1
|
Morillas H, Gallego-Cartagena E, Upasen S. Metals, nonmetals and metalloids in cigarette smoke as hazardous compounds for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171351. [PMID: 38432370 DOI: 10.1016/j.scitotenv.2024.171351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cigarette smoke contains many chemicals that are harmful to both smokers and non-smokers. Breathing just a little cigarette smoke can be harmful. There are >7000 chemicals in cigarette smoke, at least 250 are known to be harmful and many of them can cause cancer. Currently, many studies reported the types of harmful organic compounds in cigarette smoke; instead, there are almost no works that describe the presence of inorganic compounds. In this work, a cost-effective self-made passive sampler (SMPS) was tested as a tool to collect different types of particulate matter (PM) from cigarette smoke containing metals as hazardous compounds (HCs). To determine the nature of the metals, nonmetals and metalloids as HCs, a direct qualitative analysis of the particulate matter (PM) was conducted without developing any special sample preparation procedure. For that, non-invasive elemental (Scanning Electron Microscope coupled to Energy Dispersive X-ray Spectrometry) and molecular (Raman microscopy) micro-spectroscopic techniques were used. Thanks to this methodology, it was possible to determine in deposited PM, the presence of metals such as Fe, Cr, Ni, Ti, Co, Sn, Zn, Ba, Al, Cu, Zr, Ce, Bi, etc. most of them as oxides but also embedded in different clusters with sulfates, aluminosilicates, even phosphates.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Didactic of Mathematics, Experimental and Social Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain.
| | - Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Settakorn Upasen
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Saensuk Sub-District, Muang District, Chonburi Province 20131, Thailand
| |
Collapse
|
2
|
Cordery S, Thompson K, Stevenson M, Simms L, Chapman F, Grandolfo E, Malt L, Weaver S, Fearon IM, Nahde T. The Product Science of Electrically Heated Tobacco Products: An Updated Narrative Review of the Scientific Literature. Cureus 2024; 16:e61223. [PMID: 38939262 PMCID: PMC11209752 DOI: 10.7759/cureus.61223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Heated tobacco products represent a novel category of tobacco products in which a tobacco consumable is heated to a temperature that releases nicotine from the tobacco leaf but not to a temperature sufficient to cause combustion. Heated tobacco products may therefore have the potential to be a less harmful alternative for adult smokers who would otherwise continue to smoke cigarettes, as their use should result in exposure to substantially fewer and lower levels of toxicants. This update represents a two-year extension to our previous narrative review, which covered peer-reviewed journal articles published up to August 31, 2021. The scientific evidence published between 2021 and 2023 continues to indicate that aerosols produced from heated tobacco products contain fewer and substantially lower levels of harmful and potentially harmful constituents and that these observed reductions consistently translate to reduced biological effects in both in vitro and in vivo toxicological studies. Biomarker and clinical data from studies in which product use is controlled within a clinical setting continue to suggest changes in levels of biomarkers of exposure, biomarkers of potential harm, and clinical endpoints indicating the potential for reduced harm with switching to exclusive use of heated tobacco products in adult smokers. Overall, the available peer-reviewed scientific evidence continues to indicate that heated tobacco products offer promise as a potentially less harmful alternative to cigarettes, and as such, the conclusions of our original narrative review remain valid.
Collapse
Affiliation(s)
- Sarah Cordery
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Keith Thompson
- Independent Scientific Consultant, Elucid8 Holdings Ltd., Coleraine, GBR
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Fiona Chapman
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Erika Grandolfo
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Layla Malt
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Sarah Weaver
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Ian M Fearon
- Scientific Research, whatIF? Consulting Ltd., Harwell, GBR
| | - Thomas Nahde
- Group Science and Regulatory Affairs, Imperial Brands Reemtsma, Hamburg, DEU
| |
Collapse
|
3
|
Wang M, Tian Q, Li H, Dai L, Wan Y, Wang M, Han B, Huang H, Zhang Y, Chen J. Visualization and metabolome for the migration and distribution behavior of pesticides residue in after-ripening of banana. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130665. [PMID: 36592559 DOI: 10.1016/j.jhazmat.2022.130665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Exploring the behavior of pesticide residues in fruits is important for effectively applying pesticides and minimizing the risk of pesticide exposure to humans. However, most studies do not consider in situ visual analysis of residues and migration patterns in fresh fruit samples. We investigated the migration patterns of thiram, propamocarb, imidacloprid and pyraclostrobin in fresh bananas based on ambient mass spectrometry imaging, metabolome and transcriptome analysis. The systemic pesticides entered via lateral penetration and vertical migration over time, which began to internally migrate to the inner core after 6 h. The non-systemic pesticide thiram did not enter the interior of the bananas, and remained only in the peel. The transportation rate of the pesticides increased with the decrease of water-octanol partition coefficient and the relative molecular mass. Moreover, the pesticide migrated fast with the increase of banana ripeness. The pesticides significantly enhanced pyruvate kinase, NADP-dependent malic enzyme, and malate synthase activities in the banana peels through carbohydrate metabolism. The banana pulp was also protected against the external toxicity of pesticides by the ascorbate-glutathione cycle. These results can provide guidelines for the appropriate application of pesticides and their safety evaluation.
Collapse
Affiliation(s)
- Meiran Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; College of Plant Protection, Hainan University, Haikou 570228, Hainan, China
| | - Qiaoxia Tian
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan, China
| | - Hongxing Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China
| | - Longjun Dai
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China
| | - Bingjun Han
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China.
| | - Huaping Huang
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China.
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan, China.
| | - Juncheng Chen
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, Hainan, China; International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan, China.
| |
Collapse
|
4
|
Ragusa A, Matta M, Cristiano L, Matassa R, Battaglione E, Svelato A, De Luca C, D’Avino S, Gulotta A, Rongioletti MCA, Catalano P, Santacroce C, Notarstefano V, Carnevali O, Giorgini E, Vizza E, Familiari G, Nottola SA. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811593. [PMID: 36141864 PMCID: PMC9517680 DOI: 10.3390/ijerph191811593] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 05/04/2023]
Abstract
Microplastics (MPs) are defined as plastic particles smaller than 5 mm. They have been found almost everywhere they have been searched for and recent discoveries have also demonstrated their presence in human placenta, blood, meconium, and breastmilk, but their location and toxicity to humans have not been reported to date. The aim of this study was twofold: 1. To locate MPs within the intra/extracellular compartment in human placenta. 2. To understand whether their presence and location are associated with possible structural changes of cell organelles. Using variable pressure scanning electron microscopy and transmission electron microscopy, MPs have been localized in ten human placentas. In this study, we demonstrated for the first time the presence and localization in the cellular compartment of fragments compatible with MPs in the human placenta and we hypothesized a possible correlation between their presence and important ultrastructural alterations of some intracytoplasmic organelles (mitochondria and endoplasmic reticulum). These alterations have never been reported in normal healthy term pregnancies until today. They could be the result of a prolonged attempt to remove and destroy the plastic particles inside the placental tissue. The presence of virtually indestructible particles in term human placenta could contribute to the activation of pathological traits, such as oxidative stress, apoptosis, and inflammation, characteristic of metabolic disorders underlying obesity, diabetes, and metabolic syndrome and partially accounting for the recent epidemic of non-communicable diseases.
Collapse
Affiliation(s)
- Antonio Ragusa
- Department of Obstetrics and Gynecology, Università Campus Bio Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Maria Matta
- Department of Clinico-Surgical, Diagnostic and Pediatric Sciences, Faculty of Medicine and Surgery, University of Pavia, Via Alessandro Brambilla, 74, 27100 Pavia, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Loc. Coppito, 67010 Coppito, Italy
- Correspondence:
| | - Roberto Matassa
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Alessandro Svelato
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Caterina De Luca
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Sara D’Avino
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Alessandra Gulotta
- Department of Gynecology and Obstetrics of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Piera Catalano
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Criselda Santacroce
- Department of Pathological Anatomy of “San Giovanni Calibita” Fatebenefratelli Hospital, Isola Tiberina of Rome, Via di Ponte Quattro Capi, 39, 00186 Rome, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Polo Montedago Via Brecce Bianche, 60131 Ancona, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Via A. Borelli, 50, 00161 Rome, Italy
| |
Collapse
|