1
|
Yu Y, Hossain MM, Sikder R, Qi Z, Huo L, Chen R, Dou W, Shi B, Ye T. Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175573. [PMID: 39153609 DOI: 10.1016/j.scitotenv.2024.175573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Determining the occurrence of disinfection byproducts (DBPs) in drinking water distribution system (DWDS) remains challenging. Predicting DBPs using readily available water quality parameters can help to understand DBPs associated risks and capture the complex interrelationships between water quality and DBP occurrence. In this study, we collected drinking water samples from a distribution network throughout a year and measured the related water quality parameters (WQPs) and haloacetic acids (HAAs). 12 machine learning (ML) algorithms were evaluated. Random Forest (RF) achieved the best performance (i.e., R2 of 0.78 and RMSE of 7.74) for predicting HAAs concentration. Instead of using cytotoxicity or genotoxicity separately as the surrogate for evaluating toxicity associated with HAAs, we created a health risk index (HRI) that was calculated as the sum of cytotoxicity and genotoxicity of HAAs following the widely used Tic-Tox approach. Similarly, ML models were developed to predict the HRI, and RF model was found to perform the best, obtaining R2 of 0.69 and RMSE of 0.38. To further explore advanced ML approaches, we developed 3 models using uncertainty-based active learning. Our findings revealed that Categorical Boosting Regression (CAT) model developed through active learning substantially outperformed other models, achieving R2 of 0.87 and 0.82 for predicting concentration and the HRI, respectively. Feature importance analysis with the CAT model revealed that temperature, ions (e.g., chloride and nitrate), and DOC concentration in the distribution network had a significant impact on the occurrence of HAAs. Meanwhile, chloride ion, pH, ORP, and free chlorine were found as the most important features for HRI prediction. This study demonstrates that ML has the potential in the prediction of HAA occurrence and toxicity. By identifying key WQPs impacting HAA occurrence and toxicity, this research offers valuable insights for targeted DBP mitigation strategies.
Collapse
Affiliation(s)
- Ying Yu
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Water Resources Utilization and Protection, Xiamen city, Xiamen 361005, China
| | - Md Mahjib Hossain
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rabbi Sikder
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Zhenguo Qi
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixin Huo
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| | - Wenyue Dou
- Key Laboratory of Industrial Pollution Control and Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Baoyou Shi
- Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| |
Collapse
|
2
|
Guo X, Ji X, Liu Z, Feng Z, Zhang Z, Du S, Li X, Ma J, Sun Z. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. WATER RESEARCH 2024; 261:121991. [PMID: 38941679 DOI: 10.1016/j.watres.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Metals in the drinking water distribution system (DWDS) play an important role on the fate of disinfection by-products (DBPs). They can increase the formation of DBPs through several mechanisms, such as enhancing the proportion of reactive halogen species (RHS), catalysing the reaction between natural organic matter (NOM) and RHS through complexation, or by increasing the conversion of NOM into DBP precursors. This review comprehensively summarizes these complex processes, focusing on the most important metals (copper, iron, manganese) in DWDS and their impact on various DBPs. It organizes the dispersed 'metals-DBPs' experimental results into an easily accessible content structure and presents their underlying common or unique mechanisms. Furthermore, the practically valuable application directions of these research findings were analysed, including the toxicity changes of DBPs in DWDS under the influence of metals and the potential enhancement of generalization in DBP model research by the introduction of metals. Overall, this review revealed that the metal environment within DWDS is a crucial factor influencing DBP levels in tap water.
Collapse
Affiliation(s)
- Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Xiaoyue Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - ZiFeng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Du
- Institute of NBC Defense. PLA Army, P.O.Box1048, Beijing 102205 China
| | - Xueyan Li
- Suzhou University Science & Technology, School of Environmental Science & Engineering, Suzhou 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China.
| |
Collapse
|
3
|
Li H, Zhou B, Xu X, Huo R, Zhou T, Dong X, Ye C, Li T, Xie L, Pang W. The insightful water quality analysis and predictive model establishment via machine learning in dual-source drinking water distribution system. ENVIRONMENTAL RESEARCH 2024; 250:118474. [PMID: 38368920 DOI: 10.1016/j.envres.2024.118474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.
Collapse
Affiliation(s)
- Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baiqin Zhou
- Gansu Academy of Eco-environmental Sciences, Lanzhou, 730030, China; School of Municipal and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Xiaoyan Xu
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Ranran Huo
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Ting Zhou
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Xiaochen Dong
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Cheng Ye
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tian Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Dong B, Huang H, Wang C, Zhang X, Gao C, Su N, Shi D, Ren J. Analysis of the seasonal water quality variation at the hydraulic junction of a dual-source water distribution system. RSC Adv 2024; 14:17832-17842. [PMID: 38836169 PMCID: PMC11148534 DOI: 10.1039/d4ra01878h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The implementation of a dual-source water supply system offers an increased level of reliability in water provision; however, intricate hydraulic dynamics introduce apprehensions regarding water safety at the hydraulic junction. In this study, we gathered data of the water quality at the hydraulic junction of a dual-source water supply system (plant A and plant B, sampling site A10 was near plant A, and sampling site A12 was near plant B) for one year in Suzhou Industrial Park. Our findings indicated that seasonal variations and water temperature exerted significant influence on the composition and formation of disinfection byproducts (DBPs). Notably, during the warmer months spanning from June to September, the concentration of trihalomethanes was the highest at the hydraulic junction, whereas the concentration of residual chloride was the lowest. The analysis on DBPs revealed that more Br-containing precursors in water in plant A resulted in the accumulation of more Br-containing DBPs at A10, whereas the highest concentration of Cl-containing DBPs accumulated at A12. The analysis of the dissolved organic matter (DOM) composition indicated an increase in concentration at A10 and A12 compared with that in plant A and plant B. The highest concentration of humic acids was observed at A10, whereas A12 accumulated the highest concentration of aromatic proteins and microbial metabolites. Owing to the fluctuations in water consumption patterns at the hydraulic junction, the water quality was susceptible to variability, thereby posing an elevated risk. Consequently, extensive efforts are warranted to ensure the maintenance of water safety and quality at this critical interface.
Collapse
Affiliation(s)
- Bowen Dong
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Hui Huang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Chengyan Wang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Xiaolong Zhang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Chenyu Gao
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Nan Su
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Dayong Shi
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Jie Ren
- School of Environment, Harbin Institute of Technology Harbin 150090 China
| |
Collapse
|
5
|
Assefa E, Jabasingh A, Mulugeta E, Dessalegne M, Teju E. Impact of source water quality on total organic carbon and trihalomethane removal efficiency in a water treatment plant: A case study of Upper Awash, Ethiopia. JOURNAL OF WATER AND HEALTH 2024; 22:337-349. [PMID: 38421628 PMCID: wh_2024_276 DOI: 10.2166/wh.2024.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study addresses the limited understanding of factors affecting the efficiency of water treatment plants in reducing trihalomethane (THM) formation through total organic carbon (TOC) removal, highlighting significant challenges in improving treatment effectiveness. The aim of this study was to examine the influence of water quality on the efficiency of water treatment plants to remove TOC and reduce THM formation. Linear regression and correlation analyses were conducted to examine the relationship between water quality parameters and THM concentrations. The results showed that there was a negative relationship between turbidity, metals, and TOC concentration with TOC removal efficiency. Positive correlations were found between parameters and the formation of THMs in water. Of these parameters, water temperature was observed to have relatively less influence on THM formation. It was observed that seasonal variations in water quality affect the efficiency of TOC removal and THM content in treated water. THM levels in chlorinated water were found to be within the permissible range of the World Health Organization's drinking water quality guidelines. However, it is still important to maintain continuous monitoring and take measures to reduce THMs. The model demonstrated a strong correlation (R2 = 0.906) between predicted and measured THM values.
Collapse
Affiliation(s)
- Emeru Assefa
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia E-mail:
| | - Anuradha Jabasingh
- Chemical and Biochemical Engineering, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyobel Mulugeta
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Meseret Dessalegne
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| |
Collapse
|
6
|
Zhang T, Liao P, Fang L, Zhang D. Effect of booster disinfection on the prevalence of microbial antibiotic resistance and bacterial community in a simulated drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122902. [PMID: 37949160 DOI: 10.1016/j.envpol.2023.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.
Collapse
Affiliation(s)
- Tuqiao Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Pubin Liao
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Lei Fang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Future Water Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314000, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| | - Dongyang Zhang
- College of Civil Engineering and Architecture Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Ma X, Cheng J, Zhang P, Wu Y, Deng J, Dong F, Li X, Dietrich AM. Impact of boiling on chemical and physical processes for reduction of halomethanes, haloacetonitriles, and haloacetic acids in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167657. [PMID: 37806591 DOI: 10.1016/j.scitotenv.2023.167657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Tap water is boiled by families across the globe in their daily life for cooking food and beverages, as well as for controlling some chlorine-resistant organisms to improve the water quality. However, the effects of boiling methods (heating temperature, heating modes, open or closed containers) on water quality, in particular the reduction of disinfection byproducts (DBPs), are unclear. This comprehensive research demonstrates that during the heating process, trihalomethanes (THMs) were markedly decreased, haloacetonitriles (HANs) were drastically reduced and sometimes completely removed, while haloacetic acids (HAAs) were reduced the least. Heating to boiling in open containers reduced DBPs concentrations more than heating in the closed containers. Residual chlorine from 0.1 to 5.0 mg/L did not affect the removal of HANs, but could increase concentrations of HAAs likely due to reaction of organic matter with chlorine at elevated temperatures. THMs demonstrated good removal at 0.1-1 mg/L residual chlorine, but less removal at 5 mg/L residual chlorine. Sodium chloride (salt), often added as seasoning agent in the process of family cooking, was found to have little effect on the removal of DBPs during cooking and boiling. Compared with the toxicity of DBPs in tap water, boiling could greatly reduce both the cytotoxicity and carcinogenicity through removal of DBPs. Consequently, boiling of tap water had a significant effect on reducing human exposure to DBPs and their associated toxicities.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayi Cheng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peifeng Zhang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Wu
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Li JJ, Dai MJ, Xue JZ. Investigation on toxicity and mechanism to Daphnia magna for 14 disinfection by-products: Enzyme activity and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167059. [PMID: 37709078 DOI: 10.1016/j.scitotenv.2023.167059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Exposure to disinfection by-products (DBPs) has been found to induce a range of toxic effects in aquatic organism. Previous studies have consistently demonstrated that a majority of DBPs have the ability to induce in vivo toxicity in aquatic organisms. However, the impact of DBPs on the metabolic processes of Daphnia magna (D. magna) and the underlying molecular toxicity mechanisms are still not well understood. Therefore, we investigated the effects of 14 DBPs on two oxidative stress enzymes and malondialdehyde (MDA) levels in D. magna. Additionally, we employed molecular docking to simulate the toxicity of DBPs to D. magna at the molecular level. This comprehensive analysis allowed us to gain further insights into the toxicity of DBPs on D. magna. The results showed that among the aliphatic DBPs, the more bromine substituents, the lower the toxicity effect, and it's opposite in the aromatic DBPs. In the detection of oxidative stress level, catalase (CAT) enzyme and superoxide dismutase (SOD) enzyme in D. magna under compound stress showed a low increase and decrease with the increase of concentration. The level of MDA showed a positive correlation with the concentration. In the last, molecular docking simulations have shown promise in predicting the toxicity of DBPs and providing insights into their toxic effects to a certain extent, and the docking situation of P53 is slightly different. Hence, it is imperative to further regulate the presence of aromatic DBPs due to their pronounced toxic effects on D. magna, and these simulations can be complemented with actual experiments to enhance our understanding of the toxicity mechanisms of DBPs.
Collapse
Affiliation(s)
- Jin J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Min J Dai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jun Z Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
9
|
Li Q, Liu GH, Qi L, Wang H, Xian G. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165169. [PMID: 37400024 DOI: 10.1016/j.scitotenv.2023.165169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Chlorine-Mediated Electrochemical Advanced Oxidation (Cl-EAO) technology is a promising approach for ammonia removal from wastewater due to its numerous advantages, including small infrastructure, short processing time, easy operation, high security, and high nitrogen selectivity. This paper provides a review of the ammonia oxidation mechanisms, characteristics, and anticipated applications of Cl-EAO technology. The mechanisms of ammonia oxidation encompass breakpoint chlorination and chlorine radical oxidation, although the contributions of active chlorine, Cl, and ClO remain uncertain. This study critically examines the limitations of existing research and suggests that a combination of determining free radical concentration and simulating a kinetic model would help elucidate the contributions of active chlorine, Cl, and ClO to ammonia oxidation. Furthermore, this review comprehensively summarizes the characteristics of ammonia oxidation, including kinetic properties, influencing factors, products, and electrodes. The amalgamation of Cl-EAO technology with photocatalytic and concentration technologies has the potential to enhance ammonia oxidation efficiency. Future research should concentrate on clarifying the contributions of active chlorine, Cl, and ClO to ammonia oxidation, the production of chloramines and other byproducts, and the development of more efficient anodes for the Cl-EAO process. The main objective of this review is to enhance the understanding of the Cl-EAO process. The findings presented herein contribute to the advancement of Cl-EAO technology and provide a foundation for future studies in this field.
Collapse
Affiliation(s)
- Qiangang Li
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guang Xian
- Logistics Command Department, Army Logistics Academy, Chongqing 401331, China
| |
Collapse
|
10
|
Zhu H, Ruan Z, Wang H, Liu D, Tang H, Wang J. Trace determination of disinfection by-products in drinking water by cyclic ion chromatography with large-volume direct injection. RSC Adv 2023; 13:21550-21557. [PMID: 37469963 PMCID: PMC10353520 DOI: 10.1039/d3ra02471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
A novel cyclic ion chromatography (IC) system was developed for the simultaneous determination of trace disinfection by-products (DBPs) in drinking water. Five DBPs (chlorite, bromate, chlorate, dichloroacetic acid, and trichloroacetic acid) were sensitively determined by large-volume direct injection, and the interferences of dominant inorganic anions present in water were eliminated online through the cyclic determination of the target analytes. Under optimized conditions, the obtained limits of detection (LODs) were in the range of 0.18-1.91 μg L-1 based on a signal-to-noise ratio (S/N) of 3 and an injection volume of 1.0 mL. The RSDs for peak area and retention time were in the range of 0.13-1.03% and 1.24-4.29%, respectively. Satisfactory recoveries between 92.3% and 106.4% were obtained by adding three concentration gradients of standards to the drinking water samples. The proposed method has advantages such as high sensitivity, facile automation, and no sample pretreatment, and might be a promising approach for routine analysis.
Collapse
Affiliation(s)
- Haibao Zhu
- School of Public Health, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
| | - Han Wang
- School of Public Health, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
| | - Danhua Liu
- School of Public Health, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
| | - Hongfang Tang
- School of Public Health, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
| | - Jiahong Wang
- Center of Safety Evaluation and Research, Hangzhou Medical College Hangzhou Zhejiang 310013 P. R. China
| |
Collapse
|
11
|
Pérez-Albaladejo E, Pinteño R, Aznar-Luque MDC, Casado M, Postigo C, Porte C. Genotoxicity and endocrine disruption potential of haloacetic acids in human placental and lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162981. [PMID: 36963690 DOI: 10.1016/j.scitotenv.2023.162981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Chlorination of water results in the formation of haloacetic acids (HAAs) as major disinfection byproducts (DBPs). Previous studies have reported some HAAs species to act as cytotoxic, genotoxic, and carcinogenic. This work aimed at further exploring the toxicity potential of the most investigated HAAs (chloroacetic (CAA), bromoacetic (BAA), iodoacetic (IAA) acid) and HAAs species with high content of bromine (tribromoacetic acid (TBAA)), and iodine in their structures (chloroiodoacetic (CIAA) and diiodoacetic acid (DIAA)) to human cells. Novel knowledge was generated regarding cytotoxicity, oxidative stress, endocrine disrupting potential, and genotoxicity of these HAAs by using human placental and lung cells as in vitro models, not previously used for DBP assessment. IAA showed the highest cytotoxicity (EC50: 7.5 μM) and ability to generate ROS (up to 3-fold) in placental cells, followed by BAA (EC50: 20-25 μM and 2.1-fold). TBAA, CAA, DIAA, and CIAA showed no significant cytotoxicity (EC50 > 250 μM). All tested HAAs decreased the expression of the steroidogenic gene hsd17b1 up to 40 % in placental cells, and IAA and BAA (0.01-1 μM) slightly inhibited the aromatase activity. HAAs also induced the formation of micronuclei in A549 lung cells after 48 h of exposure. IAA and BAA showed a non-significant increase in micronuclei formation at low concentrations (1 μM), while BAA, CAA, CIAA and TBAA were genotoxic at exposure concentrations above 10 μM (100 μM in the case of DIAA). These results point to genotoxic and endocrine disruption effects associated with HAA exposure at low concentrations (0.01-1 μM), and the usefulness of the selected bioassays to provide fast and sensitive responses to HAA exposure, particularly in terms of genotoxicity and endocrine disruption effects. Further studies are needed to define thresholds that better protect public health.
Collapse
Affiliation(s)
| | - Raquel Pinteño
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Marta Casado
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada, 18071, Spain.
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Dong F, Zhu J, Li J, Fu C, He G, Lin Q, Li C, Song S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161497. [PMID: 36634528 DOI: 10.1016/j.scitotenv.2023.161497] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Disinfection is an effective process to inactivate pathogens in drinking water treatment. However, disinfection byproducts (DBPs) will inevitably form and may cause severe health concerns. Previous research has mainly focused on DBPs formation during the disinfection in water treatment plants. But few studies paid attention to the formation and transformation of DBPs in the water distribution system (WDS). The complex environment in WDS will affect the reaction between residual chlorine and organic matter to form new DBPs. This paper provides an overall review of DBPs formation and transformation in the WDS. Firstly, the occurrence of DBPs in the WDS around the world was cataloged. Secondly, the primary factors affecting the formation of DBPs in WDS have also been summarized, including secondary chlorination, pipe materials, biofilm, deposits and coexisting anions. Secondary chlorination and biofilm increased the concentration of regular DBPs (e.g., trihalomethanes (THMs) and haloacetic acids (HAAs)) in the WDS, while Br- and I- increased the formation of brominated DBPs (Br-DBPs) and iodinated DBPs (I-DBPs), respectively. The mechanism of DBPs formation and transformation in the WDS was systematically described. Aromatic DBPs could be directly or indirectly converted to aliphatic DBPs, including ring opening, side chain breaking, chlorination, etc. Finally, the toxicity of drinking water in the WDS caused by DBPs transformation was examined. This review is conducive to improving the knowledge gap about DBPs formation and transformation in WDS to better solve water supply security problems in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Wang X, Liang X, Guo X. Global distribution and potential risks of artificial sweeteners (ASs) with widespread contaminant in the environment: The latest advancements and future development. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Pang Z, Zhang P, Chen X, Dong F, Deng J, Li C, Liu J, Ma X, Dietrich AM. Occurrence and modeling of disinfection byproducts in distributed water of a megacity in China: Implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157674. [PMID: 35926603 DOI: 10.1016/j.scitotenv.2022.157674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Disinfection byproducts (DBPs) are initially formed in the process of chlorination in the drinking water treatment plants (DWTPs), then further formed in the distribution system due to the presence of residual chlorine and reactive organic matters. However, in China, DBPs are monitored in the effluent from the DWTPs, but less is known about concentrations of DBPs in tap water since they are usually monitored once per half a year. The smart water service system is establishing real-time monitoring of water indices, although DBPs are an urgent need, they are difficult to monitor in real-time due to their diversity and complicated detection methods. If the correlation between DBP concentration and routinely real-time monitored water quality parameters (e.g., pH value, residual chlorine, ammonia) can be evaluated, the concentration of DBPs can be predicted, which will strengthen the control of tap water safety. This article comprehensively assessed the physicochemical parameters and the occurrence of DBP formation in the tap water with an 18-month investigation in Z city (China). DBP formation in tap water of different seasons and different water sources were compared. Based on the relationship between DBPs and physicochemical parameters, linear prediction and nonlinear prediction models of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acids (HAAs) were established, and the accuracy of these models was verified by measured data. Finally, the toxicity and carcinogenic and non-carcinogenic health risk assessment of DBPs in tap water were analyzed.
Collapse
Affiliation(s)
- Zhen Pang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peifeng Zhang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|