1
|
Baz MM, El-Tabakh MAM, Selim A, Alasmari SM, Alkhaibari AM, Alruhaili MH, Gattan HS, Abdelkhalek HF. Chemical composition and bio-efficacy of agro-waste plant extracts and their potential as bioinsecticides against Culex pipiens mosquitoes. Parasitol Int 2025; 104:102968. [PMID: 39271003 DOI: 10.1016/j.parint.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Mosquitoes are considered one of the most lethal creatures on the planet and are responsible for millions of fatalities annually through the transmission of several diseases to humans. Green trash is commonly employed in agricultural fertilizer manufacturing and microbial bioprocesses for energy production. However, there is limited information available on the conversion of green waste into biocides. This study investigates the viability of utilizing green waste as a new biopesticide against Culex pipiens mosquito larvae. The current study found that plant extracts from Punica granatum (98.4 % mortality), Citrus sinensis (92 % mortality), Brassica oleracea (88 % mortality), Oryza sativa (81.6 % mortality), and Colocasia esculenta (53.6 % mortality) were very good at killing Cx. pipiens larvae 24 h post-treatment. The LC50 values were 314.43, 370.72, 465.59, 666.67, and 1798.03 ppm for P. granatum, C. sinensis, B. oleracea, O. sativa, and C. esculenta, respectively. All plant extracts, particularly P. granatum extract (14.93 and 41.87 U/g), showed a significant reduction in acid and alkaline phosphate activity. Additionally, pomegranate extract showed a significant decrease (90 %) in field larval density, with a stability of up to five days post-treatment. GC-MS results showed more chemical classes, such as terpenes, esters, fatty acids, alkanes, and phenolic compounds. HPLC analysis revealed that the analyzed extracts had a high concentration of phenolic and flavonoid components. Moreover, there are many variations among these plants in the amount of each compound. The docking interaction showed a simulation of the atomic-level interaction between a protein and a small molecule through the binding site of target proteins, explaining the most critical elements influencing the enzyme's activity or inhibitions. The study's findings showed that the various phytochemicals found in agro-waste plants had high larvicidal activity and provide a safe and efficient substitute to conventional pesticides for pest management, as well as a potential future in biotechnology.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| | | | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988 Najran, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491 Tabuk, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Heba F Abdelkhalek
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
2
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Munhoz-Garcia GV, Takeshita V, de Oliveira JL, Dalla Vecchia B, Nalin D, Pinácio CDW, Oliveira ALCD, Cintra Cardoso B, Tornisielo VL, Fraceto LF. Nanobased Natural Polymers as a Carrier System for Glyphosate: An Interesting Approach Aimed at Sustainable Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39748152 DOI: 10.1021/acs.jafc.4c08328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis. Nanosystem size, surface charge, polydispersity index, encapsulation efficiency, toxicity to weed species (Amaranthus hybridus, Ipomoea grandifolia, and Eleusine indica), and Roundup Ready (RR) crops, soil respiration, and enzyme activity were evaluated. The most stable system was the combination of ZN with the cross-linker poloxamer (PL), with higher weed control efficacy (90-96%) for A. hybridus, compared to commercial glyphosate (40%). No improvement was observed for I. grandifolia and E. indica. No glyphosate toxicity was observed in RR crops, soil respiration, or soil enzymes, indicating no toxic effects of the nanoformulation in these models. ZN-PL systems can be a promising alternative for glyphosate delivery, using environmentally friendly materials, with improved efficiency for weed control in agriculture.
Collapse
Affiliation(s)
| | - Vanessa Takeshita
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
- Institute of Science and Technology, Sao Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Jhones Luiz de Oliveira
- Institute of Science and Technology, Sao Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Bruno Dalla Vecchia
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Daniel Nalin
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Camila de Werk Pinácio
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Ana Laura Camachos de Oliveira
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Brian Cintra Cardoso
- Superior School of Agriculture "Luiz de Queiroz", University of São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Valdemar Luiz Tornisielo
- Center of Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, Sao Paulo State University, Av. Três de Março, 511 - Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
4
|
Mai Q, Lu Y, Cai Q, Hu J, Lv Y, Yang Y, Wang L, Zhou Y, Liu J. pH and Pectinase Dual-Responsive Zinc Oxide Core-Shell Nanopesticide: Efficient Control of Sclerotinia Disease and Reduction of Environmental Risks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2022. [PMID: 39728558 DOI: 10.3390/nano14242022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Sclerotinia sclerotiorum is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP). This nanopesticide uses zinc oxide (ZnO) as a carrier of prochloraz (Pro) and is encapsulated with pectin. When encountering oxalic acid released by Sclerotinia sclerotiorum, the acidic environment promotes the decomposition of ZnO; at the same time, the pectinase produced by Sclerotinia sclerotiorum can also decompose the outer pectin layer of PZP, thereby promoting the effective release of the active ingredient. Experimental data showed that PZP was able to achieve an efficient release rate of 57.25% and 68.46% when pectinase was added or under acidic conditions, respectively. In addition, in vitro tests showed that the antifungal effect of PZP was comparable to that of the commercial Pro (Pro SC) on the market, and its efficacy was 1.40 times and 1.32 times that of the Pro original drug (Pro TC), respectively. Crucially, the application of PZP significantly alleviated the detrimental impacts of Pro on wheat development. Soil wetting experiments have proved that PZP primarily remained in the soil, thereby decreasing its likelihood of contaminating water sources and reducing potential risks to non-target organisms. Moreover, PZP improved the foliar wettability of Pro, lowering the contact angle to 75.06°. Residue analyses indicated that PZP did not elevate prochloraz residue levels in tomato fruits compared to conventional applications, indicating that the nanopesticide formulation does not lead to excessive pesticide buildup. In summary, the nanopesticide PZP shows great promise for effectively managing Sclerotinia sclerotiorum while minimizing environmental impact.
Collapse
Affiliation(s)
- Qiongmei Mai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Qianyu Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jianglong Hu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yunyou Lv
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yonglan Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Liqiang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yuezhao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Ding JW, Zhou EM, Wang X, Jiang H, Su HF, Gao Q, Guo LN, Fu YS, Li MC, Li DQ, Li J. Cellulose nanocrystals-based Pickering emulsion with enhanced foliar adhesion and pH responsiveness for intelligent delivery of pesticides. Int J Biol Macromol 2024; 286:138192. [PMID: 39638167 DOI: 10.1016/j.ijbiomac.2024.138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Pickering emulsions stabilized by functionalized natural macromolecules have emerged with promising responsiveness for pesticide encapsulation and release. This study developed Pickering emulsions using amine-modified cellulose nanocrystals (ACNCs) as stabilizers. The resultant O/W ACNCs-Pickering emulsions (ACNCs-Pickering) exhibited long-term storage stability and showed increasing emulsion stability depending on the concentration of ACNCs. Imidacloprid (IMI) was subsequently loaded onto the ACNCs-Pickering to form the IMI@ACNCs-Pickering via the in-situ loading route. The release rate of IMI demonstrated a notable pH responsiveness. Moreover, the IMI@ACNCs-Pickering prepared with an ACNCs concentration of 3 wt% showed optimal performances. Its foliar adhesion on Chinese cabbage (Brassica rapa L.ssp.pekinensis) was significantly higher than that of the commercial IMI formulation (70 WS, Bayer®, LS200032) (DG). In detail, the pesticide residue for the IMI@ACNCs-Pickering was 3.8 folds to that for DG after spraying and washing for 10 min. Also, the green peach aphid mortality rate was 98.33 %, which was 1.1 folds higher than that of the DG group. The present work developed a Pickering emulsion-based fat-soluble pesticide formulation with excellent foliar adhesion, resistance to rainfall washout, and insecticidal effect. It provided a new option to ensure the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Jia-Wei Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Er-Min Zhou
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Xiao Wang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Hui-Fen Su
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Yong-Sheng Fu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Mei-Chan Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, PR China.
| |
Collapse
|
6
|
Gao Z, Tan J, Sun Y, Jiang X. Size effect of ZIF-8 based nanocarrier pesticide delivery system on targeted release and insecticidal activity. PEST MANAGEMENT SCIENCE 2024. [PMID: 39467019 DOI: 10.1002/ps.8501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Traditional chemical pesticides are easily lost by surface runoff and only small quantities reach the target, thus causing serious environmental pollution. In this work, dinotefuran@zeolitic imidazolate framework-8@polydopamine@zein (DNF@ZIF-8@PDA@zein), was constructed to deliver DNF with pH and enzyme double response of release, thereby achieving targeted release and efficient long-term pest control. RESULTS DNF@ZIF-8@PDA@zein was synthesized with three hydrated diameters (249.73 ± 9.99 nm, 142.94 ± 5.63 nm and 75.16 ± 4.66 nm, respectively). The release of DNF from DNF@ZIF-8@PDA@zein after 28 h was significantly higher at pH 5.0 (89.22 ± 7.18%) compared to that at pH 8 (81.8 ± 6.11%). Protease-assisted release of DNF was notably higher than that without protease (pH 5: 89.22 ± 5.55% versus 27.19 ± 3.22%; pH 8: 81.8 ± 6.11% versus 25.39 ± 3.87%). The stimuli-responsive release of DNF from DNF@ZIF-8@PDA@zein increased with decreased particle size due to increased pore size, reduced binding forces (i.e., weaker π-π stacking, hydrogen bonding, and Zn-N covalent bonding), and the shortening of diffusion path, leading to faster disintegration and drug release. Additionally, the anti-photolysis ability of DNF@ZIF-8@PDA@zein was 3.2 times that of pure DNF. The insecticidal activity improved with smaller nanoparticles due to higher drug release rate and greater inhibition of detoxification enzyme activity by more zinc ion (Zn2+) dissolution. CONCLUSION The pH and enzyme dual-responsive release as well as insecticidal activity of DNF@ZIF-8@PDA@zein increase with decreased nanoparticle size, showing effective pest management in long-term and potential application prospects in sustainable agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhou Gao
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, P. R. China
| |
Collapse
|
7
|
Barros JMHF, Santos AA, Stadnik MJ, da Costa C. Encapsulation of eucalyptus and Litsea cubeba essential oils using zein nanopolymer: Preparation, characterization, storage stability, and antifungal evaluation. Int J Biol Macromol 2024; 278:134690. [PMID: 39142480 DOI: 10.1016/j.ijbiomac.2024.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The encapsulation of essential oils (EOs) in protein-based biopolymeric matrices stabilized with surfactant ensures protection and physical stability of the EO against unfavorable environmental conditions. Accordingly, this study prepared zein nanoparticles loaded with eucalyptus essential oil (Z-EEO) and Litsea cubeba essential oil (Z-LEO), stable and with antifungal activity against Colletotrichum lindemuthianum, responsible for substantial damage to bean crops. The nanoparticles were prepared by nanoprecipitation with the aid of ultrasound treatment and characterized. The nanoparticles exhibited a hydrodynamic diameter close to 200 nm and PDI < 0.3 for 120 days, demonstrating the physical stability of the carrier system. Scanning electron microscopy and Transmission electron microscopy revealed that the nanoparticles were smooth and uniformly distributed spheres. Fourier-transform infrared spectroscopy showed interaction between zein and EOs through hydrogen bonding and hydrophobic interactions. Thermogravimetric analysis demonstrated the thermal stability of the nanoparticles compared to pure bioactive compounds. The nanoparticles exhibited a dose-dependent effect in inhibiting the fungus in in vitro testing, with Z-EEO standing out by inhibiting 70.0 % of the mycelial growth of C. lindemuthianum. Therefore, the results showed that zein has great potential to encapsulate hydrophobic compounds, improving the applicability of the bioactive compound as a biofungicide, providing protection for the EO.
Collapse
Affiliation(s)
- José Marcelo Honório Ferreira Barros
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil
| | - Alessandro Antônio Santos
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Marciel João Stadnik
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Cristiane da Costa
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil; Federal University of Santa Catarina, Graduate Program in Textile Engineering, Department of Textile Engineering, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Huang X, Ni X, Li H, Wei Y, Wang Z, Zhen C, Yin M, Shen J, Shi W, Zhang Y, Yan S. Synergistic mechanism of botanical pesticide camptothecin encapsulated in a nanocarrier against fall armyworm: Enhanced stability and amplified growth suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116900. [PMID: 39168084 DOI: 10.1016/j.ecoenv.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Botanical pesticides are one of the most promising alternatives to synthetic insecticides for green pest management. However, their efficacies must be further improved to meet real needs. Here we designed a nanoscale camptothecin (CPT) encapsulated in a star polycation (SPc) and determined its bioactivity against a devastating agricultural pest, Spodoptera frugiperda. The self-assembly of CPT/SPc complex was mainly driven by hydrogen bonding and Van der Waals forces to decrease the particle size from 789 to 298 nm. With the help of SPc, the contact angle of CPT decreased from 116° to 92° on maize leaves, and its retention was increased from 5.53 to 11.97 mg/cm2. The stability of SPc-loaded CPT was also improved in an alkaline environment, which is beneficial for its acting in lepidopteran insect guts. The CPT/SPc complex had stronger larvicidal activity and ovicidal activity against S. frugiperda than CPT alone, led to more complex transcriptomic changes in larvae, and had obvious adverse impacts on the activities of two digestive enzymes. Our findings demonstrated that the encapsulation of CPT by SPc-based nanodelivery system enabled better insecticidal activities against S. frugiperda, which holds great promise for the development of more efficient and sustainable pest control strategies to meet the demands of modern crop protection.
Collapse
Affiliation(s)
- Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China; Sanya Institute of China Agricultural University, Sanya 572000, PR China
| | - Xueqi Ni
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Huali Li
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Ying Wei
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Zeng Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Cong'ai Zhen
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Wangpeng Shi
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
9
|
You C, Lin H, Ning L, Ma N, Wei W, Ji X, Wei S, Xu P, Zhang D, Wang F. Advances in the Design of Functional Cellulose Based Nanopesticide Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11295-11307. [PMID: 38717296 DOI: 10.1021/acs.jafc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The advancement of science and technology, coupled with the growing environmental consciousness among individuals, has led to a shift in pesticide development from traditional methods characterized by inefficiency and misuse toward a more sustainable and eco-friendly approach. Cellulose, as the most abundant natural renewable resource, has opened up a new avenue in the field of biobased drug carriers by developing cellulose-based drug delivery systems. These systems offer unique advantages in terms of deposition rate enhancement, modification facilitation, and environmental impact reduction when designing nanopesticides. Consequently, their application in the field of nanoscale pesticides has gained widespread recognition. The present study provides a comprehensive review of cellulose modification methods, carrier types for cellulose-based nanopesticides delivery systems (CPDS), and various stimulus-response factors influencing pesticide release. Additionally, the main challenges in the design and application of CPDS are summarized, highlighting the immense potential of cellulose-based materials in the field of nanopesticides.
Collapse
Affiliation(s)
- Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Like Ning
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu P. R. China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wei Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xinyue Ji
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shuangyu Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Peng Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, P. R. China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
10
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
11
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Lei Y, Lee Y. Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: approaches, characterization, applications, and perspectives. Food Sci Biotechnol 2024; 33:1037-1057. [PMID: 38440671 PMCID: PMC10908974 DOI: 10.1007/s10068-023-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 03/06/2024] Open
Abstract
Zein has garnered widespread attention as a versatile material for nanosized delivery systems due to its unique self-assembly properties, amphiphilicity, and biocompatibility characteristics. This review provides an overview of current approaches, characterizations, applications, and perspectives of nanoencapsulation and delivery of bioactive ingredients within zein-based nanocarriers. Various nanoencapsulation strategies for bioactive ingredients using various types of zein-based nanocarrier structures, including nanoparticles, nanofibers, nanoemulsions, and nanogels, are discussed in detail. Factors affecting the stability of zein nanocarriers and characterization methods of bioactive-loaded zein nanocarrier structures are highlighted. Additionally, current applications of zein nanocarriers loaded with bioactive ingredients are summarized. This review will serve as a guide for the selection of appropriate nanoencapsulation techniques within zein nanocarriers and a comprehensive understanding of zein-based nanocarriers for specific applications in the food, pharmaceutical, cosmetic, and agricultural industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01489-6.
Collapse
Affiliation(s)
- Yanlin Lei
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Youngsoo Lee
- Department of Biological Systems Engineering, Washington State University at Pullman, Pullman, WA 203, L.J. Smith Hall, 1935 E. Grimes Way99164-6120 USA
| |
Collapse
|
13
|
Oleandro E, Stanzione M, Buonocore GG, Lavorgna M. Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:414. [PMID: 38470745 DOI: 10.3390/nano14050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins' abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers' efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs' structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions.
Collapse
Affiliation(s)
- Emilia Oleandro
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | - Mariamelia Stanzione
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
| | | | - Marino Lavorgna
- Institute of Polymers, Composites and Biomaterials-CNR, Piazzale E. Fermi 1, 80055 Portici, Italy
- Institute of Polymers, Composites and Biomaterials-CNR, Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
14
|
Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Perotto G, Athanassiou A. Electrosprayed zein nanoparticles as antibacterial and anti-thrombotic coatings for ureteral stents. Int J Biol Macromol 2024; 257:128560. [PMID: 38061505 DOI: 10.1016/j.ijbiomac.2023.128560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Ureteral stents are among the most frequently used human implants, with urothelium trauma, blood clots, and bacterial colonization being their main reasons for failure. In this study, berberine-loaded zein (ZB) nanoparticles with high drug encapsulation efficiency (>90 %) were fabricated via electrospray on flat and 3D stainless steel structures. Physico-chemical characterization revealed that the ZB nanoparticles created a highly hydrophilic, antioxidant, and scratch-resistant continuous coating over the metal structure. Results showed that the drug release rate was faster at neutral pH (i.e., PBS pH 7.4) than in an artificial urine medium (pH 5.3) due to the different swelling behavior of the zein polymeric matrix. In vitro evaluation of ZB particles onto human dermal fibroblasts and blood cells demonstrated good cell proliferation and enhanced anti-thrombotic properties compared to bare stainless steel. The ability of the electrosprayed zein particles to resist bacterial adherence and proliferation was evaluated with Gram-negative (Escherichia coli) bacteria, showing high inhibition rates (-29 % and -46 % for empty and berberine-loaded particles, respectively) compared to the medical-grade metal substrates. Overall, the proposed composite coating fulfilled the requirements for ureteral applications, and can advance the development of innovative biocompatible, biodegradable, and antibacterial coatings for drug-eluting stents.
Collapse
Affiliation(s)
- Martina Lenzuni
- Smart Materials Group, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy.
| | | | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giulia Suarato
- Consiglio Nazionale delle Ricerche, Istituto di Elettronica, Ingegneria dell'Informazione e delle Telecomunicazioni (CNR-IEIIT), Milan, Italy
| | - Giovanni Perotto
- Smart Materials Group, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
15
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Zhao X, Zhang Y, Chen L, Ma Z, Zhang B. Chitosan-thymol nanoparticle with pH responsiveness as a potential intelligent botanical fungicide against Botrytis cinerea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105571. [PMID: 37666600 DOI: 10.1016/j.pestbp.2023.105571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 09/06/2023]
Abstract
The practical application of essential oils (EOs) as an alternative for synthetic pesticides in agricultural production is severely limited because of their instability, high volatility, and water insolubility. Nanoencapsulation of EOs is an important strategy to overcome these limitations. In view of this, this study aimed to develop chitosan-thymol nanoparticle (NCS-Thy) with pH-responsive which can be used as an intelligent botanical fungicide to control Botrytis cinerea. The NCS-Thy nanoparticle was prepared by ionic crosslinking method with the loading capacity and encapsulation efficiency of 29.87% and 41.92%, respectively. The synthesized NCS-Thy nanoparticle was further characterized by Fourier transform infrared spectroscopy analysis, transmission electron microscopy observation, and dynamic lights scattering. The results of release kinetics and antifungal activity of NCS-Thy under different pH conditions were determined. The results showed that the NCS-Thy nanoparticle had excellent pH-responsiveness and can release more thymol under acidic conditions formed by B. cinerea, thereby achieving higher antifungal effects. Therefore, compared with unencapsulated thymol, the NCS-Thy nanoparticle had higher antifungal activity against B. cinerea in vitro. In addition, both the protective and curative efficacies of detached leaf test and pot experiment were significantly higher than those of unencapsulated thymol. Among them, the protective efficacy of NCS-Thy in the pot experiment was 78.73%, which was significantly higher than that of unencapsulated thymol with 61.13%. Therefore, the pH-responsive chitosan-thymol nano-preparation had a promising prospect of application in practical management of gray mold as an intelligent botanical fungicide.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yunfei Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China; School of Plant Protection, Hainan University, Haikou 570228, China
| | - Li Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Bin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
17
|
Shen M, Liu S, Jiang C, Zhang T, Chen W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. ECO-ENVIRONMENT & HEALTH 2023; 2:161-175. [PMID: 38074996 PMCID: PMC10702921 DOI: 10.1016/j.eehl.2023.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 10/16/2024]
Abstract
Nanotechnology-enabled fertilizers and pesticides, especially those capable of releasing plant nutrients or pesticide active ingredients (AIs) in a controlled manner, can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities. Herein, we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties, enabled by nanocarriers responsive to environmental and biological stimuli, including pH change, temperature, light, redox conditions, and the presence of enzymes. For pH-responsive nanocarriers, pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers. Similarly, temperature response typically involves structural changes in nanocarriers, and higher temperatures can accelerate the release by diffusion promoting or bond breaking. Photothermal materials enable responses to infrared light, and photolabile moieties (e.g., o-nitrobenzyl and azobenzene) are required for achieving ultraviolet light responses. Redox-responsive nanocarriers contain disulfide bonds or ferric iron, whereas enzyme-responsive nanocarriers typically contain the enzyme's substrate as a building block. For fabricating nanofertilizers, pH-responsive nanocarriers have been well explored, but only a few studies have reported temperature- and enzyme-responsive nanocarriers. In comparison, there have been more reports on nanopesticides, which are responsive to a range of stimuli, including many with dual- or triple-responsiveness. Nano-enabled controlled-release fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs. However, to expand their practical applications, future research should focus on optimizing their performance under realistic conditions, lowering costs, and addressing regulatory and public concerns over environmental and safety risks.
Collapse
Affiliation(s)
- Meimei Shen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Antonacci A, Frisulli V, Carvalho LB, Fraceto LF, Miranda B, De Stefano L, Johanningmeier U, Giardi MT, Scognamiglio V. An All-Green Photo-Electrochemical Biosensor Using Microalgae Immobilized on Eco-Designed Lignin-Based Screen-Printed Electrodes to Detect Sustainable Nanoherbicides. Int J Mol Sci 2023; 24:10088. [PMID: 37373233 DOI: 10.3390/ijms241210088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Herein, a novel completely green biosensor was designed exploiting both the biological and instrumental components made of eco-friendly materials for the detection of herbicides encapsulated into biodegradable nanoparticles for a sustainable agriculture. Similar nanocarriers, indeed, can deliver herbicides to the correct location, reducing the amount of active chemicals deposited in the plant, impacting the agricultural and food industries less. However, handling measurements of nanoherbicides is crucial to provide comprehensive information about their status in the agricultural fields to support farmers in decision-making. In detail, whole cells of the unicellular green photosynthetic alga Chlamydomonas reinhardtii UV180 mutant were immobilized by a green protocol on carbonized lignin screen-printed electrodes and integrated into a photo-electrochemical transductor for the detection of nanoformulated atrazine. Specifically, atrazine encapsulated into zein and chitosan doped poly-ε-caprolactone nanoparticles (atrazine-zein and atrazine-PCL-Ch) were analyzed following the current signals at a fixed applied potential of 0.8 V, in a range between 0.1 and 5 µM, indicating a linear relationship in the measured dose-response curves and a detection limit of 0.9 and 1.1 nM, respectively. Interference studies resulted in no interference from 10 ppb bisphenol A, 1 ppb paraoxon, 100 ppb arsenic, 20 ppb copper, 5 ppb cadmium, and 10 ppb lead at safety limits. Finally, no matrix effect was observed on the biosensor response from wastewater samples and satisfactory recovery values of 106 ± 8% and 93 ± 7% were obtained for atrazine-zein and atrazine-PCL-Ch, respectively. A working stability of 10 h was achieved.
Collapse
Affiliation(s)
- Amina Antonacci
- National Research Council, Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, Via Salaria Km 29.3, 00015 Rome, Italy
| | - Valeria Frisulli
- National Research Council, Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, Via Salaria Km 29.3, 00015 Rome, Italy
| | - Lucas Bragança Carvalho
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março, 511-CEP, Sorocaba 18-087-180, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology of Sorocaba, São Paulo State University (UNESP), Av. Três de Março, 511-CEP, Sorocaba 18-087-180, Brazil
| | - Bruno Miranda
- National Research Council, Department of Physical Sciences and Technologies of Matter, Institute of Applied Sciences and Intelligent Systems, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luca De Stefano
- National Research Council, Department of Physical Sciences and Technologies of Matter, Institute of Applied Sciences and Intelligent Systems, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Udo Johanningmeier
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Maria Teresa Giardi
- National Research Council, Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, Via Salaria Km 29.3, 00015 Rome, Italy
- Biosensor S.r.l., Via degli Olmetti, 44, 00060 Rome, Italy
| | - Viviana Scognamiglio
- National Research Council, Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, Via Salaria Km 29.3, 00015 Rome, Italy
| |
Collapse
|
19
|
Pasquoto-Stigliani T, Guilger-Casagrande M, Campos EVR, Germano-Costa T, Bilesky-José N, Migliorini BB, Feitosa LO, Sousa BT, de Oliveira HC, Fraceto LF, Lima R. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. J Nanobiotechnology 2023; 21:166. [PMID: 37231443 PMCID: PMC10210372 DOI: 10.1186/s12951-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.
Collapse
Affiliation(s)
- Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Tais Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Natalia Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bianca B Migliorini
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Leandro O Feitosa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bruno T Sousa
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Halley C de Oliveira
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Renata Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
20
|
Ma E, Fu Z, Chen K, Sun L, Zhang Y, Liu Z, Li L, Guo X. Smart Protein-Based Fluorescent Nanoparticles Prepared by a Continuous Nanoprecipitation Method for Pesticides' Precise Delivery and Tracing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37221148 DOI: 10.1021/acs.jafc.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It is highly desirable to develop smart and green pesticide nanoformulations for improving pesticide targeting and reducing their inherent toxicity. Herein, we demonstrate a continuous nanoprecipitation method to construct a novel type of enzyme-responsive fluorescent nanopesticides (denoted as ABM@BSA-FITC/GA NPs) based on abamectin, fluorescein isothiocyanate isomer (FITC)-modified protein, and food-grade gum arabic. The as-prepared ABM@BSA-FITC/GA NPs exhibit good water dispersibility, excellent storage stability, and enhanced wettability compared to commercial formulations. The controlled release of pesticides can be achieved through protein degradation caused by trypsin. Most importantly, the deposition, distribution, and transport of the ABM@BSA-FITC/GA NPs are precisely tracked on target plants (cabbage and cucumber) by fluorescence. Furthermore, the ABM@BSA-FITC/GA NPs show the high control efficacy against Plutella xylostella L., which is comparable with commercial emulsifiable concentrate formulation. In consideration of its eco-friendly composition and absence of organic solvent, this pesticide nanoformulation has promising potential in sustainable plant protection.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Yuhua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
21
|
Flores-Céspedes F, Villafranca-Sánchez M, Fernández-Pérez M. Alginate-Bentonite-Based Hydrogels Designed to Obtain Controlled-Release Formulations of Dodecyl Acetate. Gels 2023; 9:gels9050388. [PMID: 37232979 DOI: 10.3390/gels9050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Dodecyl acetate (DDA), a volatile compound present in insect sex pheromones, was incorporated into alginate-based granules to obtain controlled-release formulations (CRFs). In this research, not only was the effect of adding bentonite to the basic alginate-hydrogel formulation studied, but also that of the encapsulation efficiency on the release rate of DDA in laboratory and field experiments. DDA encapsulation efficiency increased as the alginate/bentonite ratio increased. From the preliminary volatilization experiments, a linear relationship was found between the DDA release percentage and the amount of bentonite present in the alginate CRFs. Laboratory kinetic volatilization experiments showed that the selected alginate-bentonite formulation (DDAB75A10) exhibited a prolonged DDA release profile. The value of the diffusional exponent obtained from the Ritger and Peppas model (n = 0.818) indicated that the release process follows a non-Fickian or anomalous transport mechanism. Field volatilization experiments showed a steady release of DDA over time from the alginate-based hydrogels tested. This result, together with those obtained from the laboratory release experiments, allowed the obtainment of a set of parameters to improve the preparation of alginate-based CRFs for the use of volatile biological molecules, such as DDA, in agricultural biological control programs.
Collapse
Affiliation(s)
- Francisco Flores-Céspedes
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| | - Matilde Villafranca-Sánchez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| | - Manuel Fernández-Pérez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
22
|
Su C, Liu S, Sun M, Yu Q, Li C, Graham RI, Wang X, Wang X, Xu P, Ren G. Delivery of Methoprene-Tolerant dsRNA to Improve RNAi Efficiency by Modified Liposomes for Pest Control. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13576-13588. [PMID: 36880527 DOI: 10.1021/acsami.2c20151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of RNA interference (RNAi) technology for pest control is environmentally friendly and accurate. However, the efficiency of RNAi is often inconsistent and unreliable, and finding a suitable carrier element is considered critical to success in overcoming biotic and abiotic barriers to reach the target site. The fall armyworm, Spodoptera frugiperda (FAW), which is one of most important global agricultural pests, has recently spread rapidly to other parts of the world. In this study, a method to improve the stability and RNAi efficiency of the dsRNA carrier complex was reported. Methoprene-tolerant gene (Met) was selected as a target, a gene which is critical to the growth and development of FAW. Biomaterials nanoliposomes (LNPs) were modified with polyethylenimine (PEI) to deliver the dsRNA of Met. The synthesized Met3@PEI@LNPs reached a size of 385 nm and were found to load dsRNA effectively. Through stability and protection assays, it was found that LNPs provided reliable protection. In addition, the release curve also demonstrated that LNPs were able to prevent premature release under alkaline condition of the insect midgut but accelerate the release after entering the acidic environment of the target cells. The cell transfection efficiency of the prepared LNPs reached 96.4%. Toxicity tests showed that the use of LNPs could significantly improve the interference efficiency, with 91.7% interference efficiency achieved when the concentration of dsRNA in LNPs was only 25% of that of the control. Successful interference of Met demonstrated it could significantly shorten the larval period and make the larvae pupate earlier, thus achieving the purpose of control. In this study, we have demonstrated the use of nanotechnology to provide a novel RNAi delivery method for pest control.
Collapse
Affiliation(s)
- Chenyu Su
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Shanshan Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Meixue Sun
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Qianlong Yu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Changyou Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | - Robert I Graham
- Department of Rural Land Use, SRUC, Craibstone Campus, Aberdeen AB101AB, U.K
| | - Xiufang Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Xinwei Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Pengjun Xu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| | - Guangwei Ren
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China
| |
Collapse
|
23
|
Zhang X, He Y, Yuan Z, Shen G, Zhang Z, Niu J, He L, Wang J, Qian K. A pH- and enzymatic-responsive nanopesticide to control pea aphids and reduce toxicity for earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160610. [PMID: 36460117 DOI: 10.1016/j.scitotenv.2022.160610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Thiacloprid is a new chlorinated nicotinoid insecticide against stinging-oral pests, such as aphids. It is less toxic to bees but more toxic to earthworms. In this study, a pH- and amylase-responsive MOF (ZIF-8) was constructed for site-specific delivery of thiacloprid to control pea aphids and more safety for earthworms. Thiacloprid from α-cyclodextrin@Thiacloprid@ZIF-8 (α-CD@T@ZIF-8) could be released quickly in pea aphids, which was ascribed to disintegration of ZIF-8 at low pH values in pea aphid intestines and degradation of α-CD under the action of α-amylase. The release results showed a significant pH dependence of α-CD@T@ZIF-8, with an approximately 65 % release amount at pH = 7 and a 95 % release amount at pH = 5 for 7 d. The results of the pot experiment and biosafety showed that for α-CD@T@ZIF-8, 88 % pea aphids could be killed compared with 32 % aphids for commercially available formulation on the 7th day after application. Meanwhile the LC50 of thiacloprid OD was 0.034 μg/cm2 and the LC50 of α-CD@T@ZIF-8 was 0.564 μg/cm2 on earthworms, and it was more safety for pea and lower acute toxicity and enrichment for the earthworms. α-CD@T@ZIF-8 could be used for intelligently controlled release of other insecticides against aphids.
Collapse
Affiliation(s)
- Xuqian Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jinzhi Niu
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jinjun Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
25
|
Liang Y, Wang S, Yao Y, Yu S, Li A, Wang Y, Song J, Huo Z. Degradable Self-Destructive Redox-Responsive System Based on Mesoporous Organosilica Nano-Vehicles for Smart Delivery of Fungicide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234249. [PMID: 36500872 PMCID: PMC9741037 DOI: 10.3390/nano12234249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/01/2023]
Abstract
The development of stimuli-responsive controlled release formulations is a potential method of improving pesticide utilization efficiency and alleviating current pesticide-related environmental pollution. In this study, a self-destruction redox-responsive pesticide delivery system using biodegradable disulfide-bond-bridged mesoporous organosilica (DMON) nanoparticles as the porous carriers and coordination complexes of gallic acid (GA) and Fe(III) ions as the capping agents were established for controlling prochloraz (PRO) release. The GA-Fe(III) complexes deposited onto the surface of DMON nanoparticles could effectively improve the light stability of prochloraz. Due to the decomposition of GA-Fe(III) complexes, the nano-vehicles had excellent redox-responsive performance under the reducing environments generated by the fungus. The spreadability of PRO@DMON-GA-Fe(III) nanoparticles on the rice leaves was increased due to the hydrogen bonds between GA and rice leaves. Compared with prochloraz emulsifiable concentrate, PRO@DMON-GA-Fe(III) nanoparticles showed better fungicidal activity against Magnaporthe oryzae with a longer duration under the same concentration of prochloraz. More importantly, DMON-GA-Fe(III) nanocarriers did not observe obvious toxicity to the growth of rice seedlings. Considering non-toxic organic solvents and excellent antifungal activity, redox-responsive pesticide controlled release systems with self-destruction properties have great application prospects in the field of plant disease management.
Collapse
|
26
|
Beato M, Usseglio V, Pizzolitto R, Merlo C, Dambolena J, Zunino M, Zygadlo J, Omarini A. Biotransformation as a source of potential controlling natural mixtures of Sitophilus zeamais. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Foong SY, Chan YH, Loy ACM, How BS, Tamothran AM, Yip AJK, Liew RK, Peng W, Alstrup AK, Lam SS, Sonne C. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. ENVIRONMENTAL RESEARCH 2022; 214:113751. [PMID: 35753369 DOI: 10.1016/j.envres.2022.113751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | | | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | | | - Andrew Jun Kit Yip
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Rock Keey Liew
- NV Western PLT, 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Aage Ko Alstrup
- Aarhus University Hospital, Department of Nuclear Medicine and PET, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Christian Sonne
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
28
|
Zhao M, Chen Z, Hao L, Chen H, Zhou X, Zhou H. CMC based microcapsules for smart delivery of pesticides with reduced risks to the environment. Carbohydr Polym 2022; 300:120260. [DOI: 10.1016/j.carbpol.2022.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
29
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Germano-Costa T, Bilesky-José N, Guilger-Casagrande M, Pasquoto-Stigliani T, Rogério CB, Abrantes DC, Maruyama CR, Oliveira JL, Fraceto LF, Lima R. Use of 2D and co-culture cell models to assess the toxicity of zein nanoparticles loading insect repellents icaridin and geraniol. Colloids Surf B Biointerfaces 2022; 216:112564. [PMID: 35609505 DOI: 10.1016/j.colsurfb.2022.112564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
After the latest dengue and Zika outbreaks, the fight against mosquito vectors has become an emerging area of research. One tool for this combat is repellents; however, these products are composed of different toxic agents. Botanical compounds with repellent potential are an alternative; however these compounds are highly volatile. Thus, the present study aimed to synthesize zein-based polymeric nanoparticles as an efficient carrier system for the sustained release of the repellents icaridin and geraniol and evaluate the toxicity of these nanorepellents comparing two different cell models. In vitro tests were carried out due to current Brazilian legislation prohibiting animal testing for cosmetics (current classification of repellents). The cytotoxicity and genotoxicity of the nanoparticles were evaluated in 2D and co-culture cell models (A549/lung epithelium, HaCaT/keratinocytes, HT-29/intestinal epithelium, and THP-1/peripheral blood monocytes). Cell viability by mitochondrial activity, cell membrane integrity, damage to genetic material, and expression of genes involved in the allergic/inflammatory system were evaluated. The results of cytotoxicity evaluation showed cell viability above 70% in both cell models. No differences were observed in genotoxicity assessment between cells exposed to nanorepellents and controls. In contrast, gene expression analysis showed increased cytokine expression for the emulsion compounds in 2D cell cultures compared to co-cultures. These findings open perspectives that zein-based nanorepellents have potential applications due to the reduced toxicity observed when the compounds are encapsulated and emerge as an alternative for arbovirus control. In addition, the study demonstrated that depending on the analysis, different results might be observed when comparing 2D and co-culture cell models to evaluate the toxicity of new nanosystems.
Collapse
Affiliation(s)
- T Germano-Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - N Bilesky-José
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - M Guilger-Casagrande
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - T Pasquoto-Stigliani
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - C B Rogério
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - D C Abrantes
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - C R Maruyama
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - J L Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| | - L F Fraceto
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - R Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
31
|
Bilal M, Sial MU, Cao L, Huang Q. Effects of Methoxyfenozide-Loaded Fluorescent Mesoporous Silica Nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) Mortality and Detoxification Enzyme Levels Activities. Int J Mol Sci 2022; 23:ijms23105790. [PMID: 35628599 PMCID: PMC9144591 DOI: 10.3390/ijms23105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
The diamond back moth, Plutella xylostella, causes severe damage at all crop stages, beside its rising resistance to all insecticides. The objective of this study was to look for a new control strategy such as application of insecticide-loaded carbon dot-embedded fluorescent mesoporous silica nanoparticles (FL-SiO2 NPs). Two different-sized methoxyfenozide-loaded nanoparticles (Me@FL-SiO2 NPs-70 nm, Me@FL-SiO2 NPs-150 nm) were prepared, with loading content 15% and 16%. Methoxyfenozide was released constantly from Me@FL-SiO2 NPs only at specific optimum pH 7.5. The release of methoxyfenozide from Me@FL-SiO2 NPs was not observed other than this optimum pH, and therefore, we checked and controlled a single release condition to look out for the different particle sizes of insecticide-loaded NPs. This pH-responsive release pattern can find potential application in sustainable plant protection. Moreover, the lethal concentration of the LC50 value was 24 mg/L for methoxyfenozide (TC), 14 mg/L for Me@FL-SiO2 NPs-70 nm, and 15 mg/L for Me@FL-SiO2 NPs-150 nm after 72 h exposure, respectively. After calculating the LC50, the results predicted that Me@FL-SiO2 NPs-70 nm and Me@FL-SiO2 NPs-150 nm exhibited better insecticidal activity against P. xylostella than methoxyfenozide under the same concentrations of active ingredient applied. Moreover, the activities of detoxification enzymes of P. xylostella were suppressed by treatment with insecticide-loaded NPs, which showed that NPs could also be involved in reduction of enzymes. Furthermore, the entering of FL-SiO2 NPs into the midgut of P. xylostella was confirmed by confocal laser scanning microscope (CLSM). For comparison, P. xylostella under treatment with water as control was also observed under CLSM. The control exhibited no fluorescent signal, while the larvae treated with FL-SiO2 NPs showed strong fluorescence under a laser excitation wavelength of 448 nm. The reduced enzyme activities as well as higher cuticular penetration in insects indicate that the nano-based delivery system of insecticide could be potentially applied in insecticide resistance management.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Muhammad Umair Sial
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.B.); (L.C.)
- Correspondence:
| |
Collapse
|
32
|
Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules, and Activities: Part II ( Cipadessa, Melia). Int J Mol Sci 2022; 23:ijms23105329. [PMID: 35628141 PMCID: PMC9140753 DOI: 10.3390/ijms23105329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-originated triterpenes are important insecticidal molecules. Research on the insecticidal activity of molecules from Meliaceae plants has always been a hotspot due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discussed 116 triterpenoid molecules with insecticidal activity from 22 plant species of five genera (Cipadessa, Entandrophragma, Guarea, Khaya, and Melia) in Meliaceae. In these genera, the insecticidal activities of plants from Entandrophragma and Melia have attracted substantial research attention in recent years. Specifically, the insecticidal activities of plants from Melia have been systemically studied for several decades. In total, the 116 insecticidal chemicals consisted of 34 ring-intact limonoids, 31 ring-seco limonoids, 48 rearranged limonoids, and 3 tetracyclic triterpenes. Furthermore, the 34 ring-intact limonoids included 29 trichilin-class chemicals, 3 azadirone-class chemicals, and 1 cedrelone-class and 1 havanensin-class limonoid. The 31 ring-seco limonoids consisted of 16 C-seco group chemicals, 8 B,D-seco group chemicals, 4 A,B-seco group chemicals, and 3 D-seco group chemicals. Furthermore, among the 48 rearranged limonoids, 46 were 2,30-linkage group chemicals and 2 were 10,11-linkage group chemicals. Specifically, the 46 chemicals belonging to the 2,30-linkage group could be subdivided into 24 mexicanolide-class chemicals and 22 phragmalin-class chemicals. Additionally, the three tetracyclic triterpenes were three protolimonoids. To sum up, 80 chemicals isolated from 19 plant species exhibited antifeedant activity toward 14 insect species; 18 chemicals isolated from 17 plant species exhibited poisonous activity toward 10 insect species; 16 chemicals isolated from 11 plant species possessed growth-regulatory activity toward 8 insect species. In particular, toosendanin was the most effective antifeedant and insect growth-regulatory agent. The antifeedant activity of toosendanin was significant. Owing to its high effect, toosendanin has been commercially applied. Three other molecules, 1,3-dicinnamoyl-11-hydroxymeliacarpin, 1-cinnamoyl-3-methacryl-11-hydroxymeliacarpin, and 1-cinnamoyl-3-acetyl-11-hydroxymeliacarpin, isolated from Meliaazedarach, exhibited a highly poisonous effect on Spodoptera littoralis; thus, they deserve further attention.
Collapse
|
33
|
Cui H, Lu J, Li C, Rashed MMA, Lin L. Antibacterial and physical effects of cationic starch nanofibers containing carvacrol@casein nanoparticles against Bacillus cereus in soy products. Int J Food Microbiol 2022; 364:109530. [PMID: 35026445 DOI: 10.1016/j.ijfoodmicro.2022.109530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/06/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023]
Abstract
Bacillus cereus (B. cereus) is a recognized foodborne pathogen widely distributed in various protein-rich foods, which is a huge challenge to food safety. Herein, a novel enzyme-responsive nanomaterial based on cationic starch (CSt) nanofibers loaded with carvacrol@casein nanoparticles (CL@CSNPs) was constructed (CL@CS/CSt nanofiber) to prevent the contamination of B. cereus in soybean products. Considering the excellent antibacterial activity of carvacrol (CL) against B. cereus, CL@CSNPs were prepared by electrostatic adsorption and hydrophobic interaction and characterized by SEM and FTIR.CL@CS/CSt nanofibers with better performance were determined by comparing the physical properties of the electrospinning solution and the prepared nanofiber. Nanofibers were prepared by electrospinning technology and analyzed by SEM and AFM to investigate the size and structural morphology of fibers. FTIR analyses were done to confirm the successful embedding of CL@CSNPs in CSt nanofibers. Subsequently, the controlled release of CL was verified by GC-MS and disc diffusion method. The application experiment results indicated that the treatment based on CL@CS/CSt nanofibers reduced the B. cereus in soy products by 2 log CFU/g, which reflected a significant antibacterial activity. In addition, CL@CS/CSt nanofibers could also prevent texture and chroma changes under refrigeration and maintain the sensory quality of soy products. Thus, CL@CS/CSt nanofibers appear to have great potential in controlling the contamination of soybean products by B. cereus while maintaining the physical quality.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingyu Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
34
|
Okeke ES, Ezeorba TPC, Mao G, Chen Y, Feng W, Wu X. Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118722. [PMID: 34952184 DOI: 10.1016/j.envpol.2021.118722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria; Natural Science Unit, SGS, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Nsukka Enugu State, Nigeria
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 PR China
| |
Collapse
|
35
|
Satureja montana Essential Oil, Zein Nanoparticles and Their Combination as a Biocontrol Strategy to Reduce Bacterial Spot Disease on Tomato Plants. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomato bacterial spot (Bs), caused by Xanthomonas spp., including X. euvesicatoria (Xeu) remains a major threat for tomato production. The emergence of copper resistance strains of Xeu calls urgently for eco-friendly phytosanitary treatments as sustainable green alternatives for disease control. Satureja spp. essential oil (EO) has antimicrobial activity against xanthomonads and combined with zein nanoparticles (ZNPs), might offer a viable option for field applications. This study aims to evaluate the effects of S. montana EO, of ZNPs, and their combination in a nanoformulation, on Xeu quantity, and how these compounds modulate molecular and physiological changes in the pathosystem. Uninfected and infected tomato plants (var. Oxheart) were treated with EO; ZNPs and nanoformulation (EO + ZNPs). Treatments reduced Xeu amount by a minimum of 1.6-fold (EO) and a maximum of 202-fold (ZNPs) and improved plants’ health. Nanoformulation and ZNPs increased plants’ phenolic content. ZNPs significantly increased GPX activity and reduced CAT activity. Overall treatments upregulated transcripts of the phenylpropanoid pathway in infected plants, while ZNPs and nanoformulation upregulated those transcripts in uninfected plants. Both sod and aao transcripts were downregulated by treatments in infected plants. These findings demonstrate that S. montana EO, ZNPs and their nanoformulation are suitable to integrate tomato bacterial spot management strategies, mainly due to their antimicrobial activity on Xeu, however further field studies clarifying the long-term action of these products are required. These results also support the prophylactic potential of ZNPs on tomato bacterial spot.
Collapse
|
36
|
Li Z, Niu S. Modeling pesticides in global surface soils: Exploring relationships between continuous and discrete emission patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149309. [PMID: 34375253 DOI: 10.1016/j.scitotenv.2021.149309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Continuous pesticide emission at constant rate does not occur in reality, but can be a useful and simple concept in modeling studies. To explore the relationship between continuous and discrete emission patterns, we introduced a simple equivalent approach based on a comparison of simulated surface soil pesticide concentrations. The simulated results indicate that, at high soil pesticide dissipation rates and low emission frequencies, the average concentrations under the continuous and discrete emission scenarios were very similar. We demonstrated that the continuous emission model that used the simple average method to calculate the emission rate always overestimated the simulated pesticide concentrations in the surface soil compared to the discrete emission model when using a one-year period based on agricultural practices. In addition, we incorporated the equivalent approach into the USEtox model (a screening-level tool), which can approximate the average pesticide concentrations in surface soil using the time-integrated fate factors at different emission frequencies. The results indicate that the continuous-emission simulations agree with the discrete emission for at least 90% of the selected pesticides based on annual or semi-annual emission patterns. Further studies into other topics, such as random emission patterns and simulation periods, are required to improve the model. Nevertheless, the equivalent approach presented in this study can aid in transforming discrete emission patterns into continuous-emission-based models and improve surface soil pesticide management.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Shan Niu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
37
|
Surface-Tailored Zein Nanoparticles: Strategies and Applications. Pharmaceutics 2021; 13:pharmaceutics13091354. [PMID: 34575430 PMCID: PMC8465254 DOI: 10.3390/pharmaceutics13091354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability.
Collapse
|