1
|
Chen X, Li X, Fan Y, Hu G, Xie H, Chen X, Ding P, Dang Y, Hu X, Chen Q. Inventorization and ecological risk assessment of tetrabromobisphenol A and hexabromocyclododecane in sediments from Guangdong coastal area of South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173527. [PMID: 38802019 DOI: 10.1016/j.scitotenv.2024.173527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Brominated flame retardants (BFRs) exhibit excellent flame retardant properties and are widely used in various industries. Among the common BFRs, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) pose substantial ecological and human health risks due to their extensive application and long-range transport. This study established 131 sample collection sites along the coast of the South China Sea (SCS) in Guangdong Province to assess the concentration, distribution, inventory, and ecological risk of TBBPA and HBCDs in surface sediments. The concentrations of TBBPA in SCS sediments ranged from < limit of detection (LOD) to 80 μg/kg dry weight (dw), and those of HBCDs from < LOD to 18 μg/kg dw. The diastereoisomers of HBCDs (α-, β-, and γ-HBCD) in the sediment samples accounted for 36 %, 13 %, and 51 %, respectively. Human activities, particularly those associated with nearby electronic waste disassembly and textile and garment industries, considerably influenced the dispersion of TBBPA and HBCDs. The inventories of TBBPA and HBCDs in Guangdong Province's SCS were estimated to be 3.2 × 105 kg and 7.2 × 104 kg, respectively. The average risk quotient values ranged from <0.01 to 0.016, indicating a low to negligible environmental risk. This study provides deeper insights into the distribution and scientific significance of HBCDs and TBBPA in SCS sediment samples, elucidates the current state of BFR contamination, and offers recommendations for future research on environmental safety and human health in the region.
Collapse
Affiliation(s)
- Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yuqing Fan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Hang Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiaoyan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiyuan Hu
- China Academy of Transportation Sciences, Ministry of Transport of the People's Republic of China, Beijing 100029, PR China.
| | - Qinghua Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
2
|
Zhou R, Kong C, Wen Y, Yang G, Huo W, Zhang C, Sun H, Liu H, Huang D, Li J. One step cleanup of 160 pesticides and veterinary drugs in aquatic products using melamine-based automatic pressure filtration purification method combined with HPLC-MS/MS. Food Chem 2024; 443:138493. [PMID: 38281413 DOI: 10.1016/j.foodchem.2024.138493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
A 15-channel pressure filtration purification method was presented for high throughput sample preparation of aquatic products. A cost-effective device was constructed and melamine sponge was selected as the cleanup sorbent. Upon interfacing with HPLC-MS/MS, the analytical procedure demonstrated its suitability for quantifying 160 pesticides and veterinary drug residues in aquatic products such as fish, shrimp, and crab. The method achieved sample recoveries ranging from 61.3 to 124.9 %. The detection limits were established between 0.5 and 1.0 μg/kg, while the quantitation limits were confirmed to be within the range of 1.0-2.0 μg/kg. The method was applied to quantify the pesticide and veterinary drug residues in mostly consumed aquatic products from five coastal provinces in China. The results showed significant differences between different aquatic products in the concentrations of pesticide and veterinary drug residues, implying the necessity of supervision for the accurate determination of pesticides and veterinary drugs.
Collapse
Affiliation(s)
- Ruidong Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China; Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Yupeng Wen
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wendi Huo
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China; School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
| | - Chaoying Zhang
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Huiwu Sun
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Huan Liu
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China
| | - Dongmei Huang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Jincheng Li
- Chinese Academy of Fishery Sciences, Beijing 100141, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, PR China.
| |
Collapse
|
3
|
Zeng HX, Man YB, Wong MH, Cheng Z. Hair Heavy Metals and Food Consumption in Residents of Chengdu: Factors, Food Contribution, and Health Risk Assessment. Biol Trace Elem Res 2024; 202:1503-1516. [PMID: 37491614 DOI: 10.1007/s12011-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Heavy metal pollution is one of the most pressing issues threatening food security and human health. This study assesses heavy metal (chromium, cadmium, copper, zinc, nickel, and lead) exposure via hair metal concentrations in Chengdu residents, reflecting metal intake from food consumption. From June 2020 to February 2021, a sampling survey was conducted on residents' hair (n=182) and food (n=301) in six main urban areas of Chengdu. The concentrations of heavy metals in hair and food were analyzed by inductively coupled plasma mass spectrometry, and the results showed that the residents of Chengdu City had high hair concentrations of Cd (0.17±0.03 mg kg-1) and Zn (293±21.3 mg kg-1). Gender significantly affected the hair Cr, Zn, and Ni concentrations. Based on the survey results obtained from Chengdu City residents, the habits and diet structure are assessed for the influence of six heavy metals in the hair of the residents. Adolescents' (13-18 years old) hair had significantly higher Pb concentrations than adults (19-59 years old). The concentration of Ni in hair was affected by perming and dyeing habits. For dietary exposure, cereals and meat were the main contributors to the residents' daily intake of heavy metals. The bioaccessibility of Cr, Cd, Cu, Zn, Ni, and Pb in food was 2.45-74.67%, 10.6-78.7%, 13.4-82.5%, 8.89-89.2%, 7.70-85.1%, and 15.4-86.2%, respectively. In health risk evaluation based on the bioaccessible fraction of six heavy metals, the hazard quotient of each heavy metal in food was less than 1, indicating no potential non-carcinogenic risk.
Collapse
Affiliation(s)
- Hong-Xin Zeng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
4
|
Chbihi K, Menouni A, Hardy E, Creta M, Grova N, Van Nieuwenhuyse A, Godderis L, El Jaafari S, Duca RC. Exposure of children to brominated flame retardants and heavy metals in Morocco: Urine and blood levels in association with global cytosine and adenine methylation. ENVIRONMENT INTERNATIONAL 2024; 183:108409. [PMID: 38185044 DOI: 10.1016/j.envint.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024]
Abstract
Persistent pollutants, namely brominated flame retardants (BFRs) and heavy metals, are compounds that are added to a wide range of products and materials for preventing ignition, increasing the functionality of materials or improving their performance, e.g. electric conductivity. The exposure of children might consequently be inferred, through indoor dust and hand-to-mouth or toy-chewing behaviors. The current study is aimed at assessing the exposure of Moroccan children to BFRs and heavy metal elements, and evaluating their associations with global DNA methylation. First, parents responded to a questionnaire pertaining to children's lifestyle, then blood and urine samples were collected from (n = 93) children aged between 5 and 11 years for biomonitoring and DNA methylation analysis. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL) while metal elements were detected in more than 90% of samples. BFRs showed no variations with global DNA methylation, unlike metal elements, which revealed significant associations with global DNA methylation markers, namely 5-mC, 5-hmC and N⁶-mA levels. Moroccan children may be exposed to flame retardants and heavy metals through several routes. Further research is required to assess the exposure and the health impacts of environmental pollutants and ultimately protect the Moroccan population by the prevention of adverse health effects.
Collapse
Affiliation(s)
- Kaoutar Chbihi
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| | - Aziza Menouni
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco; Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium
| | - Emilie Hardy
- Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Matteo Creta
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, Esch-Sur-Alzette L-4354, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - An Van Nieuwenhuyse
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg
| | - Lode Godderis
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee 3001, Belgium
| | - Samir El Jaafari
- Cluster of Competences on Health & Environment, Moulay Ismail University, Meknes 50000, Morocco
| | - Radu-Corneliu Duca
- Center for Environment & Health, Department of Public Health and Primary Care, Faculty of Medicine, Katholieke Universiteit of Leuven, Leuven 3000, Belgium; Unit of Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Dudelange L-3555, Luxembourg.
| |
Collapse
|
5
|
Wang N, Lai C, Xu F, Huang D, Zhang M, Zhou X, Xu M, Li Y, Li L, Liu S, Huang X, Nie J, Li H. A review of polybrominated diphenyl ethers and novel brominated flame retardants in Chinese aquatic environment: Source, occurrence, distribution, and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166180. [PMID: 37562617 DOI: 10.1016/j.scitotenv.2023.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.
Collapse
Affiliation(s)
- Neng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinyu Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR. China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
6
|
Zhang Q, Song W, Wang X, Liu C, Chen S, Li H, Rao Q. Determination of 25 polybrominated diphenyl ethers in Chinese mitten crab ecosystems by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4700-4709. [PMID: 37675465 DOI: 10.1039/d3ay01123b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A sensitive and reliable method for determining 25 polybrominated diphenyl ethers (PBDEs) in Chinese mitten crabs and their ecosystems ranging from the growing environment to edible feed by gas chromatography coupled to triple quadrupole mass spectrometry with advanced electron ionization (GC-AEI-MS/MS) was developed and validated. Accelerated solvent extraction (ASE) and liquid-liquid extraction were used to extract solid and water samples, respectively. On the basis of a traditional acid-base silica column, deactivated silica was added and n-hexane elution was used to increase the effect of separation and purification. Two oven temperature programs were applied to achieve good separation of low brominated congeners and increase the sensitivity of high brominated congeners. The method provided good linearity (>0.9996). The recoveries of four matrices were in the range of 82-115% and the method quantification limits (MQLs) in crabs, feed, sediment and water ranged from 0.36-6 pg per g wet weight, 0.69-22.29 pg per g dry weight, 1.02-25.26 pg per g dry weight, and 2.43-40.14 pg L-1, respectively. The proposed method was used for ten samples from two aquatic sites and PBDEs were detected in Chinese mitten crabs, commercial feed and sediment, with the highest in crabs. This analytical technique can be used to monitor the content and the accumulation behavior of PBDEs in Chinese mitten crab ecosystems or other aquaculture systems.
Collapse
Affiliation(s)
- Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Xianli Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Shanshan Chen
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Huaxi Li
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| |
Collapse
|
7
|
Din IU, Muhammad S, Rehman IU. Heavy metal(loid)s contaminations in soils of Pakistan: a review for the evaluation of human and ecological risks assessment and spatial distribution. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1991-2012. [PMID: 35759076 DOI: 10.1007/s10653-022-01312-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal(loid)s (HM) contaminations in the soil poses threats to the human and ecological community due to their bioaccumulation, toxicity, and persistent nature in the ecosystem. This review was designed to know about the HM contamination in soils, ecological risk, distribution, and potential health risks. Soil HM concentrations published in the last 30 years were collected from Springer, Science Direct, Willey, Mendeley, ResearchGate, Google Scholar, etc. HM concentrations were used for the geo-accumulation index (Igeo), contamination factor, as well as integrated indices such as spatial distribution of ecological risk index. Similarly, the Igeo pattern was observed in Sindh > Baluchistan > Punjab > Khyber Pakhtunkhwa > Gilgit-Baltistan > Islamabad. Moreover, the high ecological risk mean values ranged (160 < ERI < 320) due to cadmium (Cd) was exhibited in the Punjab and Khyber Pakhtunkhwa provinces and Islamabad. Non-carcinogenic risk like hazard quotient was found higher for children (1.59) of Punjab due to arsenic (As) ingestion, whereas the lower risk was observed due to Zn (2.5E-08) for adults of Punjab province via inhalation pathway. Similarly, the health index (HI) from exposure to As (1.61) in soil was higher than the rest of the HM. Moreover, cancerous risk was determined and found in the tolerable range (10-4-10-6). This study recommended that HM contaminants in the soil need to be monitored on regular basis, especially in Baluchistan, Gilgit-Baltistan, and Sindh provinces.
Collapse
Affiliation(s)
- Imran Ud Din
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan
| | - Said Muhammad
- National Centre of Excellence in Geology, University of Peshawar, Peshawar, 25130, Pakistan.
| | - Inayat Ur Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
8
|
Rao M, Li X, Xu X, Zhang D, Ma J, Huang J, Xu J, Zheng Q, Ji J, Lu S. Trace elements in aquatic products from Shenzhen, China and their implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163726. [PMID: 37116806 DOI: 10.1016/j.scitotenv.2023.163726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Aquatic organisms in industrially polluted areas can accumulate large quantities of heavy metals. To assess the resulting health risks, 11 trace elements in 184 aquatic products representing 14 species of fish, crustaceans, and bivalves collected from Shenzhen, China were determined. Aluminum (Al), chromium (Cr), nickel (Ni), selenium (Se), antimony (Sb), manganese (Mn), copper (Cu), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) were determined by inductively coupled plasma mass spectrometry. The pollution levels of each product and the human health risk resulting from their consumption were then assessed. The concentrations of As in 57 % of samples and Cd in 11 % of samples exceeded the upper limits stipulated by the Chinese National Food Safety Standards (GB 2762-2017), which was mainly due to high concentrations of trace elements in crustaceans and bivalves. The Nemerow integrated pollution index indicated that the aquatic products accumulated high levels of As and Cd. Health risk assessments using the target hazard quotient (THQ) and hazard index (HI) suggested that As and Cd exposure due to consumption of aquatic products presents a potential health risk for residents of Shenzhen.
Collapse
Affiliation(s)
- Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoqiong Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
Li B, Wang J, Hu G, Liu X, Yu Y, Cai D, Ding P, Li X, Zhang L, Xiang C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2671. [PMID: 36768037 PMCID: PMC9916311 DOI: 10.3390/ijerph20032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been commonly found in aquatic ecosystems. Many studies have elucidated the bioaccumulation and biomagnification of PBDEs in seas and lakes, yet few have comprehensively evaluated the bioaccumulation, biomagnification, and health risks of PBDEs in shallow lakes, and there is still limited knowledge of the overall effects of biomagnification and the health risks to aquatic organisms. METHODS In this study, a total of 154 samples of wild aquatic organism and environmental samples were collected from typical shallow lakes located in the Yangtze River Delta in January 2020. The concentrations of PBDEs were determined by an Agilent 7890 gas chromatograph coupled and an Agilent 5795 mass spectrometer (GC/MS) and the bioaccumulation behavior of PBDEs was evaluated in 23 aquatic organisms collected from typical shallow lakes of the Yangtze River Delta. Furthermore, their effects on human health were evaluated by the estimated daily intake (EDI), noncarcinogenic risk, and carcinogenic risk. RESULTS The concentrations of ΣPBDE (defined as the sum of BDE-28, -47, -100, -99, -153, -154, -183, and -209) in biota samples ranged from 2.36 to 85.81 ng/g lipid weight. BDE-209, BDE-153 and BDE-47 were the major PBDE congeners. The factors affecting the concentration of PBDEs in aquatic organisms included dietary habits, species, and the metabolic debromination ability of the PBDE congeners. BDE-209 and BDE-47 were the strongest bioaccumulative PBDE congeners in aquatic organisms. Additionally, except for BDE-99, BDE-153 and BDE-154, the trophic magnification factor (TMF) values of PBDE congeners were significantly higher than 1. Moreover, the log Kow played a significant role in the biomagnification ability of PBDE congeners. The noncarcinogenic risk of PBDE congeners and carcinogenic risk of BDE-209 from aquatic products were lower than the thresholds. CONCLUSIONS PBDE congeners were bioaccumulated and biomagnified to varying degrees in aquatic organisms from typical shallow lakes. Both the noncarcinogenic and carcinogenic risks assessment of edible aquatic products indicated that none of the PBDE congeners pose health risks to the localite. This study will provide a basis for a comprehensive assessment of PBDEs in aquatic ecosystems in shallow lakes and for environmental prevention measures for decision-makers.
Collapse
Affiliation(s)
- Bei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Juanheng Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiaolin Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chongdan Xiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| |
Collapse
|
10
|
Min Lao Y, Lan Qu C, Zhang B, Jin H. Development and validation of single-step microwave-assisted digestion method for determining heavy metals in aquatic products: Health risk assessment. Food Chem 2023; 402:134500. [DOI: 10.1016/j.foodchem.2022.134500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
11
|
Bioaccessibility and transformation of cadmium in different tissues of Zhikong scallops (Chlamys farreri) during in vitro gastrointestinal digestion. Food Chem 2023; 402:134285. [DOI: 10.1016/j.foodchem.2022.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
|
12
|
Yu Y, Liu C, Yang C, Yu Y, Lu L, Ma R, Li L. One-Step Synthesized Iron-Carbon Core-Shell Nanoparticles to Activate Persulfate for Effective Degradation of Tetrabromobisphenol A: Performance and Activation Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4483. [PMID: 36558336 PMCID: PMC9787185 DOI: 10.3390/nano12244483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA), as an emerging endocrine disrupter, has been considered one of the persistent organic contaminants in water. It is urgently necessary to develop an efficient technique for the effective removal of TBBPA from water. Herein, a one-step hydrothermal synthesis route was employed to prepare a novel iron-carbon core-shell nanoparticle (Fe@MC) for effectively activating persulfate (PS) to degrade TBBPA. Morphological and structural characterization indicated that the prepared Fe@MC had a typical core-shell structure composed of a 5 nm thick graphene-like carbon shell and a multi-valence iron core. It can be seen that 94.9% of TBBPA (10 mg/L) could be degraded within 30 min at pH = 7. This excellent catalytic activity was attributed to the synergistic effect of the porous carbon shell and a multi-valence iron core. The porous carbon shell could effectively prevent the leaching of metal ions and facilitate PS activation due to its electron transfer capability. Furthermore, numerous micro-reaction zones could be formed on the surface of Fe@MC during the rapid TBBPA removal process. Radical quenching experiments and electron paramagnetic resonance (EPR) technology indicated that reactive oxygen species (ROS), including OH, SO4-, O2-, and 1O2, were involved in the TBBPA degradation process. Based on density functional theory (DFT) calculation, the carbon atoms linked by phenolic hydroxyl groups would be more vulnerable to attack by electron-rich groups; the central carbon was cracked and hydroxylated to generate short-chain aliphatic acids. The toxicity evaluation provides clear evidence for the promising application potential of our prepared material for the efficient removal of TBBPA from water.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Inner Mongolia Autonomous Region Key Laboratory of Water Pollution Control, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Chenyu Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment Jinan University, Guangzhou 511443, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
13
|
Zhou Y, Li Z, Zhu Y, Chang Z, Hu Y, Tao L, Zheng T, Xiang M, Yu Y. Legacy and alternative flame retardants in indoor dust from e-waste industrial parks and adjacent residential houses in South China: Variations, sources, and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157307. [PMID: 35839871 DOI: 10.1016/j.scitotenv.2022.157307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Many studies have elucidated health concerns of informal e-waste recycling activities, yet few has evaluated the effectiveness of the regulations as well as the human exposure risks to adjacent residents. Herein, legacy polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs), and alternative organophosphate esters (OPEs) were investigated in indoor dust collected from three e-waste industrial parks and five adjacent villages located in south China. The levels and composition patterns varied significantly between workshop and home dust. BDE209 showed much higher (p < 0.01) concentrations in workshop dust versus home dust, while relatively comparable levels were found for OPEs and HBCDs. Principal component analysis revealed that OPEs and PBDEs were mainly related to home and workshop dust, respectively. Results strongly indicated that e-waste dismantling activities still contribute to a high burden of BDE209 to surrounding residents, whilst the sources of OPEs may also originated from household products, especially for TCEP. The estimated daily intakes (EDIs) via dust ingestion and dermal absorption for occupational worker and nearby toddlers were below available reference dose (RfD) values even at worst case scenario. This study highlights the significance of deca-BDEs rather than alternative OPEs in e-waste generated in China, which could provide scientific suggestions for policy formulation.
Collapse
Affiliation(s)
- Ying Zhou
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, China
| | - Lin Tao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou 510530, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|
14
|
Pan YF, Liu S, Tian F, Chen HG, Xu XR. Tetrabromobisphenol A and hexabromocyclododecanes in sediments from fishing ports along the coast of South China: Occurrence, distribution and ecological risk. CHEMOSPHERE 2022; 302:134872. [PMID: 35537630 DOI: 10.1016/j.chemosphere.2022.134872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDDs) have attracted extensive attention due to their strong persistence and toxicity. However, little has been known about their pollution status in fishing ports, which are typical sinks of land-sourced pollutants. In this study, we investigated the occurrence, distribution and ecological risk of TBBPA and HBCDDs in sediments from fishing ports along the coast of South China. The concentrations of TBBPA and ΣHBCDD (sum of α-, β-, and γ-HBCDD) in the fishing-port sediments were in the ranges of 0.02-21.5 ng/g dw and 1.06-14.1 ng/g dw, respectively. γ-HBCDD was the predominant diastereoisomer in most fishing-port sediments. The enantiomeric analysis indicated a preferential enrichment of (-)-enantiomers for α-, β-, and γ-HBCDD. The geographical location of fishing ports is a significant determinant of distribution for TBBPA and HBBCDs. The concentrations of TBBPA and HBCDDs in fishing-port sediments were strongly associated with local population density, but weakly correlated with total organic carbon content of the sediment. The mass inventories of TBBPA and ΣHBCDD were estimated to be 77.0 ng/cm2 and 141 ng/cm2, respectively. The ecological risk assessment demonstrated that TBBPA and HBCDDs in fishing-port sediments exhibited low risks to marine organisms. This study contributes to the understanding pollution situation of fishing ports, and provides a reference for environmental safety assessment and environmental pollution control.
Collapse
Affiliation(s)
- Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Fei Tian
- Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Hai-Gang Chen
- Scientific Observation and Research Field Station of Pearl River Estuary Ecosystem, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Scientific Observing and Experimental Station of South China Sea Fishery Resource and Environment, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
15
|
Feng H, Li D, Cheng B, Song T, Yang R. A cross-linked charring strategy for mitigating the hazards of smoke and heat of aluminum diethylphosphonate/polyamide 6 by caged octaphenyl polyhedral oligomeric silsesquioxanes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127420. [PMID: 34736179 DOI: 10.1016/j.jhazmat.2021.127420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Aluminum diethylphosphonate (ADP) is a highly efficient phosphorus-based flame retardant, widely used in polyamide 6 (PA6). However, ADP/PA6 releases large amounts of heat and smoke under high heat flux, which commonly means serious hazards to life and property. Octaphenyl polyhedral oligomeric silsesquioxanes (OPS) is an organic-inorganic hybrid silicon compound, playing flame retardant role in condensed phase. In this work, combustion behaviors of OPS/ADP/PA6 were investigated by limited oxygen index (LOI), UL94 and cone calorimeter (CONE) tests. The LOI and UL94 rating results did not change obviously, while the CONE data and smoke density data showed the synergistic effect of OPS and ADP in PA6. For 2.5%OPS/7.5%ADP/PA6, the peak values of heat, smoke and CO release rate (pk-HRR, pk-RSR, Ds, max with/without pilot flame and pk-COP) decreased by 60.2%, 82.1%, 45.9%/38.3% and 80.4% respectively, compared with 10%ADP/PA6. Moreover, 2.5%OPS/7.5%ADP/PA6 produced 337.5% more residue than 10%ADP/PA6. TGA, TG-IR, SEM-EDS, XPS and py-GC/MS were used to further explore the synergistic mechanism of OPS and ADP. It was verified that the cross-linked charring strategy apparently has weakened the hazards of smoke and heat of PA6. This work proposed a possible technical approach to solve both fire risk and heat/smoke hazards of PA6.
Collapse
Affiliation(s)
- Haisheng Feng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China; School of Fire Protection Engineering, China People's Police University, 220 Xichang Road, Anci District, 065000 Langfang, PR China
| | - Dinghua Li
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China.
| | - Bo Cheng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China
| | - Tinglu Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South, Zhongguancun Street, Haidian District, 100081 Beijing, PR China.
| |
Collapse
|
16
|
Pan S, Shen J, Deng Z, Zhang X, Pan B. Metastable nano-zirconium phosphate inside gel-type ion exchanger for enhanced removal of heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127158. [PMID: 34555765 DOI: 10.1016/j.jhazmat.2021.127158] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology has provided a new opportunity for water decontamination from trace heavy metals, yet the relatively poor acidic stability remains a major obstacle for the nano-adsorbents, given that acidic treatment is frequently used to regenerate the heavy metal-saturated adsorbents. Zirconium phosphate (ZrP) is very promising for water treatment due to its absolute insoluble nature, though it interacts with heavy metals mainly through the non-specific electrostatic attraction. Herein, we prepared the ultrafine ZrP (~3.9 nm) inside the commercially available gel-type cation exchanger (N001), i.e., the sulfonated poly(styrene-co-divinylbenzene) bead. The resultant nanocomposite ZrP@N001 contained the amorphous nanoparticles (NPs) with metastable γ-ZrP structure as the main phase, unlike the layered α-ZrP formed inside the macroporous cation exchanger D001 (referred to as ZrP@D001). As a result, ZrP@N001 could selectively adsorb heavy metals through inner-sphere coordination, possessing a much stronger adsorption affinity than ZrP@D001, as confirmed by XPS analysis. In both batch and column assays on the Pb(II)-polluted water, ZrP@N001 exhibited superior adsorption performance over ZrP@D001. After adsorption, the exhausted ZrP@N001 was fully refreshed by acidic treatment for a 5-cyclic adsorption-regeneration run with constant removal efficiencies. This study may open a door for the rational design of highly efficient water purifiers for heavy metal control.
Collapse
Affiliation(s)
- Siyuan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jialin Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ziniu Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Yu L, Li R, Zhang Z, Wu H, Chai M, Zhu X, Guo W. Distribution, characteristics, and human exposure to microplastics in mangroves within the Guangdong-Hong Kong-Macao Greater Bay Area. MARINE POLLUTION BULLETIN 2022; 175:113395. [PMID: 35151073 DOI: 10.1016/j.marpolbul.2022.113395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, three mangroves in the Guangdong-Hong Kong-Macao Greater Bay Area- Qi'ao Island in Zhuhai, Nansha in Guangzhou, and Futian in Shenzhen-were selected for investigating the distribution of microplastics and their characteristics The average microplastic abundance in each descended in the order: Futian (1600 n/kg) > Nansha (1100 n/kg) > Qi'ao Island (440 n/kg), with values from the forest fringe being significantly higher than those in the forest interior. The microplastics were mainly fibers, 1-5 mm in size, and white/black in color; they consisted of polypropylene and polyethylene, with foam and polystyrene accounting for a high proportion in Nansha. The exposure of humans to microplastics in the Futian forest fringe reached 35.95 ng/d·kg; it was one order of magnitude higher than the exposures in Qi'ao Island and Nansha. Furthermore, ingestion accounted for approximately 74% of the total exposure to the human body, dermal contact constitutes 25%, and sediment inhalation accounted for less than 1%.
Collapse
Affiliation(s)
- Lingyun Yu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, PR China
| | - Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, PR China.
| | - Zhi Zhang
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, PR China
| | - Hailun Wu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, PR China
| | - Minwei Chai
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, PR China
| | - Wenxiao Guo
- Shenzhen MSU-BIT University, Shenzhen, PR China
| |
Collapse
|
18
|
Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126697. [PMID: 34329100 DOI: 10.1016/j.jhazmat.2021.126697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a category of brominated flame retardants, which were widely used in industrial products since the 1970 s. Our previous studies indicated quinone-type metabolites of PBDEs (PBDE-Qs) cause neurotoxicity, however, their inherent toxicological mechanism remains unclear. Here, we first synthesized PBDE-Qs and corresponding reduced hydroquinone homologous (PBDE-HQs) with different pattern of bromine substitution. Their nucleophilic and redox properties were investigated. PBDE-Qs react with reduced glutathione (GSH) via Michael addition and bromine displacement reaction, whilst PBDE-HQs lack the ability of reacting with GSH. Of note, the displacement reaction only occurs with bromine on the quinone ring of PBDE-Qs but not phenyl ring. Next, electron paramagnetic resonance (EPR) analysis revealed the generation of SQ•-, along with their downstream hydroxyl radical (HO•) and methyl radical (•CH3) through a PBDE quinone/semiquinone/hydroquinone (Q/SQ•-/HQ) futile cycle. In addition, a structure-dependent cytotoxicity pattern was found, the exposure of PBDE-Q/HQ with bromine substitution on the quinone ring resulted in higher level of apoptosis and autophagy in BV2 cells. In conclusion, this work clearly demonstrated that the nucleophilic and redox properties of PBDE-Qs/HQs are responsible for their neurotoxicity, and this finding provide better understanding of neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China.
| |
Collapse
|
19
|
Zheng J, Li M, Tang B, Luo W, Ma Y, Ren M, Yu Y, Luo X, Mai B. Levels, Spatial Distribution, and Impact Factors of Heavy Metals in the Hair of Metropolitan Residents in China and Human Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10578-10588. [PMID: 34296597 DOI: 10.1021/acs.est.1c02001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic exposure to low levels of heavy metals threatens human health. However, few studies evaluated the health effects and spatial distributions of chronic exposure to heavy metals in metropolitan residents throughout mainland China using unified sampling methods and evaluation indicators at the national level. Here, the concentrations and spatial distributions of heavy metals (As, Cd, Cr, Sb, Pb, and Hg) in the hair of 1202 metropolitan residents from mainland China were analyzed, and differences in age and sex were evaluated. Most target metals exhibited higher concentrations in the hair of residents from South Central China. Generally, male hair had higher As and Se concentrations, whereas female hair had higher Cd and Pb levels (p < 0.05). A significant pairwise correlation existed between most metals in hair, especially Cd-Pb (r = 0.638, p < 0.05). The Se/heavy metal molar ratio is used as an indicator to assess the detoxification ability. The results demonstrated that protecting metropolitan residents in South Central China from heavy metals in their daily life is crucial, particularly for Hg, Pb, and Cr with Se/(Hg, Pb, or Cr) molar ratios < 1. This is the first study to comprehensively consider the antagonistic effects of Se and heavy metals using the molar ratio of Se/heavy metals to evaluate health implications and propose health management policies for metropolitan residents in China.
Collapse
Affiliation(s)
- Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| |
Collapse
|
20
|
Shi J, Wang X, Chen L, Deng H, Zhang M. HBCD, TBECH, and BTBPE exhibit cytotoxic effects in human vascular endothelial cells by regulating mitochondria function and ROS production. ENVIRONMENTAL TOXICOLOGY 2021; 36:1674-1682. [PMID: 33974337 DOI: 10.1002/tox.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs), such as, 1,2,5,6-tetrabromocyclooctane (HBCD), 1,2-dibromo-4-(1,2-dibromopropyl)cyclohexane (TBECH), and 1 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE), have garnered increasing attention due to their potent biological effects. In the present study, the toxicity of HBCD, TBECH, and BTBPE in human vascular endothelial cells (ECs) was explored. The data showed that HBCD, TBECH, and BTBPE induced cytotoxicity, namely dose-dependent cell viability reduction, cell membrane permeability and apoptosis increase, migration, and lumen formation inhibition. Moreover, HBCD was found to be more toxic than BTBPE or TBECH. Exposure to HBCD, TBECH, and BTBPE led to the production of reactive oxygen species, mitochondrial superoxide generation, and mitochondrial membrane potential collapse, implying that reactive stress caused the cytotoxicity. The ATP content, glutathione content, superoxide dismutase, and MDA activities were reduced, indicating that mitochondrial dysfunction may be the key mechanisms responsible for apoptosis. The present study suggested that mitochondria are a new target of BFRs in ECs and further deepened our understanding of the developmental toxicity of BFRs.
Collapse
Affiliation(s)
- Jun Shi
- Shanghai East Hospital, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xueting Wang
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Chen
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiping Deng
- Shanghai East Hospital, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Min Zhang
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Li J, Chen Y, Lu H, Zhai W. Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22804-22822. [PMID: 33432404 DOI: 10.1007/s11356-020-12212-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal contamination in the aquatic environment is one of the most serious health issues worldwide. In this study, an evaluation framework is developed to identify the sources and health risk of heavy metals (i.e., As, Hg, Cr, Cu, Zn, Pb, and Cd) contamination in the North Canal of Fengtai District, China, which is based on multiple approaches, including multivariate statistical method, health risk assessment, and uncertainty analysis. Spatial distribution of these heavy metals could exhibit their impact on the aquatic environment. Pearson's correlation analysis shows that a majority of the correlations between different heavy metals are not significant due to the differences in sources of heavy metals. Principal component analysis indicates that there are four principal components to explain 91.381% of the total variance. Moreover, health risk reveals that hazard quotient values are in low levels, ranging from 0.48 to 0.74, relative higher quotient levels could be observed in the northern section. The carcinogenic risk of Cd has exceeded the acceptable level in S1, S3, and S7. Sensitivity analysis ensures the reliability of health risk assessments. Furthermore, some specific recommendations are given to help decision-makers develop more comprehensive strategies for improving water environment quality.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yizhong Chen
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China.
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiyao Zhai
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|