1
|
Fu H, Chen DY, Zhang CL, Ju XJ, Xie R, Wang W, Liu Z, Pan DW, Chu LY. Hydrogel Grating Sensors with Boron Affinity and Molecular Imprinting Effects for Rapid and Sensitive Detection of Tumor Marker Sialic Acid. Anal Chem 2024; 96:16910-16916. [PMID: 39395064 DOI: 10.1021/acs.analchem.4c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Rapid and sensitive detection of the concentration of sialic acid (SA) in serum is crucial for early tumor screening and prognostic assessment; however, it still remains challenging. Here, we propose a novel kind of hydrogel grating sensor with boron affinity and molecular imprinting effects (B-MIP) for the rapid and sensitive detection of SA concentration in serum. The hydrogel gratings feature uniform surface relief microstructures and incorporate highly specific recognition binding sites into SA molecules provided by boron affinity and molecular imprinting. The periodic nanoridges of hydrogel gratings increase the specific surface area contacting the environmental solution; therefore, fast detection can be achieved within 2 min. Upon recognition of SA molecules, the height of hydrogel gratings changes at the nanoscale, causing a change in the diffraction efficiency of the hydrogel gratings. The B-MIP hydrogel grating sensors have highly specific binding sites to SA molecules distributed throughout the whole hydrogel and can preferentially and selectively recognize and respond to the SA molecules even in the presence of interference substances glucose and fructose with high concentrations. The B-MIP hydrogel grating sensors are effectively applicable for the rapid and sensitive detection of SA concentrations in real serum samples with satisfactory accuracy and precision. Our approach provides an excellent strategy to address the current challenges in SA detection and provides new insights into the detection of tumor markers in serum, thereby opening up new ways to accurately detect complex biological samples in analytical science.
Collapse
Affiliation(s)
- Han Fu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dong-Yan Chen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chun-Li Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
2
|
Wang XJ, Long Y, Wei CW, Gao SQ, Lin YW. Peroxidase activity of a Cu-Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys Chem Chem Phys 2024; 26:1077-1085. [PMID: 38098362 DOI: 10.1039/d3cp05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A Cu-Fe bimetallic hydrogel (2-QF-CuFe-G) was constructed through a simple method. The 2-QF-CuFe-G metallohydrogel possesses excellent peroxidase-like activity to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic mechanism was confirmed by the addition of •OH radical scavenger isopropyl alcohol (IPA), tert-butyl alcohol (TBA) and ˙OH trapping agent terephthalic acid (TA). Remarkably, the resultant blue ox-TMB system can be used to selectively and sensitively detect ascorbic acid (AA) with an LOD of 0.93 μM in the range of 4-36 μM through the colorimetric method. Moreover, the assay based on the 2-QF-CuFe-G metallohydrogel can be successfully applied to detect AA in fresh fruits.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yan Long
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Li H, Dai C, Hu Y. Hydrogels for Chemical Sensing and Biosensing. Macromol Rapid Commun 2024; 45:e2300474. [PMID: 37776170 DOI: 10.1002/marc.202300474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The development and synthesis of hydrogels for chemical and biosensing are of great value. Hydrogels can be tailored to its own physical structure, chemical properties, biocompatibility, and sensitivity to external stimuli when being used in a specific environment. Herein, hydrogels and their applications in chemical and biosensing are mainly covered. In particular, it is focused on the manner in which hydrogels serve as sensing materials to a specific analyte. Different types of responsive hydrogels are hence introduced and summarized. Researchers can modify different chemical groups on the skeleton of the hydrogels, which make them as good chemical and biosensing materials. Hydrogels have great application potential for chemical and biosensing in the biomedical field and some emerging fields, such as wearable devices.
Collapse
Affiliation(s)
- Haizheng Li
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunai Dai
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuandu Hu
- Department of Materials Science and Engineering, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
- Department of Physics, School of Physical Sciences and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
4
|
Feng L, Chen X, Cao M, Zhao S, Wang H, Chen D, Ma Y, Liu T, Wang N, Yuan Y. Decorating Channel Walls in Metal-Organic Frameworks with Crown Ethers for Efficient and Selective Separation of Radioactive Strontium(II). Angew Chem Int Ed Engl 2023; 62:e202312894. [PMID: 37743666 DOI: 10.1002/anie.202312894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Nuclear accidents and the improper disposal of nuclear wastes have led to serious environmental radioactive pollutions. The rational design of adsorbents for the highly efficient separation of strontium(II) is essential in treating nuclear waste and recovering radioactive strontium resources. Metal-organic frameworks (MOFs) are potential materials for the separation of aqueous metal ions owing to their designable structure and tunable functionality. Herein, a novel 3D MOF material MOF-18Cr6, in which 1D channels are formed using 18-crown-6-ether-containing ligands as channel walls, is fabricated for strontium(II) separation. In contrast to traditional MOFs designed by grafting functional groups in the framework pores, MOF-18Cr6 possesses regular 18-crown-6-ether cavities on the channel walls, which not only can transport and intake strontium(II) via the channels, but also prevent blockage of the channels after the binding of strontium(II). Consequently, the functional sites are fully utilized to achieve a high strontium(II) removal rate of 99.73 % in simulated nuclear wastewater. This study fabricates a highly promising adsorbent for the separation of aqueous radioactive strontium(II), and more importantly, can provide a new strategy for the rational design of high-performance MOF adsorbents for separating target substances from complex aqueous environments.
Collapse
Affiliation(s)
- Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Xuran Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Dan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| |
Collapse
|
5
|
Fang J, Zheng L, Liu Y, Peng Y, Yang Q, Huang Y, Zhang J, Luo L, Shen D, Tan Y, Lu X, Feng G. Smart G-quadruplex hydrogels: From preparations to comprehensive applications. Int J Biol Macromol 2023; 247:125614. [PMID: 37414320 DOI: 10.1016/j.ijbiomac.2023.125614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
In recent years, the accelerated development of G-quadruplexes and hydrogels has driven the development of intelligent biomaterials. Based on the excellent biocompatibility and special biological functions of G-quadruplexes, and the hydrophilicity, high-water retention, high water content, flexibility and excellent biodegradability of hydrogels, G-quadruplex hydrogels are widely used in various fields by combining the dual advantages of G-quadruplexes and hydrogels. Here, we provide a systematic and comprehensive classification of G-quadruplex hydrogels in terms of preparation strategies and applications. This paper reveals how G-quadruplex hydrogels skillfully utilize the special biological functions of G-quadruplexes and the skeleton structure of hydrogels, and expounds its applications in the fields of biomedicine, biocatalysis, biosensing and biomaterials. In addition, we deeply analyze the challenges in preparation, applications, stability and safety of G-quadruplex hydrogels, as well as potential future development directions.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiali Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dunkai Shen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuyan Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xuefen Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Zhou XL, Zhou CH, Gong JY, Yu QW, He Y, Ju XJ, Chu LY. Novel thermo and ion-responsive copolymers based on metallo-base pair directed host-guest complexation for highly selective recognition of Hg 2+ in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130610. [PMID: 37056001 DOI: 10.1016/j.jhazmat.2022.130610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
The development of materials with highly selective recognition towards Hg2+ is of great significance in environmental monitoring. Herein, a novel thermo-responsive copolymer with Hg2+ recognition property is prepared via thermally-initiated copolymerization of 5'-O-Acryloyl 5-methyl-uridine (APU) and N-isopropylacrylamide (NIPAM). The chemical structure and stimuli-sensitive properties of poly(N-isopropylacrylamide-co-5-methyl-uridine) (P(NIPAM-co-APU)) linear polymers and hydrogel are thoroughly investigated. At the supramolecular level, P(NIPAM-co-APU) linear polymers could respond to both temperature and Hg2+ stimuli with highly selective recognition towards Hg2+ over other 18 metal ion species (at least 5 fold difference) and common anions. Upon capturing Hg2+ by APU units as host metal receptors, the lower critical solution temperature (LCST) of P(NIPAM-co-APU, PNU-7 and PNU-11) linear polymers are significantly shifted more than 10 °C due to the formation of stable APU-Hg2+-APU directed host-guest complexes. Accordingly, at the macroscopic level, P(NIPAM-co-APU) hydrogel display selective and robust recognition of Hg2+ under optimum conditions, and its maximum Hg2+ uptake capacity was 33.1 mg g-1. This work provides a new option for Hg2+ recognition with high selectivity, which could be facilely integrated with other smart systems to achieve satisfactory detection of environmental Hg2+.
Collapse
Affiliation(s)
- Xing-Long Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jue-Ying Gong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan-Wei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610044, China.
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Tian XY, Sun MW, Wen GY, Cao M, Pan DW, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Ultrasensitive hydrogel grating detector for real-time continuous-flow detection of trace threat Pb 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130289. [PMID: 36345059 DOI: 10.1016/j.jhazmat.2022.130289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ultrasensitive real-time detection of trace Pb2+ in continuous flow is vital to effectively and timely eliminate the potential hazards to ecosystem health and sustainability. This work reports on a micro-structured smart hydrogel grating with ultra-sensitivity, high selectivity, good transparency and mechanical property for real-time detection of Pb2+ in continuous flow. The hydrogel grating possesses uniform surface relief microstructures with periodic nano-height ridges made of poly(acrylamide-co-benzo-18-crown-6-acrylamide) networks that crosslinked by tetra-arm star poly(ethylene glycol)acrylamide. The hydrogel grating with good optical transparency and mechanical property can change its height via selective host-guest complexation with Pb2+ to output a changed diffraction efficiency. Meanwhile, the periodic nano-ridges with large specific area benefit the contact with Pb2+ for fast Pb2+-induced height change. Thus, with such rationally designed molecular structures and surface relief microstructures, the hydrogel grating integrated in a glass-based mini-chip allows real-time detection of Pb2+ in continuous flow with ultra-sensitivity and high selectivity. The hydrogel grating detector can achieve ultralow detection limit (10-9 M Pb2+), fast response (2 min), and selective detection of Pb2+ from dozens of interfering ions even with high concentrations. This high-performance hydrogel grating detector is general and can be extended to detect many analytes due to the wide choice of responsive hydrogels, thus opening new areas for creating advanced smart detectors in analytical science.
Collapse
Affiliation(s)
- Xiao-Yu Tian
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng-Wei Sun
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guo-Yu Wen
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Min Cao
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Liang-Yin Chu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
8
|
A novel pH-Dependent sensor for recognition of strontium ions in water: A hierarchically structured mesoporous architectonics. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Smart polymeric materials with dynamically tunable physico-chemical characteristics in response to changes of environmental stimuli, have received considerable attention in myriad fields. The diverse combination of their micro-/nano-structural and molecular designs creates promising and exciting opportunities for exploiting advanced smart polymeric materials. Engineering micro-/nano-structures into smart polymeric materials with elaborate molecular design enables intricate coordination between their structures and molecular-level response to cooperatively realize smart functions for practical applications. In this review, recent progresses of smart polymeric materials that combine micro-/nano-structures and molecular design to achieve designed advanced functions are highlighted. Smart hydrogels, gating membranes, gratings, milli-particles, micro-particles and microvalves are employed as typical examples to introduce their design and fabrication strategies. Meanwhile, the key roles of interplay between their micro-/nano-structures and responsive properties to realize the desired functions for their applications are emphasized. Finally, perspectives on the current challenges and opportunities of micro-/nano-structured smart polymeric materials for their future development are presented.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
10
|
Peng C, Li X, Jiang P, Peng W, Tang J, Li L, Ye L, Pan S, Chen S. Thermoresponsive MXene composite system with high adsorption capacity for quick and simple removal of toxic metal ions from aqueous environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129740. [PMID: 35969954 DOI: 10.1016/j.jhazmat.2022.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
High-performance adsorption and easy-to-recycle property of adsorbents are desirable in wastewater treatment, and a suitably smart adsorbent with responsive phase separation capacity is promising in this regard. Herein, a thermoresponsive composite system is designed through the combination of transition metal carbides (MXene) and poly(N-isopropylacrylamide) (PNIPAM) for removal of toxic metal ions from water. As a thermoresponsive switch, the PNIPAM endows such composite system with superior thermoresponsiveness (i.e., gel-water phase separation) in water, which facilitates to the control of adsorption. The gel phase triggered by an elevated temperature (e.g., 40 °C) quickly adsorbs toxic metal ions, and then a solid-liquid extraction way is used to conveniently separated the gel phase from water phase for simple removal of toxic metal ions. A very high adsorption capacity (e.g., ~224 mg·g-1 for Cu2+) can be achieved due to the synergistic effects of the composite system. Moreover, the separated gel can be back to a redispersed state at low temperature (e.g., 20 °C), enabling its effective regeneration and recovery. Notably, the PNIPAM as a protective agent prevents the oxidation of MXene so as to retain good stability during the multiple adsorption/desorption cycles. This simple and smart adsorption strategy is great promising for water purification application.
Collapse
Affiliation(s)
- Chang Peng
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Xuezhi Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Peicheng Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Wei Peng
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Jianfeng Tang
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Ling Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China
| | - Lei Ye
- Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430071, PR China
| | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, PR China
| | - Shu Chen
- College of Chemistry and Materials Science, Hunan Agricultural University, Hunan 410128, PR China.
| |
Collapse
|
11
|
Chen S, Xie Y, Guo X, Sun D. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Li Y, Wei CW, Wang XJ, Gao SQ, Lin YW. Amino acid derivative-based Ln-metallohydrogels with multi-stimuli responsiveness and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120901. [PMID: 35077980 DOI: 10.1016/j.saa.2022.120901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Metallohydrogels and lanthanide (Ln) fluorescent materials have gained much attention recently. In this study, we designed and synthesized a facile gelator of a phenylalanine-based derivative containing an indazole group (namely IZF). It was found that IZF can self-assemble to form hydrogel at pH ≤ 7. Meanwhile, IZF and Tb3+/Eu3+ can co-assemble to generate IZF-Tb and IZF-Eu metallohydrogels with green and red fluorescence, respectively, at pH 8-11, with excellent multi-stimuli responsiveness. The bimetallic hydrogels of IZF-Tb/Eu exhibit different colors under UV light by adjusting the ratio of Tb3+ and Eu3+. Moreover, white light emission was achieved with IZF-Tb/Eu bimetallic gels through doping carbon dots (CDs) by tailoring the stoichiometric ratio of Ln-complex and CDs. Remarkably, IZF-Tb and IZF-Eu could be used as fluorescent inks with excellent stability. This study indicates that the amino acid derivative-based Ln-metallohydrogels are excellent candidates for constructing information storage and multiple anti-counterfeiting materials.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Human Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
13
|
Das R, Bej S, Murmu NC, Banerjee P. Selective recognition of ammonia and aliphatic amines by C-N fused phenazine derivative: A hydrogel based smartphone assisted ‘opto-electronic nose’ for food spoilage evaluation with potent anti-counterfeiting activity and a potential prostate cancer biomarker sensor. Anal Chim Acta 2022; 1202:339597. [DOI: 10.1016/j.aca.2022.339597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
|
14
|
Özbek O. Potentiometric PVC membrane ion–selective electrode for the determination of Sr(II) ions. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|