1
|
Neha, Verma C, Kaur N. Fluorenone-naphthyl encapsulated dual sensor for recognition of F - and Hg 2+: Syngenetic effect with drug sobisis and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125042. [PMID: 39232312 DOI: 10.1016/j.saa.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
A novel fluorenone-naphthyl pendant sensor (FTU) possessing thiourea functionality has been synthesized via a simple condensation method and utilized for the recognition of F- and Hg2+ ions in the solution of CH3CN. The addition of F- and Hg2+ ions to the FTU solution led to the appearance of red-shifted absorption bands at 340 and 315 nm, respectively. On the other hand, in the fluorescence spectrum, the two-fold decrease in fluorescence intensity of probe FTU was observed with F- ions; while complete quenching of the fluorescence intensity was noticed with Hg2+ ions at 423 nm. The limit of detection values of F- and Hg2+ ions were found to be 1.02 & 29.1 nM, respectively, measured by UV-vis studies and 0.0185 & 0.81 nM, respectively, measured by fluorescence studies, which are less than recommended by WHO. DFT computational assessments and 1H NMR titration experiments pointed to F- induced deprotonation of thiourea NH signals. However, the chelation-enhanced quenching effect (CHEQ) was held responsible for fluorescence quenching with Hg2+ addition. Moreover, the in-situ formed FTU + F- complex was utilized for secondary sensing of drug sobisis. Furthermore, the real-world applicability of sensor FTU has been successfully scrutinized for the recognition of F- ions in the toothpaste samples. In addition, molecular docking studies revealed that FTU exhibited excellent antibacterial potency towards different gram-positive as well as negative strains.
Collapse
Affiliation(s)
- Neha
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Chetan Verma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Malik P, Yadav M, Bhushan R. Design, Synthesis and Application of 1,4-disubstituted 1,2,3-triazole Based Chemosensors: A Promising Avenue. CHEM REC 2025; 25:e202400195. [PMID: 39715732 DOI: 10.1002/tcr.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The 1,2,3-triazole-based chemosensors, synthesized through Cu(I)-catalyzed azide-alkyne cycloaddition via 'click chemistry', offer a straightforward yet highly effective method for detecting metal cations and anions with remarkable accuracy, selectivity and sensitivity, making them invaluable across various fields such as chemistry, pharmacology, environmental science and biology. The selective recognition of these ions is crucial due to their significant roles in biological and physiological processes, where even slight concentration variations can have major consequences. The article reviews literature from 2017 to 2024, highlighting advancements in the synthesis of 1,2,3-triazole-based ligands and their application (along with sensing mechanism) for detection of various ions causing health and environmental hazards. The detection aspects have been discussed sequentially for the transition-, inner transition-, and the metals from the s or p block of the periodic table.
Collapse
Affiliation(s)
- Poonam Malik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mona Yadav
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
3
|
Bhalla P, Malhotra R. Optical Chemosensor as a Sensitive and Selective Tool for the Detection of Thiocyanate Ions Via Cu 2+ Induced Sensor and Its Practical Application. J Fluoresc 2024:10.1007/s10895-024-03943-y. [PMID: 39325305 DOI: 10.1007/s10895-024-03943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
In various fields, including analytical, environmental, and biochemistry, the detection of ions is significant. A simple probe, 3-(1-((4-aminophenyl)imino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one (DPD), was designed for this study and used for the detection of Cu2+ ions in methanol, based on dehydroacetic acid and phenylenediamine moieties. Binding interactions studies were performed using UV-Vis measurements, which showed selective binding behaviour towards Cu2+ ions. The HRMS spectral data and Job's plot were used to check the stoichiometry ratio of 2:1 of a probe to Cu2+ ions. A detection limit of 1.38×10-7 M for Cu2+ ions was observed. Theoretical DFT calculations were used to determine the quantum parameters and the energy gap between frontier molecular orbitals. Interestingly, the DPD-Cu2+ complex acted as a probe for the detection of SCN- ions at a low LOD value, i.e., 1.97×10-7 M. A novel incidence of reversibility with SCN- ions was reported using the HRMS technique. Next, real water and blood samples were used, and the concentration of Cu2+ ions was calculated to further analyse the practical applicability of the probe. The DPD probe showed better selectivity and sensitivity than previously reported sensors, especially in complex matrices, where other sensors frequently experience interference and detection limit issues, indicating its potential as an advanced tool for ion detection in various applications.
Collapse
Affiliation(s)
- Parul Bhalla
- Department of Applied Sciences, St. Andrews Institute of Technology & Management, Farrukh Nagar, Gurugram, 122506, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
4
|
Shuai Y, Li N, Zhang Y, Bao Q, Wei T, Yang T, Cheng Q, Wang W, Hu B, Mao C, Yang M. Aptamer-free upconversion nanoparticle/silk biosensor system for low-cost and highly sensitive detection of antibiotic residues. Biosens Bioelectron 2024; 258:116335. [PMID: 38710144 DOI: 10.1016/j.bios.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The detection of antibiotics is crucial for safeguarding the environment, ensuring food safety, and promoting human health. However, developing a rapid, convenient, low-cost, and sensitive method for antibiotic detection presents significant challenges. Herein, an aptamer-free biosensor was successfully constructed using upconversion nanoparticles (UCNPs) coated with silk fibroin (SF), based on Förster resonance energy transfer (FRET) and the charge-transfer effect, for detecting roxithromycin (RXM). A synergistic FRET efficiency was achieved by utilizing alizarin red and RXM complexes as energy acceptors, with UCNP as the energy donor, and immobilizing an ultrathin SF protein corona within 10 nm. The biosensor detects RXM in deionized water with high sensitivity primarily through monolayer adsorption, with a detection range of 1.0 nM-141.6 nM and a detection limit as low as 0.68 nM. The performance of this biosensor was compared with the ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for detecting antibiotics in river water separately and a strong correlation between the two methods was observed. The biosensor exhibited long-term stability in aqueous solutions (up to 60 d) with no attenuation of fluorescence intensity. Furthermore, the biosensor's applicability extended to the highly sensitive detection of other antibiotics, such as azithromycin. This study introduces a low-cost, eco-friendly, and highly sensitive method for antibiotic detection, with broad potential for future applications in environmental, healthcare, and food-related fields.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Na Li
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Zhang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Qichao Cheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Baolan Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, PR China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Paderni D, Macedi E, Giacomazzo GE, Formica M, Giorgi L, Valtancoli B, Rossi P, Paoli P, Conti L, Fusi V, Giorgi C. A new biphenol-dipicolylamine based ligand and its dinuclear Zn 2+ complex as fluorescent sensors for ibuprofen and ketoprofen in aqueous solution. Dalton Trans 2024; 53:9495-9509. [PMID: 38767612 DOI: 10.1039/d4dt00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
6
|
Zhang XY, Fan JA, Chen ZH, Sun C, Zheng ST. The mechanism governing the formation of intermolecular charge transfer bands: a series of polyoxomolybdates as a case study. Dalton Trans 2024; 53:6162-6167. [PMID: 38488144 DOI: 10.1039/d4dt00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A series of proof-of-concept models of polyoxomolybdates with different protonated disubstituted aniline counterions and the same β-Mo8O26 polyanion were synthesized to study the mechanism governing the formation of the intermolecular charge transfer (inter-CT) band.
Collapse
Affiliation(s)
- Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jin-Ai Fan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Zhe-Hong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
7
|
Zhang L, Luo YT, Fan JQ, Xiao SJ, Zheng QQ, Liu XL, Tan QG, Sun C, Shi Q, Liang RP, Qiu JD. Efficient capture of iodine in steam and water media by hydrogen bond-driven charge transfer complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133488. [PMID: 38219593 DOI: 10.1016/j.jhazmat.2024.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Ting Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China.
| |
Collapse
|
8
|
Zhang S, Xiao J, Zhong G, Xu T, Zhang X. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors. Analyst 2024; 149:1381-1397. [PMID: 38312079 DOI: 10.1039/d3an02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Metal-organic frameworks (MOFs) are novel inorganic-organic hybridized crystals with a wide range of applications. In the last twenty years, fluorescence sensing based on MOFs has attracted much attention. MOFs can exhibit luminescence from metal nodes, ligands or introduced guests, which provides an excellent fluorescence response in sensing. However, single-signal emitting MOFs are susceptible to interference from concentration, environment, and excitation intensity, resulting in poor accuracy. To overcome the shortcomings, dual-emission MOF-based ratiometric fluorescence sensors have been proposed and rapidly developed. In this review, we first introduce the luminescence mechanisms, synthetic methods, and detection mechanisms of dual-emission MOFs, highlight the strategies for constructing ratiometric fluorescence sensors based on dual-emission MOFs, and classify them into three categories: intrinsic dual-emission and single-emission MOFs with luminescent guests, and non-emission MOFs with other luminescent materials. Then, we summarize the recent advances in dual-emission MOF-based ratiometric fluorescence sensors in various analytical industries. Finally, we discuss the current challenges and prospects for the future development of these sensors.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jingyu Xiao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Geng Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Alam N, Islam M, Najnin H, Shakya S, Khan IM, Hossain MW, Zaidi R. Design and characterization of a binary CT complex of imidazole-oxyresveratrol: exploring its pharmacological and computational aspects. J Biomol Struct Dyn 2024; 42:1319-1335. [PMID: 37054451 DOI: 10.1080/07391102.2023.2199088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
A new binary charge transfer (CT) complex between imidazole (IMZ) and oxyresveratrol (OXA) was synthesized and characterized experimentally and theoretically. The experimental work was carried out in solution and solid state in selected solvents such as chloroform (CHL), methanol (Me-OH), ethanol (Et-OH), and acetonitrile (AN). The newly synthesized CT complex (D1) has been characterized by various techniques such as UV-visible spectroscopy, FTIR, 1H-NMR, and powder-XRD. The 1:1 composition of D1 is confirmed by Jobs' method of continuous variation and spectrophotometric (at λmax 554 nm) methods at 298 K. The infrared spectra of D1 confirmed the existence of proton transfer hydrogen bond beside charge transfer interaction. These findings indicate that the cation and anion are joined together by the weak hydrogen bonding as N+-H-O-. Reactivity parameters strongly recommended that IMZ behaves as a good electron donor and OXA an efficient electron acceptor. Density functional theory (DFT) computations with basis set B3LYP/6-31G (d,p) was applied to support the experimental results. TD-DFT calculations gives HOMO (-5.12 eV) → LUMO (-1.14 eV) electronic energy gap (Δ E ) to be 3.80 eV. The bioorganic chemistry of D1 was well established after antioxidant, antimicrobial, and toxicity screening in Wistar rat. The type of interactions between HSA and D1 at the molecular level was studied through fluorescence spectroscopy. Binding constant along with the type of quenching mechanism, was investigated through the Stern-Volmer equation. Molecular docking demonstrated that D1 binds perfectly with human serum albumin and EGFR (1M17) and exposes free energy of binding (FEB) values of -295.2 and -283.3 kcal/mol, respectively. The D1 fits successfully into the minor groove of HAS and 1M17, the results of molecular docking show that the D1 binds perfectly with the HAS and 1M17, the higher value of binding energy shows stronger interaction between HAS and 1M17 with D1. Our synthesized complex shows good binding results with HAS compared to 1M17.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nisat Alam
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Maidul Islam
- Deparment of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Hasina Najnin
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Shakya
- Deparment of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Ishaat M Khan
- Deparment of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | | | - Rana Zaidi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Masood Z, Ansari MT, Afzal S, Farooq M, Adnan S, Aslam N. An evaluation of spectral and statistical parameters of ion pair complexation of Zafirlukast using chromogenic dyes in solid dispersion-based formulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123049. [PMID: 37356388 DOI: 10.1016/j.saa.2023.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
The purpose of present work was to develop a novel analytical method for orally given leukotriene antagonist Zafirlukast (ZST), present in Meglumine and Eudragit EEPO based solid dispersion formulation. Four simple, extraction-free, fast, and economical methods based on charge transfer complexation among nitrogen of ZST with sulfonyl group comprising chromogenic mediator bromophenol blue (BPB-Method B), bromothymol blue (BTB-Method C) and bromocresol green (BCG-Method D). The first method (A) is based on the analysis using 0.1 M HCl as a solvent at λmax 242 nm while chromogenic methods yield color complex at λmax 415 nm (BPB-Method B), λmax 420 nm (BTB-Method C) and λmax 435 nm (BCG-Method D). The Beer's Law stayed linear in the concentration ranges of 1-10, 10-75, 5-40 and 15-100 μg/ml for methods A, B, C and D, respectively. The spectral and thermodynamic characterization of each method was carried out by the application of Molar Absorptivity, LOD, LOQ, Association Constant and Gibbs free energy (ΔGo). The methods were statistically optimized and evaluated by F-Distribution Value, P-Value, Shapiro-Wilk P-Value, regression analysis, Q-Q plot, prediction interval, residual histogram and plots. Various experimental conditions affecting the complexation and stability of chromogenic complexes are cautiously studied including optimal temperature, chromogenic agent volume, color stability, recovery, precision and accuracy. All the measurements were executed under ICH guidelines. It can be established that proposed would be an appropriate prospective analytical approach for estimation of ZST in pure bulk, solid dispersions and dosage forms.
Collapse
Affiliation(s)
- Zeeshan Masood
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Tayyab Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Farooq
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Nazia Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
11
|
Singh G, Priyanka, Sushma, Sharma S, Deep Kaur J, Devi A, Gupta S, Devi S, Mohan B. Designing of efficient two-armed colorimetric and fluorescent indole appended organosilicon sensors for the detection of Al(III) ions: Implication as paper-based sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123015. [PMID: 37364410 DOI: 10.1016/j.saa.2023.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Sushma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sanjay Sharma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Anita Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Islam M, Khan IM, Shakya S, Alam N. Design, synthesis, characterizing and DFT calculations of a binary CT complex co-crystal of bioactive moieties in different polar solvents to investigate its pharmacological activity. J Biomol Struct Dyn 2023; 41:10813-10829. [PMID: 36579428 DOI: 10.1080/07391102.2022.2158937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Imidazole (IM) and salicylic acid (SA) have a significant class among the medical compound. These are widely used as topical drugs like antifungal, antibacterial, anticancer, immunosuppressive agent, etc. These two bioactive organic moieties are combined by a weak hydrogen bond formed by hydrogen transfer. The charge transfer (CT) complex of acceptor (SA) and donor (IM), has been synthesized at room temperature in methanol and confirmed by signal-crystal XRD, conductance and UV-visible spectroscopy. The X-ray crystallography provides the original structural information of CT complex and displays the existence of N+-H--O- bond between IM and SA. The physical properties such as (ECT), (RN), (ID), (f), (D) and (Δ G0) along with molar extinction coefficient (εCT) and formation constant (KCT) were estimated through UV-visible spectroscopy. Job's method and Benesi-Hildebrand equation suggested 1:1 stoichiometry of ([IM]+[SA]-). The results indicate a complete transfer of hydrogen atom and CT complex formation with 1:1 molar ratio of IM and SA. Antimicrobial activity was veiled against different bacteria like Escherichia coli, Bacillus subtilis and Staphylococcus aureus; and different fungi as Fusarium oxysporum, Candida albicans and Aspergillus niger by disc diffusion method. CT complex was also tested for cytotoxic activity against lung cancer cell lines in comparison to breast cancer cell lines. Molecular docking provides the information of binding of [(IM)+(SA)-] with the cancer marker (1M17), which has substantial application for drug designing. The investigational studies were supplemented through time-dependent density functional theory (TD-DFT) using basis set B3LYP/6-311G**. Through DFT calculations, HOMO→LUMO electronic energy gap (Δ E ) was obtained.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Ishaat M Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Nisat Alam
- Department of Bio-chemistry, School of Chemical and Life Science, New Delhi, India
| |
Collapse
|
13
|
Masood Z, Ansari MT, Afzal S, Farooq M, Adnan S, Aslam N. An evaluation of spectral and statistical parameters of ion pair complexation of Zafirlukast using chromogenic dyes in solid dispersion-based formulations. SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123049. [DOI: https:/doi.org/10.1016/j.saa.2023.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
|
14
|
Aljaber KA, Darwish IA, Al-Hossaini AM. Spectrophotometric Study of Charge-Transfer Complexes of Ruxolitinib with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone: An Application to the Development of a Green and High-Throughput Microwell Method for Quantification of Ruxolitinib in Its Pharmaceutical Formulations. Molecules 2023; 28:7877. [PMID: 38067605 PMCID: PMC10708051 DOI: 10.3390/molecules28237877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic acid (CLA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the π-electron acceptors. The CTCs were characterized using UV-visible spectrophotometry. The formation of CTCs in methanol was confirmed via formation of new absorption bands with maximum absorption at 530 and 470 nm for CTCs with CLA and DDQ, respectively. The molar absorptivity and other physicochemical and electronic properties of CTCs were determined. The molar ratio was found to be 1:1 for both CTCs with CLA and CTCs with DDQ. The site of interaction on RUX molecules was assigned and the mechanisms of the reactions were postulated. The reactions were employed as basis for the development of a novel green and one-step microwell spectrophotometric method (MW-SPM) for high-throughput quantitation of RUX. Reactions of RUX with CLA and DDQ were carried out in 96-well transparent plates, and the absorbances of the colored CTCs were measured by an absorbance microplate reader. The MW-SPM was validated according to the ICH guidelines. The limits of quantitation were 7.5 and 12.6 µg/mL for the methods involving reactions with CLA and DDQ, respectively. The method was applied with great reliability to the quantitation of RUX content in Jakavi® tablets and Opzelura® cream. The greenness of the MW-SPM was assessed by three different metric tools, and the results proved that the method fulfills the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes using the proposed method enables the high-throughput analysis. In conclusion, this study describes the first MW-SPM, a valuable analytical tool for the quality control of pharmaceutical formulations of RUX.
Collapse
Affiliation(s)
| | - Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
15
|
Gromov SP, Fomina MV, Zdorovenko IP, Fakhrutdinov AN, Ushakov EN. A novel fluorescent sensor for diammonium and metal ions based on a supramolecular charge-transfer complex of bis(aza-18-crown-6)-containing dienone. Front Chem 2023; 11:1263440. [PMID: 37854975 PMCID: PMC10579611 DOI: 10.3389/fchem.2023.1263440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
A bis(aza-18-crown-6)-containing 2,5-di(benzylidene)cyclopentanone and a bis(ammoniopropyl) derivative of 1,2-di(4-pyridyl)ethylene in MeCN were found to form a supramolecular charge-transfer complex, which can act as an "off-on" fluorescent sensor for the Ca2+ and 1,12-dodecanediammonium ions. The molecular structure of this complex in solution was studied by density functional theory calculations.
Collapse
Affiliation(s)
- Sergey P. Gromov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V. Fomina
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
| | - Ilia P. Zdorovenko
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Artem N. Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny N. Ushakov
- Photochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
16
|
Mashood Ahamed FM, Shakya B, Shakya S. Synthesis and characterization of a novel Mannich base benzimidazole derivative to explore interaction with human serum albumin and antimicrobial property: experimental and theoretical approach. J Biomol Struct Dyn 2023; 41:8701-8714. [PMID: 36284457 DOI: 10.1080/07391102.2022.2136757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
Abstract
The novel Mannich base benzimidazole derivative (CB-1), 1-((1H-benzo[d]imidazol-1-yl)(3-chlorophenyl)methyl)-3-phenylurea) has been designed and synthesized by reacting benzimidazole, 3-chloro benzaldehyde, and N-Phenyl urea. CB-1 has been characterized by UV- Visible, FTIR, and 1H NMR. CB-1 was explored to study the interaction with the most abundant blood protein which involved in the role of transport of molecules (drugs), human serum albumin (HSA). Fluorescence results are evident for the presence of both dynamic and static quenching mechanisms in the binding of CB-1 to HSA. Antimicrobial screening were carried out against three bacteria and three fungi pathogens employing disc diffusion method. Molecular docking using AutoDock Vina tool further confirms the experimental binding interactions obtained from fluorescence. Density functional theory (DFT) with B3LYP/6-311G++ basis set was used for correlating theoretical data and obtaining optimized structures of CB-1 along with reactants with molecular electrostatic potential (MEP) map and HOMO→LUMO energy gap calculation. HIGHLIGHTSThe novel Mannich base benzimidazole derivative (CB-1) has been designed and synthesized by Mannich reaction.CB-1 has been characterized by UV- Visible, FTIR, and 1H NMR.Fluorescence quenching reveals that HSA binds to CB-1 via aromatic residues, which is corroborated by molecular docking.Antifungal and antibacterial activity was evaluated in comparison to Nystatin and Gentamicin standard drugs, respectively.DFT calculations support experimental data and provide HOMO-LUMO energy gap.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- F M Mashood Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, India
| | - Barkha Shakya
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
17
|
Hashemian H, Ghaedi M, Dashtian K, Mosleh S, Hajati S, Razmjoue D, Khan S. Cellulose acetate/MOF film-based colorimetric ammonia sensor for non-destructive remote monitoring of meat product spoilage. Int J Biol Macromol 2023; 249:126065. [PMID: 37524273 DOI: 10.1016/j.ijbiomac.2023.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Herein, we designed an on-site and portable colorimetric assay using cellulose acetate polymeric films incorporated with HKUST-1 metal-organic framework while immersed in a solution of methyl red and brilliant cresyl blue organic dyes as an indicator for monitoring ammonia levels. Ammonia serves as a significant biomarker of food spoilage which falls under the category of volatile organic compounds (VOCs). The designed colorimetric solid-state sensor was comprehensively characterized using FE-SEM, EDS-mapping, XRD, FTIR, and contact angle analyses. The results confirmed the superior stability, water permeability, good crystallinity and desirable morphology of the prepared sensor platform. Additionally, customized smartphone was developed and applied for online signaling and colorimetric analysis. The findings demonstrated two linear ranges: 1-100 ppb and 0.1-1340 ppm with a detection limit of 0.02 ppm. The solid-state sensor exhibited high selectivity in the presence of other VOCs such as methanol, ethanol, acetone, 2-propanol, toluene, humidity, and hexane. It displayed acceptable repeatability in both inter-day (RSD = 3.38 %) and intraday (RSD = 3.86 %), long-term stability over 4 days as well as reusability over 3 cycles. We successfully applied this sensing platform for ammonia monitoring in spoiled meat foods including veal, fish and chicken. The results indicated favorable percentage recovery and repeatability, confirming the feasibility and potential applicability of this intelligent packaging system for monitoring freshness. The platform allows for real-time monitoring and data analysis via smartphone-based online signaling, providing a convenient and effective method for ensuring food quality.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Soleiman Mosleh
- Polymer Engineering Department, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 31787-316, Tehran, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Liao Q, Li Q, Li Z. The Key Role of Molecular Packing in Luminescence Property: From Adjacent Molecules to Molecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306617. [PMID: 37739004 DOI: 10.1002/adma.202306617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The luminescence materials act as the key components in many functional devices, as well as the detection and imaging systems, which can be permeated in each aspect of modern life, and attract more and more attention for the creative technology and applications. In addition to the diverse properties of organic luminogens, the multiple molecular packing at aggregated states frequently offers new and/or exciting performance. However, there still lacks comprehensive analysis of molecular packing in these organic materials, resulting in an increased gap between molecular design and practical applications. In this review, from the basic knowledge of organic compounds as single molecules, to the discernable property of excimer, charge transfer (CT) complex or self-assembly systems by adjacent molecules, and finally to the opto-electronic performance of molecular aggregates, the relevant factors to molecular packing and practical applications are discussed.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Madani-Nejad E, Shokrollahi A, Shahdost-Fard F. A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122665. [PMID: 37011439 DOI: 10.1016/j.saa.2023.122665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In the present study, bimetallic nanoparticles (NPs) consisting of gold (AuNPs) as the core and silver (AgNPs) as the shell have been synthesized and applied as the nanoprobe for detection of fluvoxamine (FXM) as the anti-depression drug. The physicochemical properties of the prepared citrate-capped Au@Ag core-shell NPs have been characterized by UV-Vis, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The design of the smartphone-based colorimetric FXM sensor relies on the fast hydrolysis of FXM under alkaline conditions by producing of 2-(Aminooxy)ethanamine without any significant peak at 400-700 nm. The interaction of the resulted molecule with the nanoprobe induced a red shift in the longitudinal localized surface plasmon resonance (LSPR) peak of the nanoprobe, which was accompanied by sharp and vivid color variations in the solution. A linear relationship between the absorption signal increasing by FXM concentration increasing from 1 µM to 10 µM presented a simple, low cost and minimally instrumented format for FXM quantification with a limit of detection (LOD) of 100 nM. The collected visual data with the elegant colorimetric response of the nanoprobe in the presence of FXM from Indian red to light red violet and bluish-purple color offered simple detection of FXM with the naked eye. The satisfactory results of the proposed cost-effective sensor in the rapid assay of FXM in human serum, urine, saliva and pharmaceutical samples guarantee the potential of the nanoprobe for on-site and visual determination of FXM in actual samples. The proposed sensor as the first non-invasive FXM sensor for saliva sample analysis may hold great promise to provide the technical support for the rapid and valid detection of FXM for forensic medicine and clinical organizations.
Collapse
Affiliation(s)
| | | | - F Shahdost-Fard
- Department of Chemistry, Farhangian University, Tehran 19396-14464, Iran.
| |
Collapse
|
20
|
Shakya S, Khan IM, Shakya B, Siddique YH, Varshney H, Jyoti S. Protective effect of the newly synthesized and characterized charge transfer (CT) complex against arecoline induced toxicity in third-instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9: experimental and theoretical mechanistic insights. J Mater Chem B 2023; 11:1262-1278. [PMID: 36648430 DOI: 10.1039/d2tb02362h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agents that suppress the toxic effect of arecoline (a chemical present in the Areca nut fruit) have become a need of the hour owing to its several harmful effects on human beings. Although some drug molecules have been developed for this purpose, yet, simple, easy to prepare, and economical molecules with remarkable potency are still a challenge to design. The present work thus becomes important as it involves the synthesis of a new charge transfer complex (CTC) material, which has, for the first time, been screened to investigate its effect on the toxic effects of arecoline. The newly designed material (CL), which is generated from the reaction between 2,4,6-trinitrophenol (TNP) and pyrazole (PYZ), has been crystallized by a slow evaporation method and characterized by employing spectral studies including single crystal X-ray crystallography. Spectrophotometry studies with the inclusion of the Benesi-Hildebrand equation reveal 1 : 1 stoichiometry and physical parameters of CL. Assays were used for determining the protective effect of CL against arecoline. CL was found to (dose-dependently) decrease β-galactosidase activity, damage in tissue and DNA damage caused by arecoline (80 μM) in the third-instar larvae of the transgenic Drosophila melanogaster (hsp70-lacZ)Bg9. The possible mechanism of this effect was explored through fluorescence and UV-vis spectroscopy. The possibility of suppression of arecoline action on the muscarinic acetylcholine receptor 1-G11 protein complex (found in the cell membrane) in the presence of CL was studied theoretically by molecular docking. Density functional theory (DFT) also theoretically supported various aspects of the designed material concerning the energy profile of the orbitals (HOMO-LUMO) as well as the energy minimized structure. Furthermore, time dependent (TD) DFT corroborated the electronic properties of the designed material.
Collapse
Affiliation(s)
- Sonam Shakya
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Ishaat M Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Barkha Shakya
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Himanshi Varshney
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Smita Jyoti
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
21
|
Charge transfer Interaction between 2, 3-Diamino-5-bromopyridine and 2, 4-Dinitrophenol: Synthesis, Spectroscopic Characterization, DNA binding analysis, and Density Functional studies. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
22
|
Macedi E, Giorgi L, Formica M, Rossi P, Paderni D, Paoli P, Fusi V. A Tetranuclear Copper(II)/Calcium(II) Complex as Dual Chemosensor for Colorimetric and Fluorescent Detection of Non-Steroidal Anti-Inflammatory Drugs. Chempluschem 2023; 88:e202200364. [PMID: 36658696 DOI: 10.1002/cplu.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Indexed: 01/06/2023]
Abstract
The tetranuclear Cu2+ /Ca2+ /Ca2+ /Cu2+ complex based on Malten ligand has been investigated as a platform for anion binding. Simple organic carboxylates and non-steroidal anti-inflammatory drugs (NSAIDs) have been tested, revealing the ability of the platform to bind them. The receiving platform hosts at least two guests in solution although a third anion can be bound, as suggested by X-ray diffraction analysis. The addition of the anions is accompanied by a color change of the solution, making the system a colorimetric sensor for carboxylates (LOD values comprised between 3.6 and 20.7 ppm). A fluorescent system consisting of the 2-(3-oxido-6-oxoxanthen-9-yl)benzoate (fluorescein anion) linked to the tetranuclear platform has been also prepared and used in a chemosensing ensemble approach to signal the presence of the selected anions (Log K between 2.6 and 5.6 for the addition of two guests). The latter also works in a paper strip test, offering the chemosensor a possible practical application.
Collapse
Affiliation(s)
- Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139, Florence, Italy
| | - Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139, Florence, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| |
Collapse
|
23
|
Khan IM, Islam M, Shakya S, Alam N, Imtiaz S, Islam MR. Synthesis, spectroscopic characterization, antimicrobial activity, molecular docking and DFT studies of proton transfer (H-bonded) complex of 8-aminoquinoline (donor) with chloranilic acid (acceptor). J Biomol Struct Dyn 2022; 40:12194-12208. [PMID: 34473009 DOI: 10.1080/07391102.2021.1969280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton transfer complex has been synthesized by mixing 1:1 ratio of 8-aminoquinoline (donor) and chloranilic acid (acceptor) in methanol. FTIR, 13C NMR, 1H NMR, Powder XRD and UV-visible studies confirmed the formation of the newly synthesized compound. These methods ascertain that cations and anions combine to form weak hydrogen bonds as N+-H----O-. The physical properties such as energy of interaction (ECT), resonating energy (RN), Ionization potential (ID), and oscillator strength (f), transition dipole strength (D) and free energy (Δ G) were estimated through UV-visible spectroscopy. The thermal stability of this complex and extensive erosion was analyzed by TGA/DTA study. Benesi-Hildebrand equation was used to determine 1:1 stoichiometry of this complex and to calculate the molar extinction coefficient (εCT), the formation constant (KCT) and other physical parameters. The nature of transfer of charge relations plays a vital role in chemistry and in biological systems. The synthesized proton transfer complex has been screened for antibacterial activities against different bacteria and antifungal activities against different fungi. The proton transfer complex also displays outstanding interaction with the human protein (globulin) protein. The DFT calculations by B3LYP/6-311G** basis set gave theoretical establishment and HOMO (-5.468 eV) to LUMO (-3.328 eV) electronic energy gap (ΔE) as 2.140 eV. Theoretical analysis proves the biological characteristics as well. Molecular docking displays that CT complex is fully bound to the protein and determines the free binding energy value of -290.18 kcal/mol (FEB).A new organic charge transfer complex has been prepared, characterized and explored for antibacterial, antifungal and protein binding properties. The experimental results are supported by theoretical analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ishaat M Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Maidul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Nisat Alam
- Department of Bio-Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Shah Imtiaz
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Md Rabiul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
24
|
Miyan L, Adam AMA, Refat MS, Alsuhaibani AM. 2-aminopyrimidine-oxalic acid liquid–liquid charge-transfer interactions: Synthesis, spectroscopic characterizations, and the effect of temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Synthesis, Spectroscopic Characterization, DNA binding and DFT/PCM calculations of New Hydrogen-bonded Charge Transfer complex between 4-Dimethylaminopyridine and Chloranilic acid. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
27
|
Refat MS, Albogami B, Adam AMA, Saad HA, Alsuhaibani AM, Miyan L, Hegab MS. Charge-transfer chemistry of two corticosteroids used adjunctively to treat COVID-19. Part II: The CT reaction of hydrocortisone and dexamethasone donors with TCNQ and fluoranil acceptors in five organic solvents. J Mol Liq 2022; 363:119878. [PMID: 35880006 PMCID: PMC9300052 DOI: 10.1016/j.molliq.2022.119878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022]
Abstract
Hydrocortisone (termed as D1) and dexamethasone (termed as D2) are corticosteroids currently used to treat COVID-19. COVID-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exploring additional chemical properties of drugs used in the treatment protocols for COVID-19 could help scientists alike improve these treatment protocols and potentially even the vaccines (i.e., Janssen, Moderna, AstraZeneca, Pfizer-BioNTech). In this work, the charge-transfer (CT) properties of these two corticosteroids (D1 and D2) with two universal acceptors: 7,8,8-tetracyanoquinodimethane (termed as TCNQ) and fluoranil (termed as TFQ) in five different solvents were investigated. The examined solvents were MeOH, EtOH, MeCN, CH2Cl2, and CHCl3. The CT interactions formed stable corticosteroid CT complexes in all examined solvents. Several spectroscopic parameters were derived, and the oscillator strength (f) and transition dipole moment (μe.g. ) values revealed that the interaction between the investigated corticosteroids with TCNQ acceptor is much stronger than their interaction with TFQ acceptor. The CT interactions were proposed to process via n → π* transition.
Collapse
Affiliation(s)
- Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Bander Albogami
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lal Miyan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002(UP), India
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
28
|
Gaber A, Alsanie WF, Alhomrani M, Alamri AS, Alyami H, Shakya S, Habeeballah H, Alkhatabi HA, Felimban RI, Alamri A, Alhabeeb AA, Raafat BM, Refat MS. Multispectral and Molecular Docking Studies Reveal Potential Effectiveness of Antidepressant Fluoxetine by Forming π-Acceptor Complexes. Molecules 2022; 27:molecules27185883. [PMID: 36144618 PMCID: PMC9505585 DOI: 10.3390/molecules27185883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Poor mood, lack of pleasure, reduced focus, remorse, unpleasant thoughts, and sleep difficulties are all symptoms of depression. The only approved treatment for children and adolescents with major depressive disorder (MDD) is fluoxetine hydrochloride (FXN), a serotonin selective reuptake inhibitor antidepressant. MDD is the most common cause of disability worldwide. In the present research, picric acid (PA); dinitrobenzene; p-nitro benzoic acid; 2,6-dichloroquinone-4-chloroimide; 2,6-dibromoquinone-4-chloroimide; and 7,7′,8,8′-tetracyanoquinodimethane were used to make 1:1 FXN charge-transfer compounds in solid and liquid forms. The isolated complexes were then characterized by elemental analysis, conductivity, infrared, Raman, and 1H-NMR spectra, thermogravimetric analysis, scanning electron microscopy, and X-ray powder diffraction. Additionally, a molecular docking investigation was conducted on the donor moiety using FXN alone and the resulting charge transfer complex [(FXN)(PA)] as an acceptor to examine the interactions against two protein receptors (serotonin or dopamine). Interestingly, the [(FXN)(PA)] complex binds to both serotonin and dopamine more effectively than the FXN drug alone. Furthermore, [(FXN)(PA)]–serotonin had a greater binding energy than [FXN]–serotonin. Theoretical data were also generated by density functional theory simulations, which aided the molecular geometry investigation and could be beneficial to researchers in the future.
Collapse
Affiliation(s)
- Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.G.); (M.S.R.)
| | - Walaa F. Alsanie
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hussain Alyami
- College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, P.O. Box 2240, Hail 55476, Saudi Arabia
| | | | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moamen S. Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.G.); (M.S.R.)
| |
Collapse
|
29
|
Messiad H, Hamamdia FZ, Belguidoum K, Lemouari N, Amira-Guebailia H. Synthesis and spectroscopic characterization of charge transfer complexes of the donor hesperidin and π-acceptors; 2,3-dichloro-5,6-dicyano-1,4- benzoquinone and tetracyanoethylene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Al-Hazmi GH, Hassanien A, Atta A, Refat MS, Saad HA, Shakya S, Adam AMA. Supramolecular charge-transfer complex generated by the interaction between tin(II) 2,3-naphtalocyanine as a donor with DDQ as an acceptor: Spectroscopic studies in solution state and theoretical calculations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Adam AMA, Saad HA, Refat MS, Hegab MS, Al-Hazmi GH, Mohammed Alsuhaibani A, Mohamed H. The derivation and characterization of quinine charge-transfer complexes with inorganic and organic acceptors in liquid and solid form. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Interligand Charge-Transfer Processes in Zinc Complexes. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electron donor–acceptor (EDA) complexes are characterized by charge-transfer (CT) processes between electron-rich and electron-poor counterparts, typically resulting in a new absorption band at a higher wavelength. In this paper, we report a series of novel 2,6-di(imino)pyridine ligands with different electron-rich aromatic substituents and their 1:2 (metal/ligand) complexes with zinc(II) in which the formation of a CT species is promoted by the metal ion coordination. The absorption properties of these complexes were studied, showing the presence of a CT absorption band only in the case of aromatic substituents with donor groups. The nature of EDA interaction was confirmed by crystallographic studies, which disclose the electron-poor and electron-rich moieties involved in the CT process. These moieties mutually belong to both the ligands and are forced into a favorable spatial arrangement by the coordinative preferences of the metal ion.
Collapse
|
33
|
El-Shafie AS, Yousef A, El-Azazy M. Application of Plackett–Burman Design for Spectrochemical Determination of the Last-Resort Antibiotic, Tigecycline, in Pure Form and in Pharmaceuticals: Investigation of Thermodynamics and Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15070888. [PMID: 35890186 PMCID: PMC9320474 DOI: 10.3390/ph15070888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Tigecycline (TIGC) reacts with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a bright green charge transfer complex (CTC). The spectrum of the CTC showed multiple charge transfer bands with a major peak at 843 nm. The Plackett–Burman design (PBD) was used to investigate the process variables with the objective being set to obtaining the maximum absorbance and thus sensitivity. Four variables, three of which were numerical (temperature—Temp; reagent volume—RV; reaction time—RT) and one non-numerical (diluting solvent—DS), were studied. The maximum absorbance was achieved using a factorial blend of Temp: 25 °C, RV: 0.50 mL, RT: 60 min, and acetonitrile (ACN) as a DS. The molecular composition that was investigated using Job’s method showed a 1:1 CTC. The method’s validation was performed following the International Conference of Harmonization (ICH) guidelines. The linearity was achieved over a range of 0.5–10 µg mL−1 with the limits of detection (LOD) and quantification (LOQ) of 166 and 504 ng mL−1, respectively. The method was applicable to TIGC per se and in formulations without interferences from common additives. The application of the Benesi–Hildebrand equation revealed the formation of a stable complex with a standard Gibbs free energy change (∆G°) value of −26.42 to −27.95 kJ/mol. A study of the reaction kinetics revealed that the CTC formation could be best described using a pseudo-first-order reaction.
Collapse
|
34
|
Adam AMA, Saad HA, Refat MS, Hegab MS. Charge-transfer chemistry of two corticosteroids used adjunctively to treat COVID-19. Part I: Complexation of hydrocortisone and dexamethasone donors with DDQ acceptor in five organic solvents. J Mol Liq 2022; 357:119092. [PMID: 35431374 PMCID: PMC8989686 DOI: 10.1016/j.molliq.2022.119092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
COVID-19 is the disease caused by a novel coronavirus (CoV) named the severe acute respiratory syndrome coronavirus 2 (termed SARS coronavirus 2 or SARS-CoV-2). Since the first case reported in December 2019, infections caused by this novel virus have led to a continuous global pandemic that has placed an unprecedented burden on health, economic, and social systems worldwide. In response, multiple therapeutic options have been developed to stop this pandemic. One of these options is based on traditional corticosteroids, however, chemical modifications to enhance their efficacy remain largely unexplored. Obtaining additional insight into the chemical and physical properties of pharmacologically effective drugs used to combat COVID-19 will help physicians and researchers alike to improve current treatments and vaccines (i.e., Pfizer-BioNTech, AstraZeneca, Moderna, Janssen). Herein, we examined the charge-transfer properties of two corticosteroids used as adjunctive therapies in the treatment of COVID-19, hydrocortisone and dexamethasone, as donors with 2,3-dichloro-5,6-dicyano-p-benzoquinone as an acceptor in various solvents. We found that the examined donors reacted strongly with the acceptor in CH2Cl2 and CHCl3 solvents to create stable compounds with novel clinical potential.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
35
|
Exploring Interaction Dynamics of Designed Organic Charge Transfer Complex of 6-Aminoindole and Chloranilic Acid: Spectrophotometric, Characterization, Computational, Antimicrobial, and DNA Binding Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Nampally V, Palnati MK, Baindla N, Varukolu M, Gangadhari S, Tigulla P. Charge Transfer Complex between O-Phenylenediamine and 2, 3-Dichloro-5, 6-Dicyano-1, 4-Benzoquinone: Synthesis, Spectrophotometric, Characterization, Computational Analysis, and its Biological Applications. ACS OMEGA 2022; 7:16689-16704. [PMID: 35601332 PMCID: PMC9118382 DOI: 10.1021/acsomega.2c01177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 05/28/2023]
Abstract
UV-vis electronic absorption spectroscopy was used to investigate the new molecular charge transfer complex (CTC) interaction between electron donor O-phenylenediamine (OPD) and electron acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The CTC solution state analysis was carried out by two different polarities. The stoichiometry of the prepared CTC was determined by using Job's, photometric, and conductometric titration methods and was detemined to be 1:1 in both solvents (at 298 K). The formation constant and molar extinction coefficient were determined by applying the modified (1:1) Benesi-Hildebrand equation. The thermodynamic parameter ΔG° result indicated that the charge transfer reaction was spontaneous.The stability of the synthesized CTC was evaluated by using different spectroscopic parameters like the energy, ionization potential, oscillator strength, resonance energy, dissociation energy, and transition dipole moment. The synthesized solid CTC was characterized by using different analytical methods, including elemental analysis, Fourier transform infrared, nuclear magnetic resonance, TGA-DTA, and powder X-ray diffraction. The biological evolution of the charge transfer (CT) complex was studied by using DNA binding and antibacterial analysis. The CT complex binding with calf thymus DNA through an intercalative mode was observed from UV-vis spectral study. The CT complex produced a good binding constant value (6.0 × 105 L.mol-1). The antibacterial activity of the CT complex shows notable activity compared to the standard drug, tetracycline. These results reveal that the CT complex may in future be used as a bioactive drug. The hypothetical DFT estimations of the CT complex supported the experimental studies.
Collapse
Affiliation(s)
| | | | - Naveen Baindla
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | - Mahipal Varukolu
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | - Suresh Gangadhari
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | | |
Collapse
|
37
|
Adam AMA, Saad HA, Refat MS, Hegab MS. Charge-transfer complexes of antipsychotic drug sulpiride with inorganic and organic acceptors generated through two different approaches: Spectral characterization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Charan Behera K, Mallick D, Narayan Patra B, Bag B. A Pyrene-Rhodamine FRET couple as a chemosensor for selective detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120934. [PMID: 35101722 DOI: 10.1016/j.saa.2022.120934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Selective detection of nitroaromatic compounds such as Picric acid (PA), those being explosive materials and hazardous pollutants of environmental and biological concern is highly desirable. With the operational advantages of the chemosensing approach, a pyrene-rhodamine-B couple (1) was explored in this investigation as a ratiometric molecular probe for selective and sensitive detection of picric acid. The bi-fluorophoric probe displayed absorption and fluorescence enhancements along with colourless to reddish-brown colour transition as signaling responses in the selective presence of PA among all the nitro aromatic analyte investigated. The signaling module relies on PA- mediated modulation of various operational photo-physical processes such as (a) inhibition of photo-induced electron transfer (PET) operative from amino-donor to excited pyrene (b) a conformational translation through spiro-ring opening of rhodamine-B segment, and (c) initiation of Fluorescence Resonance Energy Transfer (FRET) between excited pyrene donor and ring-opened rhodamine acceptor. The ratio of fluorescence from both fluorophores (pyrene and Rhodamine) as output channel displayed sensitive signaling performance (LOD = 13.8 nM) in the detection of PA. The investigation that inferred to the PA-induced selectivity in signalling, higher binding affinity (log Ka≈11), a faster response time, and reversibility in signalling with a counter analyte and an operational pH range established the probe's efficacy as a chemosensor for PA detection.
Collapse
Affiliation(s)
- Kanhu Charan Behera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India; Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Debajani Mallick
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India
| | - Braja Narayan Patra
- Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P. O.: R.R.L, Bhubaneswar 751013, Odisha, India.
| |
Collapse
|
39
|
Basha MT, Alghanmi RM, Soliman SM, Abdel-Rahman LH, Shehata MR, Alharby WJ. Synthesis, spectroscopic characterizations, biological activity, DNA-binding investigation combined with DFT studies of new proton-transfer complexes of 2,4-diaminopyrimidine with 2,6-dichloro-4-nitrophenol and 3,5-dinitrosalicylic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Geng S, Ren N, He SM, Zhang JJ. Synthesis and structural characterization of lanthanide metal complexes by 2-fluorobenzoic acid with 2,2′:6′,2″-terpyridine, and their fluorescence properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Fluorescent cellulose/testing paper for the sensitive and selective recognition of explosives 2,4,6-trinitrophenol and 2,4-dinitrophenylhydrazine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Hamamdia FZ, Messiad H, Belguidoum K, Lemouari N, Amira-Guebailia H. Synthesis, spectroscopic and thermodynamic study of charge transfer complexes of natural drug rutin as donor with Π-acceptors; 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoethylene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Analysis of charge-transfer complexes caused by the interaction of the antihypertensive drug valsartan with several acceptors in CH2Cl2 and CHCl3 solvents and correlations between their spectroscopic parameters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Sudhakar C, Saravanabhavan M, Ramesh K, Badavath V, Chandrasekar S, Babu B, Sekar M. Pharmacological and quantum chemical studies of 2-aminobenzo[d]thiazol-3-ium 4-chlorobenzenesulphonate: Synthesis, spectral, thermal analysis and structural elucidation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
45
|
The role of natural biological macromolecules: Deoxyribonucleic and ribonucleic acids in the formulation of new stable charge transfer complexes of thiophene Schiff bases for various life applications. Int J Biol Macromol 2021; 193:1572-1586. [PMID: 34743030 DOI: 10.1016/j.ijbiomac.2021.10.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 01/23/2023]
Abstract
The ecofriendly cellulose and gelatin provided sustainable and abundant sugars: d-ribofuranose, and 2-Deoxy-ribofuranose (starting reactants for preparative synthetic green chemistry pathways of charge transfer complexes. The natural available sugars d-ribofuranose, and 2-Deoxy-ribofuranose were obtained from facile hydrolysis of cellulose and gelatin natural macromolecules. Successive, low cost and facile alkaline- and acid hydrolysis of Deoxyribonucleic acid (DNA, from gelatin animal source) and ribonucleic acid (RNA, from cellulose plant source) yield the simple sugars: d-ribofuranose and 2-Deoxy-ribofuranose. Eight optically and biologically active charge transfer complexes were prepared from the reaction of the above sugars efficiently intercalated with two new prepared thiophene Schiff Lewis (electron donors) bases: 2-((2Hydroxybenzylidene) amino)-4, 5, 6, 7-tetrahydrobenzo [b] thiophene-3-carbonitrile (D1, 2-((Furan-2ylmethylene) amino) 4,5,6,7 tetrahydrobenzo [b] thiophene-3-carbonitrile (D2). The chemical structures of these prepared Schiff bases were confirmed using the mass spectra. The successful intercalation of the sugar units with the Lewis bases was ascertained using powder x ray diffraction. The molecular structures of the reaction products were proposed based on FTIR, 1H NMR. The optical activity of charge transfer complexes were confirmed using UV-Vis. Absorption spectroscopy. The surface morphology, microstructures, and particle size of the donors and charge transfer complexes were determined using scanning electron microscopy (SEM). The Lewis bases (D1) and (D2) showed no antimicrobial activity, while their charge transfer complexes showed good antimicrobial activity, suggesting their pharmaceutical and medicinal applications due to the potent biological activity against wide spread microbial microorganisms of Gram positive and Gram positive bacteria as well as some fungal species.
Collapse
|
46
|
Adam AMA, Refat MS, Altalhi TA, Alsuhaibani KS. Charge-transfer complexation of TCNE with azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part IV: A comparison between solid and liquid interactions. J Mol Liq 2021; 340:117224. [PMID: 34393305 PMCID: PMC8354809 DOI: 10.1016/j.molliq.2021.117224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
Finding a cure or vaccine for the coronavirus disease (COVID-19) is the most pressing issue facing the world in 2020 and 2021. One of the more promising current treatment protocols is based on the antibiotic azithromycin (AZM) alone or in combination with other drugs (e.g., chloroquine, hydroxychloroquine). We believe gaining new insight into the charge-transfer (CT) chemistry of this antibiotic will help researchers and physicians alike to improve these treatment protocols. Therefore, in this work, we examine the CT interaction between AZM (donor) and tetracyanoethylene (TCNE, acceptor) in either solid or liquid forms. We found that, for both phases of starting materials, AZM reacted strongly with TCNE to produce a colored, stable complex with 1:2 AZM to TCNE stoichiometry via a n → π* transition (AZM → TCNE). Even though both methodologies yielded the same product, we recommend the solid-solid interaction since it is more straightforward, environmentally friendly, and cost- and time-effective.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tariq A Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | |
Collapse
|
47
|
Adam AMA, Altalhi TA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Correlations between spectroscopic data for charge-transfer complexes of two artificial sweeteners, aspartame and neotame, generated with several π-acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Exploring the charge-transfer chemistry of fluorine-containing pyrazolin-5-ones: The complexation of 1-methyl-3-trifluoromethyl-2-pyrazoline-5-one with five π-acceptors. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Baykov SV, Semenov AV, Katlenok EA, Shetnev AA, Bokach NA. Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and πh···O(anhydride) Interaction. Molecules 2021; 26:3119. [PMID: 34071107 PMCID: PMC8197102 DOI: 10.3390/molecules26113119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Structures of three tetrahalophthalic anhydrides (TXPA: halogen = Cl (TCPA), Br (TBPA), I (TIPA)) were studied by X-ray diffraction, and several types of halogen bonds (HaB) and lone pair···π-hole (lp···πh) contacts were revealed in their structures. HaBs involving the central oxygen atom of anhydride group (further X···O(anhydride) were recognized in the structures of TCPA and TBPA. In contrast, for the O(anhydride) atom of TIPA, only interactions with the π system (π-hole) of the anhydride ring (further lp(O)···πh) were observed. Computational studies by a number of theoretical methods (molecular electrostatic potentials, the quantum theory of atoms in molecules, the independent gradient model, natural bond orbital analyses, the electron density difference, and symmetry-adapted perturbation theory) demonstrated that the X···O(anhydride) contacts in TCPA and TBPA and lp(O)···πh in TIPA are caused by the packing effect. The supramolecular architecture of isostructural TCPA and TBPA was mainly affected by X···O(acyl) and X···X HaBs, and, for TIPA, the main contribution provided I···I HaBs.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadskogo Pr, 119571 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Eugene A. Katlenok
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia;
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| |
Collapse
|
50
|
Proton-transfer and charge-transfer interactions between the antibiotic trimethoprim and several σ− and π−acceptors: A spectroscopic study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|