10.3389/fmicb.2021.798442] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3’)-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS’s antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ming Sun
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiuhua Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
30
|
Chen J, Li W, Tan Q, Sheng D, Li Y, Chen S, Zhou W. Effect of disinfectant exposure and starvation treatment on the detachment of simulated drinking water biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150896. [PMID: 34653459 DOI: 10.1016/j.scitotenv.2021.150896] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Biofilms were one of the main habitats of microbes in the drinking water distribution system. The variation of environmental conditions can lead to the detachment of biofilms and the deterioration of water quality. In this study, the effects of disinfectant exposure and starvation treatment on the detachment of biofilms were investigated. The results showed that detaching rate increased with the concentration of chloramine in the inlet water and 1.0 mg/L of chloramine led to the largest detached biomass. The starvation treatment resulted in less biofilm biomass but the detaching rates of treated biofilms were higher than those without starvation. The 16S rRNA sequencing results showed that detached and stubborn biofilms had a significant difference in microbial diversity and richness. The microbial community composition of the two types of biofilm showed the difference in the abundance of Nitrospira, Bryobacter, Hyphomicrobium, and Pedomicrobium. Chloramine exposure did not have a significant impact on the microbial community while the starvation treatment led to a higher abundance of chemolithotrophs bacteria. Metagenomic results indicated that detached biofilms had higher abundances of ARGs and starvation treatment could enrich the ARGs. The results of this research could provide the knowledge of biofilm sloughing and help understand the health risk of antibiotic resistance in drinking water.
Collapse
Affiliation(s)
- Jiping Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Qiaowen Tan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongfang Sheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yue Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheng Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
Gao YX, Li X, Zhao JR, Zhang ZX, Fan XY. Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 345:126568. [PMID: 34921920 DOI: 10.1016/j.biortech.2021.126568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.
Collapse
Affiliation(s)
- Yu-Xi Gao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jun-Ru Zhao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong-Xing Zhang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Yan Fan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
32
|
Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150141. [PMID: 34509832 DOI: 10.1016/j.scitotenv.2021.150141] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been detected in atmosphere, soil, and water and have been characterized as contaminants of emerging concern. When exposed to these environments, MPs interact with the chemical compounds as well as the (micro)organisms inhabiting these ecosystems. This paper overviews the interactions and significant factors influencing the sorption process of antibiotics on MPs since distinct interactions are developed between MPs and antibiotics. The interplay between the MPs and the antibiotic resistant genes (ARGs) microbial hosts is presented and the important factors that may shape the plastisphere resistome are discussed. The interactions of MPs, antibiotics and antibiotic resistant bacteria (ARB) and ARGs in wastewater treatment plants (WWTPs) were discussed with the aim to provide a perspective for better understanding of the role of WWTPs in bringing together MPs, antibiotics and ARB/ARGs and further as release points of MPs carrying antibiotics, and ARB/ARGs.
Collapse
Affiliation(s)
- Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
33
|
Wang R, Ji M, Zhai H, Guo Y, Liu Y. Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148919. [PMID: 34273824 DOI: 10.1016/j.scitotenv.2021.148919] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 05/23/2023]
Abstract
There is a growing concern on the fate and the consequent ecological or health risks of antibiotics and antibiotic resistance genes (ARGs) in natural or artificial water environment. The effluent of wastewater treatment plants (WWTPs) has been reported to be an important source of antibiotics and ARGs in the environment. WWTP effluent could be discharged into surface water bodies or recycled, either of which could lead to different exposure risks. The impact of WWTP effluents on the levels of antibiotics and ARGs in effluent-receiving water bodies and the removal efficiency of antibiotics and ARGs in reclaimed wastewater treatment plants (RWTPs) were seldom simultaneously investigated. Thus, in this study, we investigated the occurrence of antibiotics and ARGs in four WWTP effluents, and their downstream effluent-receiving water bodies and RWTPs in seasons of low-water-level. The total concentrations of ofloxacin, norfloxacin, ciprofloxacin, roxithromycin, azithromycin, erythromycin, tetracycline, oxytetracycline, chlortetracycline, and sulfamethoxazole in the secondary effluents were 1441.6-4917.6 ng L-1. Ofloxacin had the highest concentration. The absolute and relative abundances of total ARGs (qnrD, qnrS, ermA, ermB, tetA, tetQ, sul1, and sul2) in the secondary effluents were 103-104 copies mL-1 and 10-4-10-2 ARG/16S rRNA. Sul1 and sul2 were the major species with the highest detection frequencies and levels. In most cases, WWTP effluents were not the major contributors to the levels and species of antibiotics and ARGs in the surface water bodies. Four RWTPs removed 43.5-98.9% of antibiotics and - 0.19-2.91 log of ARGs. Antibiotics and ARGs increased in chlorination, ozonation and filtration units. Antibiotics had significantly positive correlations with ARGs, biological oxygen demands, total phosphorus, total nitrogen, and ammonia nitrogen in the four effluent-receiving water bodies. In RWTPs, the total concentrations of antibiotics showed a significant positive correlation with the total abundance of ARGs.
Collapse
Affiliation(s)
- Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuan Liu
- North China Municipal Engineering Design & Research Institute Co., LTD, Olympic Road, 300381, China
| |
Collapse
|
34
|
Garner E, Organiscak M, Dieter L, Shingleton C, Haddix M, Joshi S, Pruden A, Ashbolt NJ, Medema G, Hamilton KA. Towards risk assessment for antibiotic resistant pathogens in recycled water: a systematic review and summary of research needs. Environ Microbiol 2021; 23:7355-7372. [PMID: 34632683 DOI: 10.1111/1462-2920.15804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Risk assessment is critical for identifying target concentrations of antibiotic resistant pathogens necessary for mitigating potential harmful exposures associated with water reuse. However, there is currently limited available data characterizing the concentrations of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in recycled water to support robust efforts at risk assessment. The objective of this systematic review was to identify and synthesize the existing literature documenting the presence and abundance of ARB and ARGs in recycled water. In addition, this review identifies best practices and explores monitoring targets for studying ARB and ARGs in recycled water to guide future work and identifies key research needs aimed at better supporting quantitative microbial risk assessment focused on recycled water and antibiotic resistance. Future efforts to collect data about ARB and ARG prevalence in recycled water should report concentration data per unit volume. Sample metadata should also be provided, including a description of treatment approach, a description of planned water uses (e.g., potable, irrigation), methods for conveyance to the point of use, and available physicochemical water quality data. Additional research is needed aimed at identifying recommended ARB and ARG monitoring targets and for developing approaches to incorporate metagenomic data into risk assessment.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Marisa Organiscak
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Lucien Dieter
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.,The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Carley Shingleton
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Madison Haddix
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Sayalee Joshi
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.,The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Lismore, Australia
| | - Gertjan Medema
- KWR Water Research Institute, 7 3433PE, Nieuwegein, The Netherlands.,Sanitary Engineering, Delft University of Technology, Stevinweg 1 2628 CN Delft, Nieuwegein, The Netherlands
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ, 85281, USA.,The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAllister Ave, Tempe, AZ, 85281, USA
| |
Collapse
|
35
|
Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M. Quantitative microbiological risk assessment of complex microbial community in Prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126418. [PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
Collapse
Affiliation(s)
- Efaq Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Adel Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Balkis Talip
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000 Panchor, Johor, Malaysia
| | - Mohamed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Muhanna Al-Shaibani
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| |
Collapse
|
36
|
Stachurová T, Piková H, Bartas M, Semerád J, Svobodová K, Malachová K. Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. CHEMOSPHERE 2021; 280:130749. [PMID: 33971421 DOI: 10.1016/j.chemosphere.2021.130749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
This work monitored the effect of a municipal and a village wastewater treatment plant (WWTP) technology on the fate of beta-lactam resistance genes in bacterial populations in different phases of the wastewater treatment process. In case of the municipal WWTP1, the bacteria possessing a high ampicillin resistance (minimal inhibitory concentration (MIC) values of 20 mg/mL) accumulated in the sedimentation tank, which was accompanied with a higher concentration of ampicillin in the wastewater samples (28.09 ng/L) and an increase in the relative abundance of the blaTEM gene in the bacterial population. However, an opposite trend was revealed with the blaNDM-1 gene, making the sedimentation processes of WWTP1 crucial only for the accumulation of the blaTEM gene. Similarly, the comparison with the WWTP2 showed that the accumulation of the ampicillin resistance in bacterial population probably depended on the WWTP technology and wastewater composition. Out of the four tested resistance genes (blaTEM, blaKPC, blaNDM-1, and blaOXA-48), blaTEM and blaNDM-1 genes were the only two detected in this study. According to NGS analysis of bacterial 16 S rRNA gene, Gammaproteobacteria dominated the ampicillin-resistant bacteria of the WWTP sedimentation tanks. Their relative abundance in the bacterial population also increased during the sedimentation processes in WWTP1. It could indicate the role of the bacterial taxon in ampicillin resistance accumulation in this WWTP and show that only 9.29% of the original bacterial population from the nitrification tank is involved in the documented shifts in beta-lactam resistance of the bacterial population.
Collapse
Affiliation(s)
- Tereza Stachurová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic.
| | - Hana Piková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Kateřina Svobodová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Clinical Microbiology and ATB Center, General University Hospital in Prague, U Nemocnice 2, CZ-128 08, Prague, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| |
Collapse
|
37
|
Zhou B, Hou P, Xiao Y, Song P, Xie E, Li Y. Visualizing, quantifying, and controlling local hydrodynamic effects on biofilm accumulation in complex flow paths. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125937. [PMID: 34492866 DOI: 10.1016/j.jhazmat.2021.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Complex flow paths (CFPs) are commonly applied in precision equipment to accurately supply controllable fluids with designed structures. However, the presence of biofilms in CFPs causes quite a few unwanted issues, such as bio-erosion, clogging, or even health risks. To date, visualizing and quantifying the interaction between biofilm distribution and local hydrodynamics remains difficult, and the mechanism during the process is unclear. In this paper, the remodeling simulation method (3D industrial computed tomography scanning-inverse modeling-numerical simulation) and 16S rRNA high-throughput sequencing were integrated. The results indicated that local hydrodynamic characteristics significantly affected biofilm thicknesses on CFP surfaces (relative differences of 41.3-71.2%), which inversely influenced the local turbulence intensity. The average biofilm thicknesses exhibited a significant quadratic correlation with the near-wall hydraulic shear forces (r > 0.72, p < 0.05), and the biofilm reached a maximum thickness at 0.36-0.45 Pa. On the other hand, the near-wall hydraulic shear forces not only affected microbial community characteristics of biofilms, but they also influenced the number of microorganisms involved, which determined the biofilm accumulation thereafter. The PHYLUM Firmicutes and Proteobacteria were the dominant bacteria during the process. The results obtained in this paper could provide practical conceptions for the targeted control of biofilms and put forward more efficient controlling methods in commonly applied CFP systems.
Collapse
Affiliation(s)
- Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Hou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
38
|
Miao L, Wang C, Adyel TM, Zhao J, Yan N, Wu J, Hou J. Periphytic Biofilm Formation on Natural and Artificial Substrates: Comparison of Microbial Compositions, Interactions, and Functions. Front Microbiol 2021; 12:684903. [PMID: 34381427 PMCID: PMC8350161 DOI: 10.3389/fmicb.2021.684903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Periphytic biofilms have been widely used in wastewater purification and water ecological restoration, and artificial substrates have been progressively used for periphyton immobilisation to substitute natural substrates. However, there is insufficient knowledge regarding the interaction network structure and microbial functions in biofilm communities on artificial substrates, which are essential attribute affecting their applications in biofilm immobilisation. This study compared the community structure, co-occurrence network, and metabolic functions of bacterial and microeukaryotic periphytic biofilms during a 35-day indoor cultivation on artificial substrates, such as artificial carbon fibre (ACF) and polyvinyl chloride (PVC), and natural substrates, such as pebble and wood. Results demonstrated that different types of artificial substrates could affect the community composition and functional diversity of bacterial and microeukaryotic biofilms. The bacterial and microeukaryotic community on ACF and PVC showed significantly higher Simpson index compared to those on wood. Bacterial networks on artificial substrates were more complex than those on natural substrates, while the keystone species on natural substrates were more abundant, indicating that the bacterial communities on artificial substrates had stronger stability and resistance to external interference. Furthermore, the functional metabolic profiles predicted showed the abilities of bacterial communities to metabolise nitrogen and carbon sources colonised on artificial substrates were stronger than those on natural substrates. These findings demonstrated that artificial substrates could be special niches for microbial colonisation, possibly altering microbial compositions, interactions, and functions. Therefore, this study provides a powerful theoretical basis for choosing suitable artificial substrates for microbial aggregation and immobilisation technology.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Chengqian Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC, Australia
| | - Jiaqi Zhao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Ning Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| |
Collapse
|
39
|
Zhang Z, Wan J, Liu L, Ye M, Jiang X. Metagenomics reveals functional profiling of microbial communities in OCP contaminated sites with rapeseed oil and tartaric acid biostimulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112515. [PMID: 33819653 DOI: 10.1016/j.jenvman.2021.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) contaminated sites pose great threats to both human health and environmental safety. Targeted bioremediation in these regions largely depends on microbial diversity and activity. This study applied metagenomics to characterize the microbial communities and functional groups composition features during independent or simultaneous rapeseed oil and tartaric acid applications, as well as the degradation kinetics of OCPs. Results showed that: the degradation rates of α-chlordane, β-chlordane and mirex were better when (0.50% w/w) rapeseed oil and (0.05 mol L-1) tartaric acid were applied simultaneously than singular use, yielding removal rates of 56.4%, 53.9%, and 49.4%, respectively. Meanwhile, bio-stimulation facilitated microbial enzyme (catalase/superoxide dismutase/peroxidase) activity in soils significantly, promoting the growth of dominant bacterial communities. Classification at phylum level showed that the relative abundance of Proteobacteria was significantly increased (p < 0.05). Network analysis showed that bio-stimulation substantially increased the dominant bacterial community's proportion, especially Proteobacteria. The functional gene results illustrated that bio-stimulation facilitated total relative abundance of degradation genes, phosphorus, carbon, nitrogen, sulfur metabolic genes, and iron transporting genes (p < 0.05). In metabolic pathways, functional genes related to methanogenesis and ammonia generation were markedly upregulated, indicating that bio-stimulation promoted the transformation of metabolic genes, such as carbon and nitrogen. This research is conducive to exploring the microbiological response mechanisms of bio-stimulation in indigenous flora, which may provide technical support for assessing the microbial ecological remediation outcomes of bio-stimulation in OCP contaminated sites.
Collapse
Affiliation(s)
- Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhong Wan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China
| | - Li Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, 210008, China; School of Earth Science and Engineering, Hohai University, Nanjing, 210008, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
40
|
Zhao J, Li B, Lv P, Hou J, Qiu Y, Huang X. Distribution of antibiotic resistance genes and their association with bacteria and viruses in decentralized sewage treatment facilities. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 16:35. [PMID: 34249401 PMCID: PMC8255336 DOI: 10.1007/s11783-021-1469-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 05/24/2023]
Abstract
The distribution of antibiotic resistance genes (ARGs) has been intensively studied in large-scale wastewater treatment plants and livestock sources. However, small-scale decentralized sewage treatment facilities must also be explored due to their possible direct exposure to residents. In this study, six wastewater treatment facilities in developed rural areas in eastern China were investigated to understand their risks of spreading ARGs. Using metagenomics and network analysis tools, ARGs and bacterial and viral communities were identified in the influent (INF) and effluent (EFF) samples. The dominant ARGs belonged to the bacitracin class, which are different from most of municipal wastewater treatment plants (WWTPs). The dominant hosts of ARGs are Acidovorax in bacterial communities and Prymnesiovirus in viral communities. Furthermore, a positive relationship was found between ARGs and phages. The ARGs significantly correlated with phages were all hosted by specific genera of bacteria, indicating that phages had contributed to the ARG's proliferation in sewage treatment facilities. Paying significant concern on the possible enhanced risks caused by bacteria, viruses and their related ARGs in decentralized sewage treatment facilities is necessary. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-021-1469-4 and is accessible for authorized users.
Collapse
Affiliation(s)
- Jiaheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Pin Lv
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Jiahui Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083 China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
41
|
Zhou L, Ou P, Zhao B, Zhang W, Yu K, Xie K, Zhuang WQ. Assimilatory and dissimilatory sulfate reduction in the bacterial diversity of biofoulant from a full-scale biofilm-membrane bioreactor for textile wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145464. [PMID: 33571768 DOI: 10.1016/j.scitotenv.2021.145464] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Assimilatory and dissimilatory sulfate reduction (ASR and DSR) are the core bacterial sulfate-reducing pathways involved in wastewater treatment. It has been reported that sulfate-reducing activities could happen within biofoulants of membrane bioreactors during wastewater treatment. Biofoulants are mainly microbial products contributing membrane fouling and subsequent rising energy consumption in driving membrane filtration. Biofoulants from a full-scale biofilm-membrane bioreactor (biofilm-MBR) treating textile wastewater were investigated in this study. During a 10-month operation, sulfate concentrations in the effluent of the biofilm-MBR gradually decreased alongside with the creeping up sulfite concentrations when biofoulants were also building up on membrane modules. Sulfide had no apparent increases in the effluent during this period. Metagenomic analysis revealed diverse microbial communities residing in the biofoulants. Further analysis on their genetic traits revealed abundant ASR's and DSR's functional genes. A plethora of sulfate-reduction bacteria (SRB), including the well-known Desulfovibrio, Desulfainum, Desulfobacca, Desulfobulbus, Desulfococcus, Desulfonema, Desulfosarcina, Desulfobacter, Desulfobacula, Desulfofaba, Desulfotigum, Desulfatibacillum, Desulfatitalea, Desulfobacterium, were detected in the biofoulants. They were believed to play some important carbon and sulfur-cycling roles in our study. Based on metagenomic analysis, we also deduced that ASR was a functionally more important sulfate-reducing route because of the high abundance of assimilatory sulfate reductases detected. Also, the "AMP (adenosine monophosphate)→sulfite" step was a key reaction shared by both ASR and DSR in the biofoulant. This step might be responsible for the sulfite accumulation in the biofilm-MBR effluent. Overall, ASR functional genes in the biofoulants were more abundant. But the bacteria possessing complete DSR pathways caused the sulfide production in the biofilm-MBR.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, Shenzhen 518055, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
42
|
Li N, Li X, Zhang HJ, Fan XY, Liu YK. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144364. [PMID: 33429277 DOI: 10.1016/j.scitotenv.2020.144364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the dynamics of microbial communities and antibiotic resistance genes (ARGs) during biofilm formation on polypropylene random (PPR), polyvinyl chloride and stainless steel pipes in domestic hot water system (DHWS), as well as their interactions. Full-scale classification was used to divide abundant and rare genera with 0.1% and 1% as the thresholds. The biofilm community structure presented a temporal pattern, which was mainly determined by conditionally rare or abundant taxa (CRAT) and conditionally rare taxa (CRT). The dynamics of microbial community during biofilm formation were observed, and the effect of pipe material on conditionally abundant taxa (CAT) and CRAT was greater than CRT and rare taxa (RT). CRAT showed the most complex internal associations and were identified as the core taxa. Notably, CRT and RT with low relative abundance, also played an important role in the network. For potential pathogens, 17 genera were identified in this study, and their total relative abundance was the highest (3.6-28.9%) in PPR samples. Enterococcus of CRAT was the dominant potential pathogen in young biofilms. There were 36 more co-exclusion patterns (140) observed between potential pathogens and nonpathogenic bacteria than co-occurrence (104). A total of 38 ARGs were predicted, and 109 negative and 165 positive correlations were detected between them. Some potential pathogens (Escherichia/Shigella and Burkholderia) and nonpathogenic bacteria (Meiothermus and Sphingopyxis) were identified as the possible hosts of ARGs. This study is helpful for a comprehensive understanding of the biofilm microbial community and ARGs, and provides a reference for the management and biosafety guarantee of newly-built DHWS.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hui-Jin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan-Kun Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
43
|
Wang L, Yuan L, Li ZH, Zhang X, Sheng GP. Quantifying the occurrence and transformation potential of extracellular polymeric substances (EPS)-associated antibiotic resistance genes in activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124428. [PMID: 33160787 DOI: 10.1016/j.jhazmat.2020.124428] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance has been regarded as a global concern and biological wastewater treatment plants (WWTPs) are ideal hotbeds for the emergence and propagation of antibiotic resistance genes (ARGs). Extracellular polymeric substances (EPS), one of the primary components of activated sludge, might affect the distribution of extracellular ARGs in supernatant and EPS matrix, and thus alter their uptake potential by microbial cells. Herein, the presence and significance of EPS-associated ARGs in activated sludge from four WWTPs were assessed. Seven typical ARGs (sulI, sulII, blaTEM-1, tetA, tetO, tetQ, tetW) and class I integron (intI1) in EPS-associated, cell-free, and intracellular DNA were quantified. Results show that the absolute abundances of EPS-associated, cell-free, and intracellular ARGs were 5.90 × 106-6.45 × 109, 5.53 × 104-4.58 × 106, and 2.68 × 108-1.79 × 1011 copies/g-volatile suspended solids, respectively. The absolute abundances of EPS-associated ARGs were 0.2-4.6 orders of magnitude higher than those of the corresponding cell-free ARGs. Considering the higher DNA contents in EPS, the transformation abilities of EPS-associated ARGs were 3.3-236.3 folds higher than those of cell-free ARGs. Therefore, EPS-associated ARGs are an important source of extracellular ARGs, and it may play a crucial role in horizontal gene transfer via transformation in WWTPs.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
44
|
Zhou L, Zhao B, Ou P, Zhang W, Li H, Yi S, Zhuang WQ. Core nitrogen cycle of biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactors treating textile wastewater. BIORESOURCE TECHNOLOGY 2021; 325:124667. [PMID: 33465647 DOI: 10.1016/j.biortech.2021.124667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Core nitrogen cycle within biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactor (bMBR) treating textile wastewater was investigated. Wastewater filtered through membrane with biofoulant had elevated NH4+-N and NO2--N concentrations corresponding to decreased NO3--N concentrations. Nevertheless, total nitrogen concentrations did not change significantly, indicating negligible nitrogen removal activities within biofoulant. Metagenomic analysis revealed a lack of genes, such as AmoCAB and Hao in biofoulant, indicating absence of nitrification or anammox populations. However, genes encoding complete pathway for dissimilatory nitrate reduction to ammonium (DNRA) were discovered in 15 species that also carry genes encoding both nitrate reductase and nitrite reductase. No specie contained all genes for complete denitrification pathway. High temperature, high C:N ratio, and anoxic conditions of textile wastewater could favorite microbes growth with DNRA pathway over those with canonical denitrification pathway. High dissolved oxygen concentrations could effectively inhibit DNRA to minimize ammonia concentration in the effluent.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
45
|
Genome-Resolved Metagenomics and Antibiotic Resistance Genes Analysis in Reclaimed Water Distribution Systems. WATER 2020. [DOI: 10.3390/w12123477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Water reuse is increasingly pursued to alleviate global water scarcity. However, the wastewater treatment process does not achieve full removal of biological contaminants from wastewater, hence microorganisms and their genetic elements can be disseminated into the reclaimed water distribution systems (RWDS). In this study, reclaimed water samples are investigated via metagenomics to assess their bacterial diversity, metagenome-assembled genomes (MAGs) and antibiotic resistance genes (ARGs) at both point of entry (POE) and point of use (POU) in 3 RWDS. The number of shared bacterial orders identified by metagenome was higher at the POE than POU among the three sites, indicating that specific conditions in RWDS can cause further differentiation in the microbial communities at the end of the distribution system. Two bacterial orders, namely Rhizobiales and Sphingomonadales, had high replication rates in two of the examined RWDS (i.e., site A and B), and were present in higher relative abundance in POU than at POE. In addition, MAG and ARG relative abundance exhibited a strong correlation (R2 = 0.58) in POU, indicating that bacteria present in POU may have a high incidence of ARG. Specifically, resistance genes associated with efflux pump mechanisms (e.g., adeF and qacH) increased in its relative abundance from POU to POE at two of the RWDS (i.e., site A and B). When correlated with the water quality data that suggests a significantly lower dissolved organic carbon (DOC) concentration at site D than the other two RWDS, the metagenomic data suggest that low DOC is needed to maintain the biological stability of reclaimed water along the distribution network.
Collapse
|