1
|
Zhang Y, Ren D, Shi Y, Yuan R, Ye H, Yin XB, Chi H. A smartphone sensing fluorescent detection of mercury ion based on silicon quantum dots in environment water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125135. [PMID: 39299073 DOI: 10.1016/j.saa.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Mercury ion (Hg2+) pose a significant hazard to the natural environment. Conventional techniques like Inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, among others, pose some disadvantages as they demand a lot of money, need trained employees, and cannot provide on-site detection in real-time. A smartphone sensing technique based on silicon quantum dots (Si-QDs) was presented to detect Hg2+ in the environment without the usage of sophisticated equipment. Meanwhile, the technology was built by utilizing a smartphone to capture gray values of fluorescent images of the Si-QDs-Hg2+ system. Microwave-assisted Si-QDs with tiny particle size, high fluorescence, and good optical stability were created. The fluorescence of the Si-QDs was gradually quenched by raising the Hg2+ concentration from 0.5 μmol/L to 5.0 μmol/L for fluorescent detection with a detection limit of 28 nmol/L. The 94.8-97.1 % recovery demonstrated the viability of the Si-QDs approach for detecting Hg2+. Meanwhile, a smartphone sensing strategy was built by recording the gray value of the fluorescent images of the Si-QDs-Hg2+ systems using a smartphone, and the detection limit of the established approach was 3 nmol/L. The accuracy and reliability of the smartphone strategy were verified with the recovery rates of 80.3-92.5 % in tap water and 87.6-109 % in river water. Electron transfer quenching mechanism between Si-QDs and Hg2+ was evidenced by ultraviolet-visible spectroscopy, fluorescent decay curves, cyclic voltammetry, and Zeta potential. Finally, the suggested approach was used to detect Hg2+ in water samples from various environments.
Collapse
Affiliation(s)
- Yuanxing Zhang
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China
| | - Yongfu Shi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Rui Yuan
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China.
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Hai Chi
- Laboratory of Aquatic Product Quality, Safety and Processing, Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, PR China.
| |
Collapse
|
2
|
Sun M, Chen Q, Ren Y, Zhuo Y, Xu S, Rao H, Wu D, Feng B, Wang Y. CoNiCoNC tumor therapy by two-ways producing H 2O 2 to aggravate energy metabolism, chemokinetics, and ferroptosis. J Colloid Interface Sci 2025; 678:925-937. [PMID: 39270392 DOI: 10.1016/j.jcis.2024.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
3
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
4
|
Chen Y, Wang H, Zhou J, Lin D, Zhang L, Xing Z, Zhang Q, Xia L. Sensitive SERS assay for L-cysteine based on functionalized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124487. [PMID: 38805989 DOI: 10.1016/j.saa.2024.124487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024]
Abstract
L-cysteine, an indispensable amino acid present in natural proteins, plays pivotal roles in various biological processes. Consequently, precise and selective monitoring of its concentrations is imperative. Herein, we propose a Surface-enhanced Raman Scattering (SERS) sensor for detecting L-cysteine based on the anti-aggregation of 4-mercaptobenzoic acid (4-MBA) and histidine (His) functionalized silver nanoparticles (Ag NPs). The presence of Hg2+ ions can induce the aggregation of Ag NPs@His@4-MBA due to the unique nanostructures of Ag NPs@His@4-MBA, resulting in a robust SERS intensity of 4-MBA. However, in the presence of L-cysteine, the stronger affinity between L-cysteine and Hg2+ reduces the concentration of free Hg2+, causing the dispersion of the aggregated functionalized Ag NPs and the reduction of the SERS signal intensity of 4-MBA. The developed SERS platform demonstrates excellent performance with a low detection limit of 5 nM (S/N = 3) and linear detection capabilities within the range of 0.01-100 μM for L-cysteine. Additionally, the method was successfully employed for the determination of L-cysteine in spiked serum samples, yielding recoveries ranging from 95.0 % to 108.1 % with relative standard deviations of less than 3.3 %. This study not only presents a novel approach for fabricating highly sensitive and specific SERS biosensors for biomolecule detection but also offers a significant strategy for the development and construction of SERS substrates using anti-aggregation design.
Collapse
Affiliation(s)
- Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Dongxue Lin
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qian Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; Yingkou Institute of Technology, Yingkou 115014, China.
| |
Collapse
|
5
|
Luo L, Li J, Bi X, Jiang P, Li L, Qiao G, You T. Engineering "three-in-one" fluorescent nanozyme of Ce-Au NCs for on-site visual detection of Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134967. [PMID: 38936190 DOI: 10.1016/j.jhazmat.2024.134967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hg2+ contamination poses a serious threat to the environment and human health. Although gold nanoclusters (Au NCs) have been utilized as fluorescence probes or colorimetric nanozymes for performing Hg2+ assays by using a single method, designing multifunctional nanoclusters as fluorescent nanozyme remains challenging. Herein, Ce-aggregated gold nanoclusters (Ce-Au NCs) were reported with "three in one" functions to generate strong fluorescence, excellent peroxidase-like activity, and the highly specific recognition of Hg2+ via its metallophilic interaction. A portable fluorescence and colorimetric dual-mode sensing device based on Ce-Au NCs was developed for on-site visual analysis of Hg2+. In the presence of Hg2+, fluorescence was effectively quenched and the paper-based chips gradually darkened from green till they became completely absent, while peroxidase-like activity was significantly enhanced. Two independent signals were captured by one identification unit, which provided self-validation to improve reliability and accuracy. Therefore, this work presents a simple synthesis of a multifunctional fluorescent nanozyme, and the developed portable device for on-site visual detection has considerable potential for application in the rapid on-site analysis of heavy metal ions in the environment.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiamin Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Tianjin Lishen Battery Joint-Stock Co., Ltd, Tianjin 300000, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Panao Jiang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China.
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
6
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. MOF derivatization of multifunctional nanozyme: Peroxidase-like catalytic activity combined with magnetic solid phase extraction for colorimetric detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124392. [PMID: 38704997 DOI: 10.1016/j.saa.2024.124392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Nanozyme-based colorimetric sensing has drawn immense attention due to the rapid development of nanozyme in recent years. However, the selectivity of nanozyme-based colorimetric sensing greatly limits its subsequent practical application. It is well known that sample pretreatment can not only improve selectivity by eliminating the sample matrix interference, but also improve sensitivity by enriching trace targets. Based on the easy facile surface modification properties of nanozyme, we rationally designed nanozyme combined with sample pretreatment for colorimetric biosensing, through separation and enrichment, thereby improving the selectivity and sensitivity of the nanozyme colorimetric biosensing. As a proof of concept, the detection of Hg2+ by nanozyme-based colorimetric sensing was used as an example. Magnetic peroxidase-like nanozyme Fe3S4 was designed and synthesized. The selectivity is improved by the specific adsorption of S-Hg bond and the interference elimination after magnetic separation. In addition, the sensitivity is improved by magnetic solid-phase extraction enrichment. Our established colorimetric sensing based on Fe3S4 nanozyme integrated sample pretreatment with an enrichment factor of 100 and the limit of detection (LOD) is 26 nM. In addition, this strategy was successfully applied to detect Hg2+ in environmental water samples. Overall, the strategy showed good selectivity and sensitivity, providing a new practical method for the application of nanozyme-based biosensing in sample pretreatment.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
7
|
Abdel-Monem MM, Walash MI, Kamal El-Deen A. Bimetallic porous Mn/Co oxide nanosheets with efficient oxidase-mimicking activity for the sensitive colorimetric determination of resveratrol in different matrices. Anal Chim Acta 2024; 1317:342904. [PMID: 39030024 DOI: 10.1016/j.aca.2024.342904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Resveratrol, a natural polyphenol compound used as an ingredient in dietary supplements, and pharmaceuticals, has gained significant attention due to its potential health benefits. However, the accurate and sensitive determination of resveratrol in complex matrices remains a challenge. In this study, we propose the utilization of bimetallic porous Mn/Co oxide nanosheets (MnCoO-NSs) as catalysts for the colorimetric determination of resveratrol. RESULTS The bimetallic porous MnCoO-NSs were prepared through a facile one-stone-two-birds strategy. These nanosheets exhibited superior oxidase-mimicking activity, as evidenced by the catalytic oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB), producing a blue-colored oxTMB species with a prominent absorbance peak at 655 nm. The catalytic activity was promoted through the production of superoxide anion (O2•-), which enhanced the affinity of MnCoO-NSs to the TMB molecules. Upon the addition of resveratrol, the oxidation process was inhibited, resulting in rapid fading of the blue color. This colorimetric sensing platform exhibited a linear response to resveratrol concentrations over the range of 2.2-87.6 μM, with a limit of detection of 0.210 μM. The method was further applied for the determination of resveratrol in different matrices including biological fluids, pharmaceuticals, and environmental water. SIGNIFICANCE The utilization of these MnCoO-NSs offers a simple and cost-effective alternative to conventional analytical techniques for the determination of resveratrol. Their high sensitivity, selectivity, and stability enable accurate measurements of resveratrol in various complex matrices. This research has implications in areas such as pharmaceutical analysis, biomedical research, and environmental analysis, where the reliable determination of resveratrol is crucial for assessing its therapeutic potential and ensuring product quality.
Collapse
Affiliation(s)
- Maha Mohammad Abdel-Monem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed I Walash
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Phan-Xuan T, Breitung B, Dailey LA. Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1981. [PMID: 39044339 DOI: 10.1002/wnan.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like activity with selected advantages over native enzymes such as simple synthesis, controllable activity, high stability, and low cost. These materials have been explored as surrogates to natural enzymes in biosensing, therapeutics, environmental protection, and many other fields. Among different nanozymes classes, metal- and metal oxide-based nanozymes are the most widely studied. In recent years, bi- and tri-metallic nanomaterials have emerged often showing improved nanozyme activity, some of which even possess multifunctional enzyme-like activity. Taking this concept even further, high-entropy nanomaterials, that is, complex multicomponent alloys and ceramics like oxides, may potentially enhance activity even further. However, the addition of various elements to increase catalytic activity may come at the cost of increased toxicity. Since many nanozyme compositions are currently being explored for in vivo biomedical applications, such as cancer therapeutics, toxicity considerations in relation to nanozyme application in biomedicine are of vital importance for translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thuong Phan-Xuan
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
- School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Chen J, Fei M, Ni M, Wang Y, Liu Z, Xie Y, Zhao P, Zhang Z, Fei J. Multilayer Ti 3C 2-CNTs-Au Loaded with Cyclodextrin-MOF for Enhanced Selective Detection of Rutin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310217. [PMID: 38361221 DOI: 10.1002/smll.202310217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Indexed: 02/17/2024]
Abstract
In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Maoheng Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
10
|
Liu T, Zhu L, Li C, Yu Y, Zhang Z, Liu H, Wang L, Li Y. Fe-CP-based Catalytic Oxidation and Dissipative Self-Assembly of a Ferrocenyl Surfactant Applied in DNA Capture and Release. ACS OMEGA 2024; 9:23772-23781. [PMID: 38854516 PMCID: PMC11154932 DOI: 10.1021/acsomega.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Dissipative self-assembly plays a vital role in fabricating intelligent and transient materials. The selection and design of the molecular structure is critical, and the introduction of valuable stimuli-responsive motifs into building blocks would bring about a novel perspective on the fuel driven nonequilibrium assemblies. For redox-responsive surfactants, novel methods of catalytic oxidation are very important for their activation/deactivation process through designing fuel input/energy dissipation. As an enzyme with a fast catalytic rate, Fe-based coordination polymers (Fe-CPs) are found to be highly effective oxidase-like enzymes to induce a reversible switch of a ferrocene-based surfactant over a wide range of temperatures and pH. This builds a bridge between the CPs materials and surfactants. Furthermore, glucose oxidase can also induce a switchable transition of a ferrocene-based surfactant. The GOX-catalyzed, glucose-fueled transient surfactant assemblies have been fabricated for many cycles, which has a successful application in a time-controlled and autonomous DNA capture and release process. The intelligent use of enzymes including CPs and GOX in ferrocene-based surfactants will pave the way for the oxidation of redox surfactants, which extends the application of stable or transient ferrocenyl self-assemblies.
Collapse
Affiliation(s)
- Ting Liu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Liwei Zhu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Chencan Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yang Yu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Zhuo Zhang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Huizhong Liu
- School
of Mechatronics and Automobile Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Ling Wang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yawen Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| |
Collapse
|
11
|
Zhang L, Bi X, Wang H, Li L, You T. Loading of AuNCs with AIE effect onto cerium-based MOFs to boost fluorescence for sensitive detection of Hg 2. Talanta 2024; 273:125843. [PMID: 38492285 DOI: 10.1016/j.talanta.2024.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg2+) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs. In addition, Ce-MOFs could adsorb and aggregate Hg2+ during detection, which might increase the local concentration. Therefore, based on the high FL signal of AuNCs/Ce-MOFs and enriched Hg2+, sensitive detection of Hg2+ could be achieved. More importantly, the strong specific recognition between AuNCs and Hg2+ could guarantee selectivity. The developed FL sensor exhibited superior detection performances with a wide linear range of 0.2-500 ng mL-1 and a low detection limit of 0.067 ng mL-1. Furthermore, the FL sensor used for sensitive and selective detection of Hg2+ in real samples, and the results agreed well with the standard method. In summary, this work proposed an effective and generalized strategy for improving the FL efficiency of AuNCs, which would greatly facilitate their application in pollutant monitoring.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Wang
- Department of Environmental Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
12
|
Ren E, Qiu H, Yu Z, Cao M, Sohail M, Lu GP, Zhang X, Lin Y. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134127. [PMID: 38554521 DOI: 10.1016/j.jhazmat.2024.134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Developing methods for the accurate identification and analysis of sulfur-containing compounds (SCCs) is of great significance because of their essential roles in living organisms and the diagnosis of diseases. Herein, Se-doping improved oxidase-like activity of iron-based carbon material (Fe-Se/NC) was prepared and applied to construct a four-channel colorimetric sensor array for the detection and identification of SCCs (including biothiols and sulfur-containing metal salts). Fe-Se/NC can realize the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by activating O2 without relying on H2O2, which can be inhibited by different SCCs to diverse degrees to produce different colorimetric response changes as "fingerprints" on the sensor array. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that nine kinds of SCCs could be well discriminated. The sensor array was also applied for the detection of SCCs with a linear range of 1-50 μM and a limit of detection of 0.07-0.2 μM. Moreover, colorimetric sensor array inspired by the different levels of SCCs in real samples were used to discriminate cancer cells and food samples, demonstrating its potential application in the field of disease diagnosis and food monitoring. ENVIRONMENTAL IMPLICATIONS: In this work, a four-channel colorimetric sensor array for accurate SCCs identification and detection was successfully constructed. The colorimetric sensor array inspired by the different levels of SCCs in real samples were also used to discriminate cancer cells and food samples. Therefore, this Fe-Se/NC based sensor array is expected to be applied in the field of environmental monitoring and environment related disease diagnosis.
Collapse
Affiliation(s)
- Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haochen Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhixuan Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Nie P, Gao X, Yang X, Zhang Y, Lu H, Wang H, Zheng Z, Shen Y. AIE fluorogen-based oxidase-like fluorescence nanozyme-integrated smartphone for monitoring the freshness authenticity of soy products. Food Chem 2024; 439:138122. [PMID: 38070231 DOI: 10.1016/j.foodchem.2023.138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Food safety concerns about the authenticity of soy product freshness have increased due to high demand from public. Developing an accurate and convenient monitoring method for freshness authenticity is crucial for safeguarding food safety. From this motive, this study employed PtPd NPs to encapsulate tetraphenylethylene (TPE) for engineering an AIE-based fluorescent nanozyme (PtPd NPs@TPE) with oxidase-like activity, achieving the ratiometric fluorescence monitoring of putrescine (PUT) to judge the freshness authenticity of soy products. In this design, PUT acted as an antioxidant and inhibited the oxidation process of PtPd NPs@TPE to o-phenylenediamine (OPD), leading to the reduction of oxidative product 2,3-diaminophenothiazine (DAP) alone with the weaken of yellow fluorescence from DAP at 552 nm and bright of bule fluorescence from PtPd NPs@TPE at 442 nm. On this basis, a ratiometric fluorescence strategy integrated with smartphone-based sensor was developed for PUT with acceptable results to combat food freshness fraud of soy products.
Collapse
Affiliation(s)
- Peng Nie
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Xuefei Yang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yang Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Haijie Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Heng Wang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Mao L, Qian J. Interfacial Engineering of Heterogeneous Reactions for MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308732. [PMID: 38072778 DOI: 10.1002/smll.202308732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
Metal-organic frameworks (MOFs), as a subclass of porous crystalline materials with unique structures and multifunctional properties, play a pivotal role in various research domains. In recent years, significant attention has been directed toward composite materials based on MOFs, particularly MOF-on-MOF heterostructures. Compared to individual MOF materials, MOF-on-MOF structures harness the distinctive attributes of two or more different MOFs, enabling synergistic effects and allowing for the tailored design of diverse multilayered architectures to expand their application scope. However, the rational design and facile synthesis of MOF-on-MOF composite materials are in principle challenging due to the structural diversity and the intricate interfaces. Hence, this review primarily focuses on elucidating the factors that influence their interfacial growth, with a specific emphasis on the interfacial engineering of heterogeneous reactions, in which MOF-on-MOF hybrids can be conveniently obtained by using pre-fabricated MOF precursors. These factors are categorized as internal and external elements, encompassing inorganic metals, organic ligands, lattice matching, nucleation kinetics, thermodynamics, etc. Meanwhile, these intriguing MOF-on-MOF materials offer a wide range of advantages in various application fields, such as adsorption, separation, catalysis, and energy-related applications. Finally, this review highlights current complexities and challenges while providing a forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
15
|
Lei Y, Gao N, Huang P, Wu FY. UiO-66-NH 2 initiated cascade reaction: Constructing a ratiometric fluorescence sensor for ultrasensitive detection of nerve agent simulant. Anal Chim Acta 2024; 1299:342421. [PMID: 38499417 DOI: 10.1016/j.aca.2024.342421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Highly toxic organophosphorus nerve agents often exist in the form of gas in the environment and can damage human neuroregulatory system by inhibiting the activity of acetylcholinesterase (AChE). However, fluorescent probes based on small organic molecules bring a secondary burden to environment, and their sensitivity and specificity for sarin simulant diethyl chlorophosphate (DCP) detection are unsatisfactory. Nanozyme cascade systems with signal amplification can be used for highly sensitive identification of analytes, but are rarely used in ratiometric analysis of DCP. Combination of enzyme cascades and ratiometric fluorescence ensures the accuracy and sensitivity of the output signal. RESULTS We prepared a self-assembled nanohybrid (Ag-AuNCs@UiO-66-NH2) by metal-organic framework material and gold nanoclusters. On the one hand, UiO-66-NH2 with enzyme-like activity was used to hydrolyze DCP into diethyl phosphate (DEP) and chloridion (Cl-). Cl- hindered aggregation-induced enhanced emission (AIEE) of AuNCs by binding with Ag+ and decreased the fluorescence of AuNCs. On the other hand, ligand metal charge transfer effect (LMCT) of UiO-66-NH2 was blocked by DCP to enhance the fluorescence of UiO-66-NH2. Combining ratiometric analysis and nanozyme cascade reaction, an ultra-sensitive fluorescence sensor for detecting DCP was constructed, and ensured the accuracy of experimental results. In addition, Ag-AuNCs@UiO-66-NH2 was embedded into the agarose hydrogel substrate, the resulting agarose hydrogel film allowed quantitative assessment of DCP vapor and high sensitivity was demonstrated (detection limit as low as 1.02 ppb). SIGNIFICANCE A strategy combining enzyme cascade with ratiometric fluorescence was proposed, which improved the accuracy and sensitivity of the analysis results. The soft-solid platform based on agarose hydrogel film was constructed to realize the quantitative monitoring of sarin simulant gas. The LOD value obtained in this work is much lower than the immediately life-threatening or health threatening concentration of sarin.
Collapse
Affiliation(s)
- You Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Nan Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
16
|
Zhang Y, Wang M, Shao C, Liu T, Sun M, Wu C, Su G, Wang Y, Ye J, Hu H, Li Y, Rao H, Lu Z. Nanozyme-induced deep learning-assisted smartphone integrated colorimetric and fluorometric dual-mode for detection of tetracycline analogs. Anal Chim Acta 2024; 1297:342373. [PMID: 38438242 DOI: 10.1016/j.aca.2024.342373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
In this work, a colorimetric and fluorescent dual-mode probe controlled by NH2-MIL-88 B (Fe, Ni) nanozymes was developed to visually detect tetracycline antibiotics (TCs) residues quantitatively, as well as accurately distinguish the four most widely used tetracycline analogs (tetracycline (TC), chrycline (CTC), oxytetracycline (OTC), and doxycycline (DC)). Colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) may be oxidized to blue oxidized TMB by the Fe Fenton reaction, which was catalyzed by the NH2-MIL-88 B (Fe, Ni) nanozyme with POD-like activity. The colorimetric detection system allows TCs to interact with NH2-MIL-88 B (Fe, Ni). This inhibits the production of ·OH, weakens the oxidation process of TMB, and ultimately lightens the blue color in the system by blocking the electron transfer between NH2-MIL-88 B (Fe, Ni) and H2O2. Furthermore, TCs can interact with NH2-MIL-88 B (Fe, Ni) as a result of the internal filtering effect, which causes the fluorescence intensity to decrease as TCs concentration increases. Additionally, a portable instrument that combines a smartphone sensing platform with colorimetric and fluorescent signals was created for the quick, visual quantitative detection of TCs. The colorimetric and fluorescent dual-mode nano platform enables color change, with detection limits (LODs) of 0.182 μM and 0.0668 μM for the spectrometer and smartphone sensor, respectively, based on the inhibition of fluorescence and enzyme-like activities by TCs. Overall, the colorimetric and fluorescence dual-mode sensor has good stability, high specificity, and an efficient way to eliminate false-positive issues associated with a single detection mode.
Collapse
Affiliation(s)
- Yi Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mingyang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chunfeng Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Haipeng Hu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanbin Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China; Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, 235000, PR China.
| |
Collapse
|
17
|
Xin J, Pang H, Gómez-García CJ, Sun W, Wu Q, Au CM, Ma H, Wang X, Yang G, Yu WY. One-Step Synthesis of Hollow CoS 2 Spheres Derived from Polyoxometalate-Based Metal-Organic Frameworks with Peroxidase-like Activity. Inorg Chem 2024; 63:860-869. [PMID: 38141027 DOI: 10.1021/acs.inorgchem.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 μM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot 46100, Spain
| | - Wenlong Sun
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, Yunnan, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
18
|
Sun M, Zhao L, Liu T, Lu Z, Su G, Wu C, Song C, Deng R, He M, Rao H, Wang Y. Construction of CuO/Fe 2O 3 Nanozymes for Intelligent Detection of Glufosinate and Chlortetracycline Hydrochloride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54466-54477. [PMID: 37971298 DOI: 10.1021/acsami.3c12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, CuO/Fe2O3 nanozymes with high peroxidase-like activity were synthesized by using hydrothermal and calcination methods. The high-resolution transmission electron microscopy (HRTEM) proved that the heterogeneous interface of CuO/Fe2O3 was the main reason for the high enzyme-like activity. Strong interactions of CuO and Fe2O3 were successfully verified by X-ray absorption near-edge structure (XANES) characterization. Experiments and density functional theory (DFT) calculations were also used to explain the increased enzyme activity. The heterogeneous interface acted as the main active center, facilitating the electron transfer from CuO to Fe2O3. A colorimetric and intelligent sensing system was constructed based on deep learning. Using the peroxidase-like activity of CuO/Fe2O3, a platform for glufosinate pesticides and chlortetracycline hydrochloride (CTC) with the signal "on-off-on" changes were established. The limit of detection (LOD) of glufosinate and CTC was 28 and 0.69 μM, respectively. It was successfully applied in the detection of environmental water and soil. This study can provide an intelligent detection method for environmental monitoring.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Liying Zhao
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, P. R. China
| | - Rui Deng
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Mingxia He
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
19
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Luo L, Zhuo J, Zhang Y, Zhang W, Su W, Sun J, Shen Y, Wang J. Integrated Design of a Dual-Mode Colorimetric Sensor Driven by Enzyme-like Activity Regulation Strategy for Ultratrace and Portable Detection of Hg 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13397-13407. [PMID: 37643359 DOI: 10.1021/acs.est.3c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Colorimetric analysis for mercury detection has great application potential in the prevention of health damage caused by mercury in the environment. Sensitivity, selectivity, and portability are core competencies of sensors, and concentrating these properties in a single sensor for efficient mercury detection remains a great challenge. Herein, a hollow structure CuS@CuSe@PVP (CCP) was prepared in which the enzyme-like activities could be activated by Hg2+ due to the antagonism between Hg and Se, inspiring the establishment of a colorimetric method for Hg2+ detection. As for Hg2+ detection performance, the linear range (LR) and limit of detection (LOD) were 1-900 and 0.81 nM in the POD-like activity system, respectively. Also, 5-550 nM of LR and 2.34 nM of LOD were achieved in the OD-like activity system. Further, a smartphone-mediated portable RGB nanosensor was fabricated, with a LOD down to 6.65 nM in the POD-like system and 7.97 nM in the OD-like system. Moreover, the excellent self-calibration and satisfactory recovery of 94.77%-106.16% were shown in the application of real water samples analysis. This study represented advanced progress toward emerging applications of nanozymes with multiple enzyme-like activities in heavy metal detection and will accelerate the development of efficient and portable heavy metal sensors.
Collapse
Affiliation(s)
- Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Yinuo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Weihao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Wenqiao Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi China
| |
Collapse
|
21
|
Wang M, Guan J, Liu S, Chen K, Gao Z, Liu Q, Chen X. Dual-ligand lanthanide metal-organic framework probe for ratiometric fluorescence detection of mercury ions in wastewater. Mikrochim Acta 2023; 190:359. [PMID: 37605047 DOI: 10.1007/s00604-023-05944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
By serving dipyridylic acid (DPA) and 2,5-dihydroxyterephthalic acid (DHTA) as the biligands, a novel lanthanide (Eu3+) metal-organic framework (MOF) namely Eu-DHTA/DPA was prepared for specific Hg2+ fluorescence determination. The dual-ligand approach can endows the resulting luminescent MOF with dual emission of ratiometric fluorescence and uniform size. Eu3+ produces intense red fluorescence when activated by the ligand DPA, while the other ligand DHTA produces yellow fluorescence. Under 273 nm excitation, the presence of Hg2+ in the monitoring environment causes an increase in the intensity of the DHTA fluorescence peak at 559 nm and a decrease in the intensity of the Eu3+ fluorescence peak at 616 nm. Hg2+ effectively quenches the fluorescence emission of the central metal Eu3+ in Eu-DHTA/DPA at 616 nm through a dynamic quenching effect. This recognition process occurs due to the coordination of Hg2+ with ligands such as benzene rings, carboxyl groups, and pyridine N in three-dimensional space. Hg2+ was detected by measuring the ratio between two fluorescence peaks (I559 nm/I616 nm) within the range 2-20 μM, achieving a remarkably low detection limit of 40 nM. The established ratiometric fluorescence method has been successfully applied to the determination of Hg2+ in industrial wastewater of complex composition. The method plays a crucial role in the rapid and sensitive monitoring of Hg2+ in real environmental samples. The recoveries ranged from 92.82% to 112.67% (n = 3) with relative standard deviations (RSD) below 4.8%. This study offers a convenient and effective method for constructing probes for Hg2+ monitoring, with practical applications in environmental monitoring.
Collapse
Affiliation(s)
- Meng Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Ziyi Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China
| |
Collapse
|
22
|
Zhang L, Bi X, Liu X, He Y, Li L, You T. Advances in the application of metal-organic framework nanozymes in colorimetric sensing of heavy metal ions. NANOSCALE 2023; 15:12853-12867. [PMID: 37490007 DOI: 10.1039/d3nr02024j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nanozymes, which can be defined as nanomaterials with excellent catalytic function, are well known to the scientific community due to their distinct merits, such as low cost and high stability, which render them preferable to natural enzymes. As porous organic-inorganic coordination materials, metal-organic frameworks (MOFs) possess a large number of active sites and thus can effectively mimic the properties of natural enzymes. Recently, MOF-based nanozymes have also exhibited good application potential for the analysis of heavy metal ions. In comparison to the traditional detection methods for heavy metal ions, nanozyme-based colorimetric sensing permits intuitive visual analysis by using relatively simple instruments, facilitating rapid and simple on-site screening. In this minireview, the preparation of MOF-based nanozymes and the different nanozyme activity types are briefly described, such as peroxidase-like and oxidase-like, and the relevant catalytic mechanisms are elaborated. Based on this, different response mechanisms of MOF-based colorimetric methods to heavy metal ions, such as turn-off, turn-on, and turn-off-on, are discussed. In addition, the colorimetric sensing applications of MOF-based nanozymes for the detection of heavy metal ions are summarized. Finally, the current research status of MOF-based nanozymes and the future development direction are discussed.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
23
|
Yi Z, Ren Y, Li Y, Li Y, Long F, Zhu A. Rational design of three-in-one Pt/MnO 2/GO hybrid nanozyme with enhanced catalytic performance for colorimetric detection of ascorbic acid and cysteine. Talanta 2023; 265:124839. [PMID: 37418957 DOI: 10.1016/j.talanta.2023.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
In this work, a novel three-in-one Pt/MnO2/GO hybrid nanozyme with wide pH and temperature working range was rational prepared using simple hydrothermal and reduction strategy. The prepared Pt/MnO2/GO displayed enhanced catalytic activity than single active component due to the excellent conductivity of GO, the increased active sites, the increased electron transfer capacity, the synergistic effect between each component and the decreased binding energy for adsorbed intermediates. Combing chemical characterization and theoretical simulation calculations, the O2 reduction process on the Pt/MnO2/GO nanozymes and the generated reactive oxygen species in the nanozyme-TMB system were thoroughly illustrated. Based on the excellent catalytic activity of Pt/MnO2/GO nanozymes, a colorimetric strategy was proposed to detect the ascorbic acid (AA) and cysteine (Cys), and the experimental results indicated that detection range of AA was 0.35-56 μM with a LOD of 0.075 μM and detection range of Cys was 0.5-32 μM with a LOD of 0.12 μM. Good recoveries were achieved in the human serum and fresh fruit juice detection procedures, demonstrating the potential applications of Pt/MnO2/GO-based colorimetric strategy in complex biological and food samples.
Collapse
Affiliation(s)
- Zhihao Yi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yashuang Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yanna Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Feng Long
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
24
|
Huang N, Yang D, Chen H, Xiao Y, Wen J, Long Y, Zheng H. Colorimetric detection of biothiols and Hg 2+ based on the peroxidase-like activity of GTP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122263. [PMID: 36571862 DOI: 10.1016/j.saa.2022.122263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Guanosine-5'-triphosphate (GTP) not only plays a key role in a majority of cellular processes but also be proposed as a peroxidase-like mimic. Compared with nanozymes, GTP shows good tolerance under harsh conditions, which can be used to construct an easy colorimetric analysis for the detection of biomolecules. Here, on the basis of the peroxidase-like activity of GTP which can catalyze the oxidation of 3,3',5,5'-tetramethyl benzidine dihydrochloride (TMB), colorimetric sensing was established for biothiols and Hg2+. Biothiols reduced the oxTMB back to colorless TMB, and Hg2+ restored the formation of oxTMB, leading to the recovery of color. This method not only provides a platform for the detection of metal ions and biothiols, but also shows that GTP has great potential for analytical detection.
Collapse
Affiliation(s)
- Na Huang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Dan Yang
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huanhuan Chen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Jiahui Wen
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
25
|
Qu L, Han J, Huang Y, Yang G, Liu W, Long Z, Gu Y, Zhang Q, Gao M, Dong X. Peroxidase-like Nanozymes for Point-of-Care SERS Sensing and Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:1272-1282. [PMID: 36854189 DOI: 10.1021/acsabm.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The emergence of nanozymes provides a potential method for combating multidrug-resistant bacteria resulted from the abuse of antibiotics. However, in nanozyme-catalyzed systems, few studies have addressed the actual hydrogen peroxide (H2O2) level involved in sterilization. Herein, we designed a high-efficiency peroxidase-mimicking nanozyme with surface-enhanced Raman scattering (SERS) property by assembling gold nanoparticles on single-layer Cu2+-C3N4 (AuNP-Cu2+-C3N4). The nanozyme effectively converts the low-active Raman reporter 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form with H2O2, resulting in SERS signal changes, thereby achieving highly sensitive quantification of H2O2 with limit of detection as low as 0.60 μM. More importantly, the nanozyme can specifically catalyze H2O2 into antibacterial hydroxyl radicals. In vitro and in vivo evaluations demonstrate the remarkable antibacterial efficacy of the nanozyme/H2O2 combination against Staphylococcus aureus (up to 99.9%), which could promote wound healing in mice and allow point-of-care monitoring the amount of H2O2 participated in effective sterilization. This study not only displays great potential in combining multiple functionalities of nanomaterials for versatile bioassays but also provides a promising approach to design nanozymes for biomedical and catalytic applications.
Collapse
Affiliation(s)
- Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yi Huang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zhouyang Long
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qingming Zhang
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
26
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
27
|
Li H, Han B, Ma H, Li R, Hou X, Zhang Y, Wang JJ. A "turn-on" inverse opal photonic crystal fluorescent sensing film for detection of cysteine and its bioimaging of living cells. Mikrochim Acta 2023; 190:49. [PMID: 36630016 DOI: 10.1007/s00604-022-05627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 01/12/2023]
Abstract
A "turn-on" inverse opal photonic crystal fluorescent sensing film infiltrated with a coumarin derivative is reported for the reliable and accurate detection of cysteine in human serum and fluorescence imaging of living cells. The coumarin derivative containing allyl ester specifically reacts with cysteine by ammonolysis to generate a fluorescent product whose emission wavelength is at ~ 535 nm, providing a selective fluorescence detection for cysteine. The emitted fluorescence is significantly enhanced due to the slow photon effect derived from the photonic crystal film. This is because the emission wavelength is overlapped with the blue-band edge of the photonic stopband of the selected inverse opal film. The fluorescence enhancement effect endows the prepared inverse opal film with highly sensitive detection with a limit of detection of 3.23 × 10-9 mol/L and a wide linear detection range of 1 × 10-7 - 1 × 10-3 mol/L. A fast response within 30 s toward cysteine is also achieved due to the three-dimensional interconnected macroporous structure with a high-specific surface area of the inverse opal film. The prepared inverse opal fluorescent sensing film has been successfully applied to the detection of cysteine in human serum and bioimaging of living cells. In the diluted human serum, the recoveries for the detection of cysteine were 97.92 - 107.20%, and the relative standard deviations were 2.61-9.04%, demonstrating the potential applicability of the inverse opal fluorescent sensing film to real sample analysis. The method may provide a universal strategy for constructing various photonic crystal fluorescent sensing films by using different fluorescent probes.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Xueyan Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| |
Collapse
|
28
|
Sun X, Luo S, Zhang L, Miao Y, Yan G. Photoresponsive oxidase-like phosphorescent carbon dots in colorimetric Hg2+ detection. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
29
|
Yang X, Feng M, Zhang X, Huang Y. Co,N,S co-doped hollow carbon with efficient oxidase-like activity for the detection of Hg2+ and Fe3+ ions. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Yang L, Song Y, Li J, Xu W, Peng C, Wang L. S,N-rich luminous covalent organic frameworks for Hg 2+ detection and removal. CHEMOSPHERE 2023; 311:136919. [PMID: 36272626 DOI: 10.1016/j.chemosphere.2022.136919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The challenge for simultaneous detection and removal of Hg2+ is the design of bifunctional materials bearing abundant accessible chelating sites with high affinity. Covalent-organic frameworks (COFs) are attracting more and more attention as potential bifunctional materials for Hg2+ detection due to their large specific surface area, ordered pores, and abundant chelating sites. Here, a new luminous S,N-rich COFBTT-AMPD based on hydrophilic block unit of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AMPD) was constructed, which improved the solubility and affinity for Hg2+ greatly. Another S-rich fused-ring unit of benzotrithiophene tricarbalaldehyde (BTT) enhanced the conjugation of COFBTT-AMPD, and the methyl-rich chains block unit of AMPD effectively suppressed the aggregation-caused quenching. Thus, the COFBTT-AMPD emitted strong fluorescence at 546 nm in liquid and solid as well as different solvent with a wide pH range, which was used for the visual detection and removal of Hg2+ (detection limit: 2.6 nM, linear range: 8.6 × 10-3-20 μM, monolayer adsorption capacity: 476.19 mg g-1) successfully. COFBTT-AMPD-based fabric and light-emitting diode coatings were further constructed to realize the visual detection of Hg2+ vapor. The results reveal the potential of S,N-rich luminous COFBTT-AMPD for Hg2+ detection and remediation in the environment.
Collapse
Affiliation(s)
- Li Yang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Junjie Li
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Wentao Xu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Chengyu Peng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Li Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
31
|
Zhu X, Tang J, Ouyang X, Liao Y, Feng H, Yu J, Chen L, Lu Y, Yi Y, Tang L. Hollow NiCo@C Nanozyme-Embedded Paper-Based Colorimetric Aptasensor for Highly Sensitive Antibiotic Detection on a Smartphone Platform. Anal Chem 2022; 94:16768-16777. [DOI: 10.1021/acs.analchem.2c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yating Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yuyang Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
32
|
Geng L, Huang J, Zhai H, Shen Z, Han J, Yu Y, Fang H, Li F, Sun X, Guo Y. Molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for specific recognition and determination of chloramphenicol in milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Shen Y, Gao X, Zhang Y, Chen H, Ye Y, Wu Y. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129582. [PMID: 35863223 DOI: 10.1016/j.jhazmat.2022.129582] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Development of a simple and efficient dual-mode analytical technique with the built-in cross reference correction feature is benefit to achieve the highly accurate detection of the target pollutants and avoid the false-positive outputs in environmental media. Here, we synthesized a Fe-doped polydopamine (Fe@PDA)-based nanozyme with prominent peroxide-mimetic enzyme activity and high fluorescence emission ability. On this basis, we designed a dual-recognition strategy-driven fluorescence-colorimetric dual-mode detection platform, consisting of Listeria monocytogenes (L. monocytogenes) recognition aptamer-modified Fe@PDA (apt/Fe@PDA) and vancomycin-functionalized Fe3O4 (van/Fe3O4), for L. monocytogenes. Owing to van/Fe3O4-powered magnetic separation, there was a L. monocytogenes concentration-dependent fluorescence enhancement of apt/Fe@PDA for performing fluorescence assay in the precipitate. In this case, the prominent peroxide-mimetic enzyme activity of the residual apt/Fe@PDA in the precipitation could catalyze H2O2 to further oxidate colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxTMB, which displayed a L. monocytogenes concentration-dependent absorbance enhancement for carrying out colorimetric assay as well. As a result, a fluorescence-colorimetric dual-mode analytical platform was proposed to successfully detect the residual L. monocytogenes in real environmental media with acceptable results. This work showed the great prospects by integrating dual-recognition strategy into fluorescence nanozyme to develop efficient and reliable dual-mode analytical platforms for safeguarding environmental health.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yiyin Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| |
Collapse
|
34
|
Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Li JJ, Yin L, Wang ZF, Jing YC, Jiang ZL, Ding Y, Wang HS. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem Asian J 2022; 17:e202200751. [PMID: 36029234 DOI: 10.1002/asia.202200751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/27/2022] [Indexed: 11/09/2022]
Abstract
As a class of widely used biocatalysts, enzymes possess advantages including high catalytic efficiency, strong specificity and mild reaction condition. However, most free enzymes have high requirements on the reaction environment and are easy to deactivate. Immobilization of enzymes on nanomaterial-based substrates is a good way to solve this problem. Metal-organic framework (MOFs), with ultra-high specific surface area and adjustable porosity, can provide a large space to carry enzymes. And the tightly surrounded protective layer of MOFs can stabilize the enzyme structure to a great extent. In addition, the unique porous network structure enables selective mass transfer of substrates and facilitates catalytic processes. Therefore, these enzyme-immobilized MOFs have been widely used in various research fields, such as molecule/biomolecule sensing and imaging, disease treatment, energy and environment protection. In this review, the preparation strategies and applications of enzymes-immobilized MOFs are illustrated and the prospects and current challenges are discussed.
Collapse
Affiliation(s)
- Jia-Jing Li
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Li Yin
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zi-Fan Wang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Yi-Chen Jing
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Zhuo-Lin Jiang
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Ya Ding
- China Pharmaceutical University, Pharmaceutical analysis, CHINA
| | - Huai-Song Wang
- China Parmaceutical University, Pharmaceutical analysis, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing Jiangsu, CHINA
| |
Collapse
|
36
|
Chang Q, Huang J, He L, Xi F. Simple immunosensor for ultrasensitive electrochemical determination of biomarker of the bone metabolism in human serum. Front Chem 2022; 10:940795. [PMID: 36092672 PMCID: PMC9458950 DOI: 10.3389/fchem.2022.940795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Ultrasensitive and selective determination of biomarkers of the bone metabolism in serum is crucial for early screening, timely treatment, and monitoring of the curative effect of osteoporosis, which is a silent disease with serious health threats. Immunoassay with a simple sensing interface and ultrahigh sensitivity is highly desirable. Herein, a simple electrochemical immunosensor is demonstrated based on gold nanoparticles (AuNPs) electrodeposited on chitosan-reduced graphene oxide (CS-G) composite modified electrode, which can achieve sensitive determination of the important biomarker of bone metabolism, bone gamma-carboxyglutamate protein (BGP). To overcome the agglomeration of graphene and introduce a biocompatible matrix with functional amino groups, CS-G is prepared and modified on the supporting glassy carbon electrode (GCE). Then, AuNPs are electrodeposited on CS-G through their interaction between amine groups of CS. The immobilized AuNPs provide numerous binding sites to immobilize anti-BGP antibodies (AbBGP). The specific recognition between BGP and AbBGP results in a reduction in the mass transfer of the electrochemical probe (Fe(CN)63-/4-) in solution, leading to a reduced electrochemical signal. Based on this mechanism, fast and ultrasensitive electrochemical detection of BGP is achieved when the concentration of BGP ranges from 100 ag ml−1 to 10 μg mL−1 with a limit of detection (LOD) of 20 ag ml−1 (S/N = 3). The determination of BGP in human serum is also realized with high reliability.
Collapse
Affiliation(s)
- Qiang Chang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liming He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Fengna Xi,
| |
Collapse
|
37
|
Feng M, Zhang Q, Chen X, Deng D, Xie X, Yang X. Controllable synthesis of boron-doped Zn–N–C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens Bioelectron 2022; 210:114294. [DOI: 10.1016/j.bios.2022.114294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022]
|
38
|
Shi Y, Wu Q, Li W, Lin L, Qu F, Shen C, Wei Y, Nie P, He Y, Feng X. Ultra-sensitive detection of hydrogen peroxide and levofloxacin using a dual-functional fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128605. [PMID: 35286934 DOI: 10.1016/j.jhazmat.2022.128605] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Herein, a flower-shaped fluorescent probe was proposed for hydrogen peroxide (H2O2) and levofloxacin (LVF) sensing based on MoOx QDs@Co/Zn-MOFs with porous structure. Both MoOx QDs and Co/Zn-MOFs exhibited peroxidase-like properties, and the combination of them greatly aroused the synergistic catalytic capabilities between them. In o-Phenylenediamine (OPD)-H2O2 system, MoOx QDs@Co/Zn-MOFs efficiently catalyzed H2O2 to produce •OH and then oxidized OPD to its oxidation product (OxOPD). The OxOPD could not only emit blue fluorescence, but also inhibit the fluorescent intensity of MoOx QDs through fluorescence resonance energy transfer (FRET). Moreover, when introducing LVF into the system, the fluorescent intensities of MoOx QDs increased along with the aggregation of themselves while that of OxOPD remained unchanged, which was explained by the joint behavior of FRET and photo-induced electron transfer (PET) instead of the conventional aggregation-induced emission enhancement (AIEE). With these observation, the proposed probe was employed for H2O2 and LVF determination in biological samples with the limit of detection (LOD) of 32.60 pmol/L and 0.85 μmol/L, respectively, suggesting the method holds great promises for trace H2O2 and LVF monitoring in eco-environment.
Collapse
Affiliation(s)
- Yongqiang Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qicong Wu
- School of Life and Environmental Science,Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangfang Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenjia Shen
- School of Life and Environmental Science,Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuzhen Wei
- School of Information Engineering, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou, Guangdong 510700, China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
39
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
40
|
Dang Y, Wang G, Su G, Lu Z, Wang Y, Liu T, Pu X, Wang X, Wu C, Song C, Zhao Q, Rao H, Sun M. Rational Construction of a Ni/CoMoO 4 Heterostructure with Strong Ni-O-Co Bonds for Improving Multifunctional Nanozyme Activity. ACS NANO 2022; 16:4536-4550. [PMID: 35238531 DOI: 10.1021/acsnano.1c11012] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the lack of a general descriptor to predict the activity of nanomaterials, the current exploration of nanozymes mainly depended on trial-and-error strategies, which hindered the effective design of nanozymes. Here, with the help of a large number of Ni-O-Co bonds at the interface of heterostructures, a prediction descriptor was successfully determined to reveal the double enzyme-like activity mechanisms for Ni/CoMoO4. Additionally, DFT calculations revealed that interface engineering could accelerate the catalytic kinetics of the enzyme-like activity. Ni-O-Co bonds were the main active sites for enzyme-like activity. Finally, the colorimetric signal and intelligent biosensor of Ni/CoMoO4 based on deep learning were used to detect organophosphorus and ziram sensitively. Meanwhile, the in situ FTIR results uncovered the detection mechanism: the target molecules could block Ni-O-Co active sites at the heterostructure interface leading to the signal peak decreasing. This study not only provided a well design strategy for the further development of nanozymes or other advanced catalysts, but it also designed a multifunctional intelligent biosensor platform. Furthermore, it also provided preferable ideas regarding the catalytic mechanism and detection mechanism of heterostructure nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, China
| | | | | |
Collapse
|
41
|
Engineering porous Co–Mn oxide nanosheets with abundant oxygen vacancy as an efficient oxidase-like mimic for heparin colorimetric sensing. Anal Chim Acta 2022; 1198:339564. [DOI: 10.1016/j.aca.2022.339564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
|
42
|
Zou Y, Chai Q, Zhu T, Yu X, Mao G, Li N, Chen J, Lai G. Simultaneously colorimetric detection and effective removal of mercury ion based on facile preparation of novel and green enzyme mimic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120410. [PMID: 34601367 DOI: 10.1016/j.saa.2021.120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
In this work, an environmentally-friendly and cost-effective enzyme mimic was obtained by facile one-pot preparation of chitosan/Cu/Fe (CS/Cu/Fe) composite. This composite exhibited significantly enhanced oxidase-mimicking activity during catalyzing the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB). The CS/Cu/Fe composite was comprehensively characterized and the possible catalytic mechanism was reasonably explored and discussed. Benefiting from the thermal stability and the compatibility with carbohydrate, the CS/Cu/Fe composite was further integrated with agarose hydrogel to fabricate a portable analytical tube containing oxidase mimic. Based on the inhibition of the catalytic oxidation of TMB in the presence of cysteine, as well as the recovery of oxidase-like activity of CS/Cu/Fe due to the specific complexation of cysteine and mercury ion (Hg2+), the rapid colorimetric detection of Hg2+ was successfully carried out in the analytical tube. This colorimetric method showed good linear response to Hg2+ over the range from 40 nM to 8.0 μM with a detection limit of 8.9 nM. The method also revealed high selectivity and satisfactory results in recovery experiments of Hg2+ detection in tap water and lake water. Furthermore, it was found that the effective removal of Hg2+ could be realized in the analytical tube based on efficient Hg2+ adsorption by CS/Cu/Fe composite and agarose hydrogel. This study not only prepared a robust and low-cost enzyme mimic, but also proposed a smart strategy to simultaneously monitor and remove toxic Hg2+ from contaminated water.
Collapse
Affiliation(s)
- Yanyun Zou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Ting Zhu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Xiaoxiao Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ningxing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China.
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| |
Collapse
|
43
|
Zhao S, Long Y, Shen X, Wang S, Su Y, Zhang X, Zhang Z. Regulation of electronic structures of MOF-derived carbon via ligand adjustment for enhanced Fenton-like reactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149497. [PMID: 34426315 DOI: 10.1016/j.scitotenv.2021.149497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Peroxymonosulfate (PMS)-based Fenton-like reactions are widely used for wastewater remediation. Metal-free carbonaceous activators can avoid the secondary pollution caused by metal leaching but often suffer from insufficient activity due to limited active centers and mass transfer barriers. Here, we prepared a series of heteroatom (N, S, F)-doped, highly porous carbonaceous materials (UC-X, X = N, S, F) by pyrolyzing UiO-66 precursors assembled by various organic ligands. Density functional theory calculations showed that the heteroatoms modulated the electronic structures of the carbon plane. UC-X exhibited significantly enhanced PMS activation capability compared with the undoped counterpart, in the efficiency order of UC-N > UC-S > UC-F > UC. UC-N (calcined at 1000°C) showed the best PMS activation, exceeding that of commonly used carbocatalysts. The prominent performance of UC-N originated from its unique porous structure and homogeneously dispersed graphitic N moieties. Trapping experiments and electron spin resonance showed a nonradical degradation pathway in the UC-N/PMS system, through which organics were oxidized by donating electrons to UC-N/PMS* metastable complexes. This work not only reports a universal way to access high-performance, metal-free PMS activators but also provides insight into the underlying mechanism of the carbon-activated PMS process.
Collapse
Affiliation(s)
- Shiyin Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yangke Long
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuehua Shen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shubin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiping Su
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
44
|
Li P, Zheng J, Xu J, Zhang M. Keratin-inorganic hybrid nanoflowers decorated with Fe 3O 4 nanoparticles as enzyme mimics for colorimetric detection of glucose. Dalton Trans 2021; 50:14753-14761. [PMID: 34590661 DOI: 10.1039/d1dt02301b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are highly active enzyme-like catalysts. However, low stability is still a big challenge for Fe3O4-based enzyme mimics because the Fe3O4 MNPs can be easily dissolved when exposed to acidic conditions. Inspired by the numerous catalytic sites of a flower-like structure and the biological functions of amino acids in structural proteins, herein, by employing keratin as a protein component, stable Fe3O4-based MNP embedded keratin-Cu3(PO4)2 nanoflowers were constructed, from which hierarchical nanostructures with a three-dimensional petal-like morphology were selected for subsequent studies owing to their excellent enzymic catalytic activity. The keratin-nanoflower@Fe3O4 exhibited significantly enhanced catalytic activity compared with that of keratin-Cu3(PO4)2 nanoflowers and individual Fe3O4 MNPs. Remarkably, keratin-nanoflower@Fe3O4 exhibited superior long-term stability to Fe3O4 MNPs under more acidic conditions and favorable reusability. This method has been successfully exploited for the colorimetric determination of glucose in human serum with satisfactory sensitivity and specificity, offering a novel approach for glucose detection.
Collapse
Affiliation(s)
- Peiyu Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
45
|
Ratiometric Colorimetric Detection of Nitrite Realized by Stringing Nanozyme Catalysis and Diazotization Together. BIOSENSORS-BASEL 2021; 11:bios11080280. [PMID: 34436083 PMCID: PMC8394333 DOI: 10.3390/bios11080280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Due to the great threat posed by excessive nitrite in food and drinking water to human health, it calls for developing reliable, convenient, and low-cost methods for nitrite detection. Herein, we string nanozyme catalysis and diazotization together and develop a ratiometric colorimetric approach for sensing nitrite in food. First, hollow MnFeO (a mixture of Mn and Fe oxides with different oxidation states) derived from a Mn-Fe Prussian blue analogue is explored as an oxidase mimic with high efficiency in catalyzing the colorless 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation to blue TMBox, presenting a notable signal at 652 nm. Then, nitrite is able to trigger the diazotization of the product TMBox, not only decreasing the signal at 652 nm but also producing a new signal at 445 nm. Thus, the analyte-induced reverse changes of the two signals enable us to establish a ratiometric colorimetric assay for nitrite analysis. According to the above strategy, facile determination of nitrite in the range of 3.3–133.3 μM with good specificity was realized, providing a detection limit down to 0.2 μM. Compared with conventional single-signal analysis, our dual-signal ratiometric colorimetric mode was demonstrated to offer higher sensitivity, a lower detection limit, and better anti-interference ability against external detection environments. Practical applications of the approach in examining nitrite in food matrices were also verified.
Collapse
|
46
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
47
|
A novel copper-based metal-organic framework as a peroxidase-mimicking enzyme and its glucose chemiluminescence sensing application. Anal Bioanal Chem 2021; 413:4407-4416. [PMID: 34081166 DOI: 10.1007/s00216-021-03394-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
A novel copper-based metal-organic framework (Cu-MOF) with a large specific surface area and high porosity was synthesized. The Cu-MOF was a good peroxidase-mimicking enzyme and showed a high affinity with hydrogen peroxide in a wide pH range. The catalytic mechanism of Cu-MOF has been studied further based on comparing the characteristic of the Cu-MOF with some isomorphic MOFs. The catalytic activity center of Cu-MOF was determined to be the cupric ion rather than the ligand, which effectively promoted the generation of free radicals and electron transfer in the reaction progress. The high affinity of Cu-MOF to hydrogen peroxide proved it as an ideal catalyst for the chemiluminescence (CL) reaction involving hydrogen peroxide. Therefore, the CL method with high sensitivity could be established for detecting various substrates. A double-enzyme CL glucose biosensing platform was constructed for the determination of serum glucose employing the peroxidase-mimicking properties of Cu-MOF as well as glucose oxidase (GOx).
Collapse
|
48
|
Lv SW, Zhao N, Liu JM, Yang FE, Li CY, Wang S. Newly Constructed NiCo 2O 4 Derived from ZIF-67 with Dual Mimic Enzyme Properties for Colorimetric Detection of Biomolecules and Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25044-25052. [PMID: 34019375 DOI: 10.1021/acsami.1c06705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integration of novel bio-/nanostructures as effective sensing platforms is still of great significance for robust and rapid analysis. Herein, a novel metal-organic framework-derived NiCo2O4 was synthesized via a feasible templating method. Significantly, redox couples of both Ni3+/Ni2+ and Co3+/Co2+ provided richer oxidation-reduction reactions, thereby leading to an enhanced catalytic activity. Furthermore, NiCo2O4 as an enzyme mimic with peroxidase-like activity and oxidase-like activity could oxidize colorless thylbenzidine (TMB) to blue oxTMB in the absence of H2O2. Thus, a sensitive chromogenic sensing platform for detecting Fe2+, thiourea, cysteine (Cys), and epigallocatechin-3-gallate (EGCG) was proposed. The colorimetric detection methods exhibited great features of low limit of detection (LOD) and broad linear range. Owing to the complexation reaction, the chromogenic sensing system of TMB + NiCo2O4 + Cys achieved effective detection of Cu2+ and Mn2+ with the LODs of 0.0022 and 0.0181 mM, respectively. Developed detection methods with wide linear ranges of 0.008-0.1 mM for Cu2+ and 0.08-1 mM for Mn2+ had excellent practical potential. Similarly, the reaction system of TMB + NiCo2O4 + EGCG could achieve the colorimetric detection of Cu2+ and Fe3+. The great chromogenic sensing performance for detecting Cu2+ and Fe3+ with a broad linear range and a low LOD could be also realized.
Collapse
Affiliation(s)
- Shi-Wen Lv
- College of Environmental Science and Engineering, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Fei-Er Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No.94 Weijin Road, Tianjin300071, China
- College of Environmental Science and Engineering, Nankai University, No.94 Weijin Road, Tianjin300071, China
| |
Collapse
|
49
|
Tawfik SM, Abd-Elaal AA, Lee YI. Selective dual detection of Hg 2+ and TATP based on amphiphilic conjugated polythiophene-quantum dot hybrid materials. Analyst 2021; 146:2894-2901. [PMID: 33720268 DOI: 10.1039/d1an00166c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The design of multifunctional sensors based on biocompatible hybrid materials consisting of conjugated polythiophene-quantum dots for multiple environmental pollutants is a promising strategy for the development of new monitoring technologies. Herein, we present a new approach for the "on-off-on" sensing of Hg2+ and triacetone triperoxide (TATP) based on amphiphilic polythiophene-coated CdTe QDs (PQDs, PLQY ∼78%). The emission of the PQDs is quenched by Hg2+ ions via electron transfer interactions. Based on the strong interaction between TATP and Hg2+ ions, the addition of TATP to the PQD-Hg2+ complex results in a remarkable recovery of the PQD emission. Under the optimized conditions, the PQD sensor shows a good linear response to Hg2+ and TATP with detection limits of 7.4 nM and 0.055 mg L-1, respectively. Furthermore, the "on-off-on" sensor demonstrates good biocompatibility, high stability, and excellent selectivity in the presence of other metal ions and common explosives. Importantly, the proposed method can be used to determine the level of Hg2+ and TATP in environmental water samples.
Collapse
Affiliation(s)
- Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Ali A Abd-Elaal
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Republic of Korea.
| |
Collapse
|
50
|
Saenchoopa A, Boonta W, Talodthaisong C, Srichaiyapol O, Patramanon R, Kulchat S. Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119433. [PMID: 33465574 DOI: 10.1016/j.saa.2021.119433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In this work, we report the synthesis of silver nanoparticles (AgNPs) via a wet-chemical reduction procedure using citrate (Cit) and γ-aminobutyric acid (GABA) as stabilizers. The formation of GABA-Cit@AgNPs was confirmed by UV-vis spectroscopy with a surface plasmon resonance band at 393 nm clearly confirming the formation of silver nanoparticles. AgNPs were characterized using UV-vis spectroscopy, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential. The as-prepared AgNPs can be used for the detection of hazardous mercury ions (Hg2+) in water by colorimetric method with a limit of detection (LOD) and limit of quantitation (LOQ) of 2.37 μM and 3.99 μM, respectively. The linear working range for Hg2+ detection is 5-35 μM and the sensor probe was applied to investigate Hg2+ in real drinking water samples with satisfied results. Rapid response to Hg2+ is also observed when the nanoparticles are composited within hydrogels. Moreover, GABA-Cit@AgNPs shows antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fast and sensitive response of the proposed Hg2+ sensor, together with its antibacterial activities, makes GABA-Cit@AgNPs potentially applicable for the development of cheap, portable, colorimetric sensors in fieldwork.
Collapse
Affiliation(s)
- Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wissuta Boonta
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|