1
|
Cirovic A, Satarug S, Jevtic J, Ivanovski A, Orisakwe OE, Jankovic S, Cirovic A. The overlooked impact of cadmium on the progression of chronic hepatitis and the onset of renal failure in advanced cirrhosis. J Trace Elem Med Biol 2024; 86:127542. [PMID: 39395285 DOI: 10.1016/j.jtemb.2024.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The mechanism of hepatocyte destruction in chronic hepatitis is not completely understood, while renal failure in individuals with advanced cirrhosis is a significant concern. It is well known that smokers who are chronically infected with hepatitis B and C viruses (HBV, HCV) have a poor prognosis. In the present review, we propose a novel hypothesis that environmental exposure to a nephrotoxic metal pollutant, cadmium (Cd) may contribute to hepatocyte destruction and, subsequently, affect the duration of chronic hepatitis. The metal binding protein, metallothionein (MT) sequesters cadmium as CdMT complexes, and effectively neutralize its adverse effects. Cadmium can cause the damage to hepatocytes, only when it is in an unbound form. In addition to its ability to bind cadmium, MT can act as a scavenger of reactive oxygen species (ROS). However, the cellular MT levels may decrease, when ROS is excessively produced under the pathologic chronic viral hepatitis conditions, especially while the cellular levels of zinc may also be low. Zinc is an endogenous inducer of MT, and is required for maximal MT expression. High ROS levels in the hepatocytes diminishes MT binding to metals. Consequently, the proportion of unbound Cd is increased and thus there is more hepatic damage. Hepatic damage leads to a copious release of CdMT into the circulation. This significant cadmium load, which occurs after hepatic damage, and in some cases, muscle atrophy, induces kidney damage with resultant renal failure in advanced cirrhosis.
Collapse
Affiliation(s)
- Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Jovan Jevtic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, Belgrade 11000, Serbia
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Choba, Port Harcourt 5323, Nigeria; Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10, Mersin, Turkey
| | - Sasa Jankovic
- Institute of Meat Hygiene and Technology, Kacanskog 13, Belgrade 11040, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Peng K, Yao YX, Lu X, Wang WJ, Zhang YH, Zhao H, Wang H, Xu DX, Tan ZX. Mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl 2-induced COPD-like lung injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135103. [PMID: 38972203 DOI: 10.1016/j.jhazmat.2024.135103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
An earlier study found that respiratory cadmium chloride (CdCl2) exposure caused COPD-like lung injury. This study aimed to explore whether mitochondrial dysfunction-mediated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. Adult C57BL/6 mice were exposed to CdCl2 (10 mg/L) aerosol for six months. Beta-galactosidase-positive cells, p21 and p16 were increased in CdCl2-exposed mouse lungs. The in vitro experiments showed that γ-H2AX was elevated in CdCl2-exposed alveolar epithelial cells. The cGAS-STING pathway was activated in CdCl2-exposed alveolar epithelial cells and mouse lungs. Cxcl1, Cxcl9, Il-10, Il-1β and Mmp2, several senescence-associated secretory phenotypes (SASP), were upregulated in CdCl2-exposed alveolar epithelial cells. Mechanistically, CdCl2 exposure caused SIRT3 reduction and mitochondrial dysfunction in mouse lungs and alveolar epithelial cells. The in vitro experiment found that Sirt3 overexpression attenuated CdCl2-induced alveolar epithelial senescence and SASP. The in vivo experiments showed that Sirt3 gene knockout exacerbated CdCl2-induced alveolar epithelial senescence, alveolar structure damage, airway inflammation and pulmonary function decline. NMN, an NAD+ precursor, attenuated CdCl2-induced alveolar epithelial senescence and SASP in mouse lungs. Moreover, NMN supplementation prevented CdCl2-induced COPD-like alveolar structure damage, epithelial-mesenchymal transition and pulmonary function decline. These results suggest that mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury.
Collapse
Affiliation(s)
- Kun Peng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Xin Yao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi-Hao Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Cirovic A, Cirovic A. Factors moderating cadmium bioavailability: Key considerations for comparing blood cadmium levels between groups. Food Chem Toxicol 2024; 191:114865. [PMID: 38997060 DOI: 10.1016/j.fct.2024.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Cadmium (Cd) is recognized as a significant hazard to human health, with exposure linked to a variety of adverse outcomes including various cancers, cardiovascular diseases, chronic kidney disease, and osteoporosis. Residing in areas contaminated with Cd is undoubtedly a risk factor for developing the aforementioned conditions. However, the risk of developing Cd-related disorders is not uniform among individuals. Deficiencies in iron, zinc, and calcium, along with iron deficiency anemia, decreased lung function often seen in chronic obstructive pulmonary disease (COPD), and low circulating levels of parathyroid hormone (PTH), may enhance Cd intestinal absorption. Conversely, chronic liver disorders can lead to the progressive loss of hepatocytes and the release of free Cd into the circulation, resulting in elevated Cd blood levels. Moreover, studies comparing Cd blood levels between different regions within a country or between two groups of individuals, for example, those with and without osteoporosis, should consider all variables that may impact Cd levels. These include age, sex, alcohol consumption, blood levels of iron, calcium, and zinc, the presence of anemia, COPD, PTH levels, and the presence of liver or kidney disease. In this review, we delve into all factors that could influence Cd blood levels, providing a comprehensive analysis.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, 11000, Serbia.
| |
Collapse
|
4
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
5
|
Lee WK, Thévenod F, Prenner EJ. Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity. Biometals 2024; 37:539-544. [PMID: 38709440 DOI: 10.1007/s10534-024-00606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Affiliation(s)
- Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany.
| | - Frank Thévenod
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Institute of Physiology and Pathophysiology, ZBAF, Witten/Herdecke University, Witten, Germany.
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
6
|
Zhu S, Wang X, Liu G. The Protective Effects of Ganoderma lucidum Active Peptide GLP4 on Lung Injury Induced by Cadmium Poisoning in Mice. TOXICS 2024; 12:378. [PMID: 38922058 PMCID: PMC11209525 DOI: 10.3390/toxics12060378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Ganoderma triterpenes and spore powder have shown promising results in mitigating cadmium-induced renal and hepatic injuries. Ganoderma lucidum active peptide GLP4 is a natural protein with dual antioxidant activities derived from the mycelium of Ganoderma lucidum. However, its efficacy in alleviating cadmium-induced lung injury remains unexplored. This study aims to investigate the protective effects of GLP4 against cadmium-induced lung injury in mice. Mice were exposed to cadmium chloride via nebulization to induce lung injury. The protective effect of GLP4 was assessed by measuring the total cell count in BALF, levels of inflammatory cytokines, and the expression of NLRP3 in lung tissues a through histopathological examination of lung tissue changes. The results showed that GLP4 significantly mitigated histopathological damage in lung tissues, decreased the secretion of inflammatory cytokines, and reduced the expression of NLRP3, which was elevated in cadmium-exposed mice. In vitro studies further revealed that GLP4 inhibited the cadmium-induced activation of the NLRP3 inflammasome. Notably, acute cadmium exposure by the respiratory tract did not affect the liver and kidneys of the mice. The findings suggest that GLP4 reduces cadmium-induced lung injury in mice by inhibiting the activation of the NLRP3 inflammasome, which provides a theoretical foundation for using Ganoderma lucidum as a preventive and therapeutic agent against cadmium poisoning.
Collapse
Affiliation(s)
- Shirong Zhu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xiaoling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; (S.Z.); (G.L.)
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
| |
Collapse
|
7
|
Yu Z, Yu T, Li X, Lin W, Li X, Zhai M, Yin J, Zhao L, Liu X, Zhao B, Duan C, Cheng H, Wang F, Wei Z, Yang Y. Cadmium exposure activates mitophagy through downregulating thyroid hormone receptor/PGC1α signal in preeclampsia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116259. [PMID: 38581905 DOI: 10.1016/j.ecoenv.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Weilong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuemeng Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiancai Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Baojing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cancan Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui25 Medical University, Hefei 230032, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Shi T, Ma H, Li D, Pan L, Wang T, Li R, Ren X. Prenatal exposure to fine particulate matter chemical constituents and the risk of stillbirth and the mediating role of pregnancy complications: A cohort study. CHEMOSPHERE 2024; 349:140858. [PMID: 38048830 DOI: 10.1016/j.chemosphere.2023.140858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Evidence on the association of fine particulate matter (PM2.5) exposure with stillbirth is limited and inconsistent, which is largely attributed to differences in PM2.5 constituents. Studies have found that the hazards of certain PM2.5 constituents to the fetus are comparable to or even higher than total PM2.5 mass. However, few studies have linked PM2.5 constituents to stillbirth. Moreover, the mediating role of pregnancy complications in PM2.5-related stillbirth remains unclear. To our knowledge, this study was the first to explore the individual and mixed associations of PM2.5 and its constituents with stillbirth in China. After matching the concentrations of PM2.5 and its constituents (sulfate [SO42-], nitrate [NO3-], ammonium [NH4+], organic matter [OM], and black carbon [BC]) for participants according to their geographical location, there were 170,507 participants included in this study. We found that stillbirth was associated with exposure to PM2.5 and its constituents in the year before pregnancy and during the entire pregnancy, and the associations in trimester 1 were strongest. The risk of stillbirth increased sharply when PM2.5 and its constituents during pregnancy exceeded the median concentrations. Moreover, stillbirth was associated with exposure to the mixtures of SO42-, NO3-, NH4+, OM, and BC before and during pregnancy (trimesters 1 and 2). Meanwhile, two-pollutant models also suggested stillbirth was associated with PM2.5 and its constituents in the year before and during pregnancy. The associations of PM2.5 and its constituents with stillbirth were stronger in mothers with advanced age and without cesarean delivery history. Additionally, hypertensive disorders in pregnancy, gestational diabetes, and placental abruption mediated the association of PM2.5 with stillbirth. Therefore, enhanced protection against PM2.5 for pregnant women before and during pregnancy and targeted interventions for pregnancy complications and anthropogenic sources of PM2.5 constituents are important to reduce stillbirth risk.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hanping Ma
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, 730000, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Li Pan
- Lanzhou Maternal and Child Health Hospital, Lanzhou, Gansu, 730000, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
9
|
Wang Y, Liu Q, Tian Z, Cheng B, Guo X, Wang H, Zhang B, Xu Y, Sun L, Hu B, Chen G, Sheng J, Liang C, Tao F, Wei J, Yang L. Short-term effects of ambient PM 1, PM 2.5, and PM 10 on internal metal/metalloid profiles in older adults: A distributed lag analysis in China. ENVIRONMENT INTERNATIONAL 2023; 182:108341. [PMID: 38006770 DOI: 10.1016/j.envint.2023.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
There is limited evidence linking exposure to ambient particulate matter (PM) with internal doses of metals and metalloids (metal(loid)s). This study aimed to evaluate the effects of short-term exposure to ambient PM on urine metal(loid)s among Chinese older adults. Biological monitoring data of 15 urine metal(loid)s collected in 3, 970 community-dwelling older adults in Fuyang city, Anhui Province, China, from July to September 2018, were utilized. PMs with an aerodynamic diameter ≤ 1 µm (PM1), ≤ 2.5 µm (PM2.5), and ≤ 10 µm (PM10) up to eight days before urine collection were estimated by space-time extremely randomized trees (STET) model. Residential greenness was reflected by Normalized Difference Vegetation Index (NDVI). We used generalized additive model (GAM) combined with distributed lag linear/non-linear models (DLMs/DLNMs) to estimate the associations between short-term PM exposure and urine metal(loid)s. The results suggested that the cumulative exposures to PM1, PM2.5, or PM10 over two days (lag0-1 days) before urine collection were associated with elevated urine metal(loid)s in DLMs, while exhibited linear or "inverted U-shaped" relationships with seven urine metal(loid)s in DLNMs, including Gallium (Ga), Arsenic (As), Aluminum (Al), Magnesium (Mg), Calcium (Ca), Uranium (U), and Barium (Ba). Aforementioned results indicated robust rather than spurious associations between PMs and these seven metal(loid)s. After standardizations for three PMs, PM1 was the greatest contributor to U, PM2.5 made the greatest contributions to Ga, As, Al, and Ba, and PM10 contributed the most to Mg and Ca. Furthermore, the effects of three PMs on urine Ga, As, Al, Mg, Ca, and Ba were reduced when exposed to higher levels of NDVI. Overall, short-term exposures to ambient PMs contribute to elevated urinary metal(loid) levels in older adults, and three PMs exhibit various contributions to different urine metal(loid)s. Moreover, residential greenness may attenuate the effects of PMs on urine metal(loid)s.
Collapse
Affiliation(s)
- Yuan Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiang Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ziwei Tian
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xianwei Guo
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hongli Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Bo Zhang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, Anhui 236069, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, Anhui, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Linsheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei 230032, Anhui, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Du Z, Tian Z, Yin Y, Wei J, Mu Y, Cai J, Song Z, Cen K. Bioavailability-based risk assessment of various heavy metals via multi-exposure routes for children and teenagers in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114985-115002. [PMID: 37878177 DOI: 10.1007/s11356-023-30436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Assessing the health risks of sensitive population, such as children and teenagers, through multiple exposure routes (MERs) such as ingestion, inhalation, and dermal contact is critical for policy creation that protects or reduces exposure to pollutants for all populations. Heavy metal (HM) contents in food and environmental media in Beijing, capital of China, were collected. Furthermore, on the basis of considering the bioavailability of HMs, we evaluated the multiple environmental routes and health risks to HMs in children and teenagers of eight age groups (2-<3, 3-<4, 4-<5, 5-<6, 6-<9, 9-<12, 12-<15, and 15-<18) in Beijing, China by Monte Carlo simulation approach. The main findings are as follows: lead exposure in children aged 2-<3 years exceeds the exposure dose (0.3 μg·kg-1·d-1) of 0.5 point reduction in intelligence quotient. Moreover, children aged 2-<3 and 6-<9 years have relatively high non-carcinogenic risk (NCR) of 1.32 and 1.30, respectively. The carcinogenic risk (CR) for children aged 6-<9 and 9-<12 years is 2.73×10-6 and 2.39×10-6, respectively. Specifically, the contributions of oral ingestion, dermal contact, and inhalation to the NCR were 69.5%, 18.9%, and 11.6%, respectively. Moreover, the combined NCR contributions of copper, cadmium, mercury, and arsenic (As) were about 69.4%. The contributions of the above three routes to the CR were 93.4%, 4.1%, and 2.5%, in that order, with the largest CR contribution of As being about 92.0%. This study can provide new ideas for accurately assessing the exposure and health risks of HMs in the population, and we believe that it is necessary to update the national standards for food and soil based on the bioavailability of HMs.
Collapse
Affiliation(s)
- Zhongwen Du
- Baoding University of Technology, Baoding, 071000, China
| | - Zuguang Tian
- Baoding Productivity Promotion Center, Baoding, 071000, China
| | - Yelan Yin
- No. 4 Drilling Engineering Branch Company, CNPC Bohai Drilling Engineering Company Limited, Hejian, 062400, Hebei, China
| | - Junxiao Wei
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jianjun Cai
- School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zefeng Song
- Institute of Resources and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, China
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
11
|
Mahdi Badami M, Tohidi R, Jalali Farahani V, Sioutas C. Size-segregated source identification of water-soluble and water-insoluble metals and trace elements of coarse and fine PM in central Los Angeles. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 310:119984. [PMID: 37637474 PMCID: PMC10455048 DOI: 10.1016/j.atmosenv.2023.119984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In this study, the water-solubility and sources of metals and trace elements in both fine and coarse particulate matter (PM) were investigated in Central Los Angeles. Sampling was performed in the winter, spring, and summer of 2022 at the Particle Instrumentation Unit (PIU) of the University of Southern California located in the proximity of I-110 freeway. Both fine and coarse PM samples were collected using Personal Cascade Impactors (PCIS) and chemically analyzed to determine their water-soluble and water-insoluble metal content. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) were used to determine the sources of soluble and insoluble metals and obtain their contributions to total metal concentration. Our results indicate that the water-solubility of most of the metals is higher in the fine size fraction compared to the coarse fraction. Seasonal variations in the water solubility of selected metals for both coarse and fine fractions were observed, with higher water-soluble metal concentrations in summer for several species (e.g., Fe , S, Pb, Cu, La, Ni, and Al ), possibly due to higher photochemical processing, while in winter, almost all species exhibited higher insoluble fraction concentrations. The PCA and MLR analyses results showed that tire and brake wear was the most significant contributor to the total metals for both fine soluble and insoluble portions, accounting for 35% and 75% of the total metals, respectively. Combustion sources also contributed substantially to water-soluble metals for fine and coarse size ranges, representing 40% and 32% of the total metal mass, respectively. In addition, mineral dust and soil and re-suspended dust were identified as the highest contributors to coarse metals. The MLR analysis also revealed that secondary aerosols contributed 11% to the fine water-soluble metals. Our results suggest that non-tailpipe emissions significantly contribute to both coarse and fine PM metals in the Central Los Angeles region.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
12
|
Wang WJ, Peng K, Lu X, Zhu YY, Li Z, Qian QH, Yao YX, Fu L, Wang Y, Huang YC, Zhao H, Wang H, Xu DX, Tan ZX. Long-term cadmium exposure induces chronic obstructive pulmonary disease-like lung lesions in a mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163073. [PMID: 36965727 DOI: 10.1016/j.scitotenv.2023.163073] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Accumulating evidences demonstrate that long-term exposure to atmospheric fine particles and air pollutants elevates the risk of chronic obstructive pulmonary disease (COPD). Cadmium (Cd) is one of the important toxic substances in atmospheric fine particles and air pollutants. In this study, we aimed to establish a mouse model to evaluate whether respiratory Cd exposure induces COPD-like lung injury. Adult male C57BL/6 mice were exposed to CdCl2 (10 mg/L, 4 h per day) by inhaling aerosol for either 10 weeks (short-term) or 6 months (long-term). The mean serum Cd concentration was 6.26 μg/L in Cd-exposed mice. Lung weight and coefficient were elevated in long-term Cd-exposed mice. Pathological scores and alveolar destructive indices were increased in long-term Cd-exposed mouse lungs. Mean linear intercept and airway wall thickness were accordingly elevated in Cd-exposed mice. Inflammatory cell infiltration was obvious and inflammatory cytokines, including TNF-α, IL-1β, IL-6, IL-8, IL-10 and TGF-β, were up-regulated in Cd-exposed mouse lungs. α-SMA, N-cadherin and vimentin, epithelial-mesenchymal transition markers, and extracellular matrix collagen deposition around small airway, determined by Masson's trichrome staining, were shown in Cd-exposed mouse lungs. COPD-characteristic lung function decline was observed in long-term Cd-exposed mice. These outcomes show that long-term respiratory exposure to Cd induces COPD-like lung lesions for the first time.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qing-Hua Qian
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Ya-Xin Yao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Larson-Casey JL, Liu S, Pyles JM, Lapi SE, Saleem K, Antony VB, Gonzalez ML, Crossman DK, Carter AB. Impaired PPARγ activation by cadmium exacerbates infection-induced lung injury. JCI Insight 2023; 8:e166608. [PMID: 36928191 PMCID: PMC10243824 DOI: 10.1172/jci.insight.166608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging data indicate an association between environmental heavy metal exposure and lung disease, including lower respiratory tract infections (LRTIs). Here, we show by single-cell RNA sequencing an increase in Pparg gene expression in lung macrophages from mice exposed to cadmium and/or infected with Streptococcus pneumoniae. However, the heavy metal cadmium or infection mediated an inhibitory posttranslational modification of peroxisome proliferator-activated receptor γ (PPARγ) to exacerbate LRTIs. Cadmium and infection increased ERK activation to regulate PPARγ degradation in monocyte-derived macrophages. Mice harboring a conditional deletion of Pparg in monocyte-derived macrophages had more severe S. pneumoniae infection after cadmium exposure, showed greater lung injury, and had increased mortality. Inhibition of ERK activation with BVD-523 protected mice from lung injury after cadmium exposure or infection. Moreover, individuals residing in areas of high air cadmium levels had increased cadmium concentration in their bronchoalveolar lavage (BAL) fluid, increased barrier dysfunction, and showed PPARγ inhibition that was mediated, at least in part, by ERK activation in isolated BAL cells. These observations suggest that impaired activation of PPARγ in monocyte-derived macrophages exacerbates lung injury and the severity of LRTIs.
Collapse
Affiliation(s)
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine
| | | | | | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Wang J, Li J, Li X, Fang C. Characteristics of Air Pollutants Emission and Its Impacts on Public Health of Chengdu, Western China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416852. [PMID: 36554731 PMCID: PMC9779229 DOI: 10.3390/ijerph192416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 05/06/2023]
Abstract
Pollution caused by PM2.5 and O3 are common environmental problems which can easily affect human health. Chengdu is a major central city in Western China, and there is little research on the regional emissions and health effects of air pollution in Chengdu. According to the Multi-resolution Emissions Inventory of the Chinese Model, 2017 (MEIC v1.3), this study compiled the air pollutant emission inventory of Chengdu. The results show that the pollutant emission of Chengdu is generally higher in winter than in summer. The southeast area of Chengdu is the key area where emissions of residential and industrial sectors are dominant. Through air quality simulation with a Weather Research and Forecasting model, coupled with the Community Multiscale Air Quality (WRF-CMAQ), the health effects of PM2.5 and O3 in winter and summer in Chengdu of 2017 were investigated. The primary pollutant in winter is PM2.5 and O3 in summer. PM2.5 pollution accounted for 351 deaths in January and July 2017, and O3 pollution accounted for 328 deaths in the same period. There were 276 deaths in rural areas and 413 in urban areas. In January and July 2017, the health economic loss caused by PM2.5 accounted for 0.0974% of the gross regional product (GDP) of Chengdu in 2017, and the health economic loss caused by O3 accounted for 0.0910%.
Collapse
Affiliation(s)
- Ju Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China
- Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, China
- Correspondence: ; Tel.: +86-131-0431-7228
| | - Juan Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xinlong Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Chunsheng Fang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China
- Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Wu Y, Li G, An T. Toxic Metals in Particulate Matter and Health Risks in an E-Waste Dismantling Park and Its Surrounding Areas: Analysis of Three PM Size Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215383. [PMID: 36430101 PMCID: PMC9691227 DOI: 10.3390/ijerph192215383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Heavy metals generated from e-waste have created serious health risks for residents in e-waste disposal areas. This study assessed how airborne toxic metals from an e-waste dismantling park (EP) influenced surrounding residential areas after e-waste control. PM2.5, PM10, and total suspended particles (TSP) were sampled from 20 sites, including an EP, residential areas, and an urban site; ten kinds of metals were analyzed using ICP-MS and classified as PM2.5, PM2.5-10, and PM10-100. Results showed that metals at the EP tended to be in coarser particles, while metals from residential areas tended to be in finer particles. A source analysis showed that metals from the EP and residential areas may have different sources. Workers' cancer and non-cancer risks were higher when exposed to PM2.5-10 metals, while residents' risks were higher when exposed to PM2.5 metals. As and Cr were the most strongly associated with cancer risks, while Mn was the most strongly associated with the non-cancer risk. Both workers and residents had cancer risks (>1.0 × 10-6), but risks were lower for residents. Therefore, e-waste control can positively affect public health in this area. This study provides a basis for further controlling heavy metal emissions into the atmosphere by e-waste dismantling and encouraging worldwide standardization of e-waste dismantling.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Abdul Haddi AA, Ja’afar MH, Ismail H. Association between lung function impairment with urinary heavy metals in a community in Klang Valley, Malaysia. PeerJ 2022; 10:e13845. [PMID: 35966922 PMCID: PMC9373978 DOI: 10.7717/peerj.13845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Lung function status can be directly or indirectly affected by exposure to pollutants in the environment. Urinary heavy metals may be an indirect indicator of lung function impairment that leads to various diseases such as chronic obstructive pulmonary disease (COPD). This study aimed to explore the prevalence of lung function impairment as well as its association with urinary heavy metal levels and other influencing factors among the community in Klang Valley, Malaysia. Urinary sampling was done during various community events in the housing areas of Klang Valley between March and October 2019. Only respondents who consented would undergo a lung function test. Urine samples were obtained and sent for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. Of the 200 recruited respondents, 52% were male and their ages ranged from 18 years old to 74 years old with a mean age of 38.4 ± 14.05 years. Urinary samples show high urinary Cd level in 12% of the respondents (n = 24) whereas none recorded a high urinary Pb level. There was a positive correlation between the levels of urinary Cd and urinary Pb (r = 0.303; p = 0.001). Furthermore, a negative correlation was detected between urinary Cd level and forced vital capacity (FVC) (r = - 0.202, p = 0.004), force expiratory volume at the first second (FEV1) (r = - 0.225, p = 0.001), and also force expiratory flow between 25-75% of FVC (FEF 25-75%) (r = - 0.187, p = 0.008). However, urinary Pb did not show any correlation with lung function parameters. Multiple linear regression analysis showed that urinary Cd had a significant negative effect on FVC (p = 0.025) and FEV1 (p = 0.004) based on the predicted value. Additionally, other factors such as education level (p = 0.013) also influenced lung function. However, no interaction was detected between heavy metals or other factors. In short, there was a significant negative linear relationship between urinary Cd and lung function, whereas urinary Pb was not associated with lung function. Beside acting as a biomarker for cadmium exposure level, urinary Cd may also be applied as indirect biomarker for asymptomatic chronic lung function deterioration among the healthy population.
Collapse
Affiliation(s)
- Ammar Amsyar Abdul Haddi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia,Ministry of Health, Putrajaya, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Halim Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Pan N, Lu L, Zhang D, Wang X. Evaluation of the effect of nitrate and chloride on Cd(II)-induced cell oxidative stress by scanning electrochemical microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2673-2681. [PMID: 35762516 DOI: 10.1039/d2ay00495j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most prevalent toxic metal pollutants, which is widely distributed in various environmental media and organisms. Literature studies have documented that Cd could stimulate cellular oxidative stress, and the increased intracellular reactive oxygen species (ROS) might destroy certain proteins and DNA and subsequently lead to cell apoptosis. Although several studies have studied the co-exposure between cadmium and other metals, information on the potential effects of Cd and its counterions is still lacking. In the present study, we explored the effects of nitrate and chloride on oxidative stress induced by Cd(II) at environmental exposure levels in human breast cancer cells (MCF-7) using scanning electrochemical microscopy (SECM). After incubation in CdCl2 or Cd(NO3)2, ROS production is concentration-dependent and time-dependent, and the variation trend is consistent. When MCF-7 cells were incubated at a constant Cd2+ concentration, it was found that the higher the concentration ratio of Cd(NO3)2/CdCl2, the less ROS was generated. Combined with cell-viability, intracellular acidification as well as antioxidants system tests, we observed that nitrate could be reduced to nitrite and then inhibit Cd-induced oxidative stress. Benefitting from real-time in situ imaging of cells by SECM, H2O2 was detected and quantified in a noninvasive way, and the effect of Cd at environmental exposure levels on cellular oxidative stress was explored deeper and more comprehensively. Prospectively, cytotoxicological methods based on the SECM technique would be established to explore toxic pollutant co-exposure issues at environmental exposure levels.
Collapse
Affiliation(s)
- Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
18
|
Feng X, Shao L, Jones T, Li Y, Cao Y, Zhang M, Ge S, Yang CX, Lu J, BéruBé K. Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the "Comprehensive Action Plan" in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152774. [PMID: 34986423 DOI: 10.1016/j.scitotenv.2021.152774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/25/2021] [Indexed: 05/17/2023]
Abstract
Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 μm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 μm) exceeded that caused by the coarse sized particles (4.7-10 μm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 μm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 μm to 1.1 μm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.
Collapse
Affiliation(s)
- Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK
| | - Yaowei Li
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Cheng-Xue Yang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing Lu
- State Key Laboratory of Coal Resources and Safe Mining, and College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
19
|
Hsiao TC, Chou LT, Pan SY, Young LH, Chi KH, Chen AY. Chemically and temporally resolved oxidative potential of urban fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118206. [PMID: 34740290 DOI: 10.1016/j.envpol.2021.118206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Vehicle emissions are an important source of particulate matter (PM) in urban areas and have well-known adverse health effects on human health. Oxidative potential (OP) is used as a quantification metric for indexing PM toxicity. In this study, by using a liquid spot sampler (LSS) and the dithiothreitol (DTT) assay, the diurnal OP variation was assessed at a ground-level urban monitoring station. Besides, since the monitoring station was adjacent to the main road, the correlation between OP and traffic volume was also evaluated. PM components, including metals, water-soluble inorganic aerosols (WSIAs), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs), were also simultaneously monitored. The daytime and evening mean ± std volume-normalized OP (OPv) were 0.46 ± 0.27 and 0.48 ± 0.26 nmol/min/m3, and exhibited good correlations with PM1.0 and BC; however, these concentrations were only weakly correlated with mass-normalized OP (OPm). The mean ± std OPm was higher in the daytime (41.3 ± 13.8 pmol/min/μg) than in the evening (36.1 ± 11.5 pmol/min/μg). According to the PMF analysis, traffic emissions dominated the diurnal OP contribution. Organic matter and individual metals associated with non-exhaust traffic emissions, such as Mn, Fe, and Cu, contributed substantially to OP. Diurnal variations of PAH concentrations suggest that photochemical reactions could enhance OP, highlighting the importance of atmospheric aging on PM toxicity.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Li-Ti Chou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Hao Young
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kai-Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Yao W, Gallagher DL, Gohlke JM, Dietrich AM. Children and adults are exposed to dual risks from ingestion of water and inhalation of ultrasonic humidifier particles from Pb-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148248. [PMID: 34139495 DOI: 10.1016/j.scitotenv.2021.148248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Room-sized ultrasonic humidifiers are exposure pathways to aerosolized metals, with dose positively associated with increased concentrations of metals in fill water. This study innovatively quantifies water ingestion along with inhalation doses from humidifiers for 10-1000 μg/L dissolved lead (Pb) in tap water. The subsequent indoor air Pb concentrations, average daily doses, and inhalation deposited respiratory fractions were predicted under four room scenarios for 3-mo, 12-mo, 28-mo, and 6-yr children and adults. Elevated blood Pb levels (BLLs) in children were modeled using USEPA's Integrated Exposure Uptake Biokinetic (IEUBK) model. Indoor air Pb exceeds the USEPA ambient air standard of 0.15 μg/m3 when humidifier fill water contains 33 μg/L Pb in the small room of 33.5 m3 and 0.2 h-1 air exchange rate (AER). For this room, ~40-46% inhaled Pb-containing humidifier particles deposit in children's respiratory tracts; inhaling humidifier particles from ≥500 μg/L Pb water results in >1 μg/dL BLL in 2-7 yr children. For adults, ~23% of particles deposit in the respiratory tract; 8-h inhalation exposure with ≥17 μg/L Pb water exceeds the California EPA reproductive toxicity guideline of 0.5 μg/day. Larger rooms and higher AER decrease Pb inhalation exposure under the same water Pb concentration.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Daniel L Gallagher
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Andrea M Dietrich
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|