1
|
Guo L, Han H, Du C, Ji X, Dai M, Dosta S, Zhou Y, Zhang C. From materials to applications: a review of research on artificial olfactory memory. MATERIALS HORIZONS 2024. [PMID: 39703995 DOI: 10.1039/d4mh01348d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Olfactory memory forms the basis for biological perception and environmental adaptation. Advancing artificial intelligence to replicate this biological perception as artificial olfactory memory is essential. The widespread use of various robotic systems, intelligent wearable devices, and artificial olfactory memories modeled after biological olfactory memory is anticipated. This review paper highlights current developments in the design and application of artificial olfactory memory, using examples from materials science, gas sensing, and storage systems. These innovations in gas sensing and neuromorphic technology represent the cutting edge of the field. They provide a robust scientific foundation for the study of intelligent bionic devices and the development of hardware architectures for artificial intelligence. Artificial olfaction will pave the way for future advancements in intelligent recognition by progressively enhancing the level of integration, understanding of mechanisms, and application techniques of machine learning algorithms.
Collapse
Affiliation(s)
- Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China.
| | - Haoran Han
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China.
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xin Ji
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China.
| | - Min Dai
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China.
| | - Sergi Dosta
- Departament Ciència de Materials I Química Física, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China.
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China.
| |
Collapse
|
2
|
Ma Z, Zhang Y, Yuan T, Fan Y, Wang X, Xue Z, Zhong A, Xu J. Tailoring crystal facets of metal-organic frameworks to enhance sensing performance for aromatic vapors detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136859. [PMID: 39721470 DOI: 10.1016/j.jhazmat.2024.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
It is well known that metals and metal oxides with different crystal facets exhibit varying sensitivity in gas sensors, but this strategy is rarely used in metal-organic frameworks (MOFs). Herein, we proved for the first time that Cu metal-organic with high energy crystal facets (Cu-MOF-74-300) shows a much higher sensitivity than the low energy crystal facets (Cu-MOF-74-110), with a up to 2 times response more than Cu-MOF-74-110 and ultra-low limit of detection (LOD) of 68 ppb to toluene vapors. In addition, this strategy was further demonstrated on MOF-14 and HKUST-1, which are also Cu-centered and exhibit clear recognition effects on benzene and xylene, respectively. Furthermore, the Cu-MOF-74-300 shows high selectivity (92 %) and excellent stability, with a minor reduction in response of less than 1.9 % after 6 months. Additionally, the sensitive mechanism is explored by DFT and GCMC methods. The simulations reveal that Cu-MOF-74 includes two adsorption sites, one is Cu site with adsorption enthalpy (ΔH) of -59.04 kJ/mol, another is the benzene ring site (ΔH is -67.50 kJ/mol) in the ligand. The difference in charge densities reveal that the Cu2+ and benzene ring on the surface of Cu-MOF-74-300 enables synergistic sensing, leading to more electron transfer in toluene than that of Cu-MOF-74-110 (only benzene ring site). Finally, based on the temperature-varying experiments, the experimental adsorption energy (-51.35 kJ/mol) was obtained by calculations. Combined quasi-in-situ XPS, implying Cu is the critical role to the improvement of Cu-MOF-74-300 sensitivity to toluene.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Tongwei Yuan
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Fan
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaowu Wang
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhenggang Xue
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiaqiang Xu
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Ni T, Dong Z, Xi K, Lu Y, Chang K, Ge C, Liu D, Yang Z, Cai H, Zhu Y. Nitrogen-Doped Carbon Quantum Dots Activated Dandelion-Like Hierarchical WO 3 for Highly Sensitive and Selective MEMS Sensors in Diabetes Detection. ACS Sens 2024. [PMID: 39365950 DOI: 10.1021/acssensors.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
High sensitivity, low concentration, and excellent selectivity are pronounced primary challenges for semiconductor gas sensors to monitor acetone from exhaled breath. In this study, nitrogen-doped carbon quantum dots (N-CQDs) with high reactivity were used to activate dandelion-like hierarchical tungsten oxide (WO3) microspheres to construct an efficient and stable acetone gas sensor. Benefiting from the synergistic effect of both the abundant active sites provided by the unique dandelion-like hierarchical structure and the high reaction potential generated by the sensitization of the N-CQDs, the resulting 16 wt % N-CQDs/WO3 sensor shows an ultrahigh response value (Ra/Rg = 74@1 ppm acetone), low detection limit (0.05 ppm), outstanding selectivity, and reliable stability to acetone at the optimum working temperature of 210 °C. Noteworthy that the N-CQDs facilitate the carrier migration and intensify the reaction between acetone and WO3 during the sensing process. Considering the above advantages, N-CQDs as a sensitizer to achieve excellent gas-sensitive properties of WO3 are a promising new strategy for achieving accurate acetone detection in real time and facilitating the development of portable human-exhaled gas sensors.
Collapse
Affiliation(s)
- Tianjun Ni
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhonghu Dong
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Kejie Xi
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yijia Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Kaiwen Chang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chunpo Ge
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dong Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhijun Yang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Haijie Cai
- Clinical Medical Center of Tissue Engineering and Regeneration, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongheng Zhu
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), International Research Center for Food and Health, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
4
|
He J, Chen S, Ma Z, Wang M, He Q. Spatial Identification of Mott-Schottky Effect at Electrocatalytic Pd/Metal Oxide Interfaces for the Oxygen Reduction Reaction. ACS NANO 2024; 18:24283-24294. [PMID: 39163576 DOI: 10.1021/acsnano.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
To elucidate the microstructure and charge transfer behavior at the interface of Pd/metal oxide semiconductor (MOS) catalysts and systematically explore the crucial role of the Mott-Schottky effect in the oxygen reduction reaction (ORR) electrocatalysis process, this study established a testing system for spatially identifying Mott-Schottky effects and electronic properties at Pd/MOS interfaces, leveraging highly sensitive Kelvin probe force microscopy (KPFM). This system enabled visualization and quantification of the surface potential difference and Mott-Schottky barrier height (ΦSBH) at the Pd/MOS heterojunction interfaces. Furthermore, a series of Pd/MOS Mott-Schottky catalysts were constructed based on differences in work functions between Pd and n-type MOS. The abundant oxygen vacancies in these catalysts facilitated the adsorption and activation of oxygen molecules. Notably, the intensity of the built-in electric field in the Pd/MOS Mott-Schottky catalysts was calculated through surface potential and zeta potential analysis, systematically correlating the Mott-Schottky effect at the heterojunction interface of Pd/MOS with ORR activity and kinetics. By comprehensively exploring the correlation between the Mott-Schottky effect and ORR performance in Pd/MOS catalysts using the KPFM testing system, this study provides necessary tools and approaches for a deep understanding of heterogeneous interface charge transfer mechanisms, as well as for optimizing catalyst design and enhancing ORR performance.
Collapse
Affiliation(s)
- Jing He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiyuan Chen
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhuang Ma
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
5
|
Tian K, Yang K, Ren X, Miao Y, Liu M, Su M, Wu J, Sun Y, Xu P. Improving Triethylamine-Sensing Performance of WO 3 Nanoplates through In Situ Heterojunction Construction. SENSORS (BASEL, SWITZERLAND) 2024; 24:5606. [PMID: 39275517 PMCID: PMC11397960 DOI: 10.3390/s24175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Surface engineering techniques can be used to develop high-performance gas sensing materials and advance the development of sensors. In this study, we improved the gas sensing performance of two-dimensional (2D) WO3 nanoplates by combining surface Zn modification and the in situ formation of ZnWO4/WO3 heterojunctions. Introducing Zn atoms by surface modification can reconstruct the atomic surface of 2D WO3 nanoplates, creating additional active sites. This allowed for the preparation of various types of ZnWO4/WO3 heterojunctions on the surface of the WO3 nanoplates, which improved the selectivity and sensitivity to the target gas triethylamine. The sensor exhibited good gas sensing performance for triethylamine even at low operating temperatures and strongly resisted humidity changes. The ZnWO4/WO3 material we prepared demonstrated a nearly threefold improvement in the triethylamine (TEA) response, with a gas sensing responsivity of 40.75 for 10 ppm of TEA at 250 °C. The sensor based on ZnWO4/WO3 has a limit of detection (LOD) for TEA of 200 ppb in practical measurements (its theoretical LOD is even as low as 31 ppb). The method of growing ZnWO4 on the surface of WO3 nanoplates using surface modification techniques to form surface heterojunctions differs from ordinary composites. The results suggest that the in situ construction of surface heterojunctions using surface engineering strategies, such as in situ modifying, is a practical approach to enhance the gas sensing properties and resistance to the humidity changes of metal oxide materials.
Collapse
Affiliation(s)
- Kuan Tian
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Kai Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xuening Ren
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuxin Miao
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengyao Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mingxing Su
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jiawen Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu'an Sun
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
6
|
Argüelles-Lucho P, Woo-García RM, García-González L, Pérez-Cuapio R, Hernández-Sebastian N, Herrera-May AL, López-Huerta F. Design of Acetaldehyde Gas Sensor Based on Piezoelectric Multilayer Microelectromechanical System Resonator. MICROMACHINES 2024; 15:962. [PMID: 39203613 PMCID: PMC11356069 DOI: 10.3390/mi15080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Acetaldehyde is a volatile organic compound that can cause damage at the cellular and genomic levels. The monitoring of acetaldehyde gas at low concentrations requires fast-response and low-cost sensors. Herein, we propose the design of an acetaldehyde gas sensor based on a low-cost Microelectromechanical System (MEMS) process. This sensor is formed by a single-clamped piezoelectric multilayer resonator (3000 × 1000 × 52.2 µm) with a simple operating principle and easy signal processing. This resonator uses a zinc oxide piezoelectric layer (1 µm thick) and a sensing film of titanium oxide (1 µm thick). In addition, the resonator uses a support layer of 304 stainless steel (50 µm thick) and two aluminum layers (100 nm thick). Analytical and Finite-Element Method (FEM) models are developed to predict the mechanical behavior of the gas sensor, considering the influence of the different layers of the resonator. The analytical results agree well with respect to the FEM model results. The gas sensor has a first bending frequency of 4722.4 Hz and a sensitivity of 8.22 kHz/g. A minimum detectable concentration of acetaldehyde of 102 ppm can be detected with the proposed sensor. This gas sensor has a linear behavior to detect different acetaldehyde concentrations using the frequency shifts of its multilayer resonator. The gas sensor design offers advantages such as small size, a light weight, and cost-efficient fabrication.
Collapse
Affiliation(s)
- Primavera Argüelles-Lucho
- Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico; (P.A.-L.); (R.M.W.-G.)
- Tecnológico Nacional de México, Campus Veracruz, Veracruz 91800, Veracruz, Mexico
| | - Rosa M. Woo-García
- Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico; (P.A.-L.); (R.M.W.-G.)
- Faculty of Electrical and Electronic Engineering, University Veracruzana, Boca del Río 94294, Veracruz, Mexico
| | - Leandro García-González
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico;
| | - Rene Pérez-Cuapio
- Faculty of Chemical Engineering, Benemerite Autonomous University of Puebla, Puebla 72570, Puebla, Mexico;
| | | | - Agustín L. Herrera-May
- Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico; (P.A.-L.); (R.M.W.-G.)
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Boca del Río 94294, Veracruz, Mexico;
| | - Francisco López-Huerta
- Faculty of Electrical and Electronic Engineering, University Veracruzana, Boca del Río 94294, Veracruz, Mexico
| |
Collapse
|
7
|
Zhang D, Luo N, Xue Z, Bai Y, Xu J. Hierarchically porous ZnO derived from zeolitic imidazolate frameworks for high-sensitive MEMS NO 2 sensor. Talanta 2024; 274:125995. [PMID: 38599115 DOI: 10.1016/j.talanta.2024.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Three-dimensional (3D) porous metal oxide nanomaterials with controllable morphology and well-defined pore size have attracted extensive attention in the field of gas sensing. Herein, hierarchically porous ZnO-450 was obtained simply by annealing Zeolitic Imidazolate Frameworks (ZIF-90) microcrystals at an optimal temperature of 450 °C, and the effect of annealing temperature on the formation of porous nanostructure was discussed. Then the as-obtained ZnO-450 was employed as sensing materials to construct a Micro-Electro-Mechanical System (MEMS) gas sensor for detecting NO2. The MEMS sensor based on ZnO-450 displays the excellent gas-sensing performances at a lower working temperature (190 °C), such as high response value (242.18% @ 10 ppm), fast response/recovery time (9/26 s) and ultralow limit of detection (35 ppb). The ZnO-450 sensor shows better sensing performance for NO2 detection than ZnO-based composites materials or commercial ZnO nanoparticles (NPs), which are attributed to its unique hierarchically structures with high porosity and larger surface area. This ZIFs driven strategy can be expected to pave a new pathway for the design of high-performance NO2 sensors.
Collapse
Affiliation(s)
- Dan Zhang
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China; Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158, Haikou, China
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China
| | - Yueling Bai
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China.
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Ma Z, Zhang Y, Xue Z, Fan Y, Wang L, Wang H, Zhong A, Xu J. Thermodynamically and Kinetically Enhanced Benzene Vapor Sensor Based on the Cu-TCPP-Cu MOF with Extremely Low Limit of Detection. ACS Sens 2024; 9:1906-1915. [PMID: 38565844 DOI: 10.1021/acssensors.3c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/μg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Fan
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Lingli Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - He Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
9
|
Li X, Fu L, Karimi-Maleh H, Chen F, Zhao S. Innovations in WO 3 gas sensors: Nanostructure engineering, functionalization, and future perspectives. Heliyon 2024; 10:e27740. [PMID: 38515674 PMCID: PMC10955316 DOI: 10.1016/j.heliyon.2024.e27740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
This review critically examines the progress and challenges in the field of nanostructured tungsten oxide (WO3) gas sensors. It delves into the significant advancements achieved through nanostructuring and composite formation of WO3, which have markedly improved sensor sensitivity for gases like NO2, NH3, and VOCs, achieving detection limits in the ppb range. The review systematically explores various innovative approaches, such as doping WO3 with transition metals, creating heterojunctions with materials like CuO and graphene, and employing machine learning models to optimize sensor configurations. The challenges facing WO3 sensors are also thoroughly examined. Key issues include cross-sensitivity to different gases, particularly at higher temperatures, and long-term stability affected by factors like grain growth and volatility of dopants. The review assesses potential solutions to these challenges, including statistical analysis of sensor arrays, surface functionalization, and the use of novel nanostructures for enhanced performance and selectivity. In addition, the review discusses the impact of ambient humidity on sensor performance and the current strategies to mitigate it, such as composite materials with humidity shielding effects and surface functionalization with hydrophobic groups. The need for high operating temperatures, leading to higher power consumption, is also addressed, along with possible solutions like the use of advanced materials and new transduction principles to lower temperature requirements. The review concludes by highlighting the necessity for a multidisciplinary approach in future research. This approach should combine materials synthesis, device engineering, and data science to develop the next generation of WO3 sensors with enhanced sensitivity, ultrafast response rates, and improved portability. The integration of machine learning and IoT connectivity is posited as a key driver for new applications in areas like personal exposure monitoring, wearable diagnostics, and smart city networks, underlining WO3's potential as a robust gas sensing material in future technological advancements.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Chengdu, PR China
- School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
10
|
Zhou S, Zhao Y, Xun Y, Wei Z, Yang Y, Yan W, Ding J. Programmable and Modularized Gas Sensor Integrated by 3D Printing. Chem Rev 2024; 124:3608-3643. [PMID: 38498933 DOI: 10.1021/acs.chemrev.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhicheng Wei
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yong Yang
- Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
11
|
Zheng Q, Wang T, Zhang G, Zhang X, Huang C, Cheng X, Huo L, Cui X, Xu Y. Synergy of Active Sites and Charge Transfer in Branched WO 3/W 18O 49 Heterostructures for Enhanced NO 2 Sensing. ACS Sens 2024; 9:1391-1400. [PMID: 38364864 DOI: 10.1021/acssensors.3c02443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Achieving reliable detection of trace levels of NO2 gas is essential for environmental monitoring and protection of human health protection. Herein, a thin-film gas sensor based on branched WO3/W18O49 heterostructures was fabricated. The optimized WO3/W18O49 sensor exhibited outstanding NO2 sensing properties with an ultrahigh response value (1038) and low detection limit (10 ppb) at 50 °C. Such excellent sensing performance could be ascribed to the synergistic effect of accelerated charge transfer and increased active sites, which is confirmed by electrochemical impedance spectroscopy and temperature-programmed desorption characterization. The sensor exhibited an excellent detection ability to NO2 under different air quality conditions. This work provides an effective strategy for constructing WO3/W18O49 heterostructures for developing NO2 gas sensors with an excellent sensing performance.
Collapse
Affiliation(s)
- Qiuyue Zheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Tingting Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- Postdoctoral Workstation of Zhejiang Fomay Technology Co., Ltd., Linhai 317099, Zhejiang, China
| | - Guanyi Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinlei Cui
- Key Laboratory of Environmental Catalysis and Energy Storage Materials, Suihua University, Suihua 152061, China
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
12
|
Chen SS, Chen XX, Yang TY, Chen L, Guo Z, Huang XJ. Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132940. [PMID: 37951172 DOI: 10.1016/j.jhazmat.2023.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The identification and determination of benzene, toluene, ethylbenzene, and xylene (BTEX) has always been a formidable challenge for chemiresistive metal oxide sensors owing to their structural similarity and low reactivity, as well as the intrinsic cross sensitivity of metal oxides. In this paper, a temperature-modulated sensing strategy is proposed for the identification and determination of BTEX using a high-performance chemiresistive sensor. Ultrafine Au nanoparticle-loaded porous ZnO nanobelts as sensing materials were synthesized through an exchange reaction followed by thermal oxidation, which exhibited high response toward BTEX. Under dynamic modulation of working temperature, the distinguishable characteristic curves were demonstrated for each BTEX compound. By employing the linear discrimination and convolutional neural network analyses, highly effective BTEX identification was achieved among all investigated volatile organic compounds, which is difficult to realize for single chemiresistive sensors at constant working temperatures. Furthermore, quantitative analysis of BTEX concentrations was accomplished by establishing the relationship between concentration and response at specific points on their response curves. This developed strategy is expected to pave a new way for constructing highly sensitive gas sensors for the identification and analysis of hazardous gases, thereby enhancing their applicability in environmental monitoring.
Collapse
Affiliation(s)
- Shun-Shun Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Xu-Xiu Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Tian-Yu Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
13
|
Mashhadian A, Jian R, Tian S, Wu S, Xiong G. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications. MICROMACHINES 2023; 15:42. [PMID: 38258161 PMCID: PMC10819441 DOI: 10.3390/mi15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Sensors play vital roles in industry and healthcare due to the significance of controlling the presence of different substances in industrial processes, human organs, and the environment. Electrochemical sensors have gained more attention recently than conventional sensors, including optical fibers, chromatography devices, and chemiresistors, due to their better versatility, higher sensitivity and selectivity, and lower complexity. Herein, we review transition metal carbides (TMCs) and transition metal oxides (TMOs) as outstanding materials for electrochemical sensors. We navigate through the fabrication processes of TMCs and TMOs and reveal the relationships among their synthesis processes, morphological structures, and sensing performance. The state-of-the-art biological, gas, and hydrogen peroxide electrochemical sensors based on TMCs and TMOs are reviewed, and potential challenges in the field are suggested. This review can help others to understand recent advancements in electrochemical sensors based on transition metal oxides and carbides.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
14
|
Li P, Feng B, Feng Y, Song G, Cheng X, Deng Y, Wei J. Synthesis of Mesoporous Lanthanum-Doped SnO 2 Spheres for Sensitive and Selective Detection of the Glutaraldehyde Disinfectant. ACS Sens 2023; 8:3723-3732. [PMID: 37610721 DOI: 10.1021/acssensors.3c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glutaraldehyde disinfectant has been widely applied in aquaculture, farming, and medical treatment. Excessive concentrations of glutaraldehyde in the environment can lead to serious health hazards. Therefore, it is extremely important to develop high-performance glutaraldehyde sensors with low cost, high sensitivity, rapid response, fabulous selectivity, and low limit of detection. Herein, mesoporous lanthanum (La) doped SnO2 spheres with high specific surface area (52-59 m2 g-1), uniform mesopores (with a pore size concentrated at 5.7 nm), and highly crystalline frameworks are designed to fabricate highly sensitive gas sensors toward gaseous glutaraldehyde. The mesoporous lanthanum-doped SnO2 spheres exhibit excellent glutaraldehyde-sensing performance, including high response (13.5@10 ppm), rapid response time (28 s), and extremely low detection limit of 0.16 ppm. The excellent sensing performance is ascribed to the high specific surface area, high contents of chemisorbed oxygen species, and lanthanum doping. DFT calculations suggest that lanthanum doping in the SnO2 lattice can effectively improve the adsorption energy toward glutaraldehyde compared to pure SnO2 materials. Moreover, the fabricated gas sensors can effectively detect commercial glutaraldehyde disinfectants, indicating a potential application in aquaculture, farming, and medical treatment.
Collapse
Affiliation(s)
- Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Bingxi Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Guoxin Song
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P.R. China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P.R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P.R. China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
15
|
Cai H, Luo N, Wang X, Guo M, Li X, Lu B, Xue Z, Xu J. Kinetics-Driven Dual Hydrogen Spillover Effects for Ultrasensitive Hydrogen Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302652. [PMID: 37376839 DOI: 10.1002/smll.202302652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Palladium (Pd)-modified metal oxide semiconductors (MOSs) gas sensors often exhibit unexpected hydrogen (H2 ) sensing activity through a spillover effect. However, sluggish kinetics over a limited Pd-MOS surface seriously restrict the sensing process. Here, a hollow Pd-NiO/SnO2 buffered nanocavity is engineered to kinetically drive the H2 spillover over dual yolk-shell surface for the ultrasensitive H2 sensing. This unique nanocavity is found and can induce more H2 absorption and markedly improve kinetical H2 ab/desorption rates. Meanwhile, the limited buffer-room allows the H2 molecules to adequately spillover in the inside-layer surface and thus realize dual H2 spillover effect. Ex situ XPS, in situ Raman, and density functional theory (DFT) analysis further confirm that the Pd species can effectively combine H2 to form Pd-H bonds and then dissociate the hydrogen species to NiO/SnO2 surface. The final Pd-NiO/SnO2 sensors exhibit an ultrasensitive response (0.1-1000 ppm H2 ) and low actual detection limit (100 ppb) at the operating temperature of 230 °C, which surpass that of most reported H2 sensors.
Collapse
Affiliation(s)
- Haijie Cai
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Na Luo
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xiaowu Wang
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Mengmeng Guo
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojie Li
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Bo Lu
- Instrumental Analysis and Research Center of Shanghai University, Shanghai, 200444, PR China
| | - Zhenggang Xue
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jiaqiang Xu
- Department of Physics, Department of Chemistry, NEST lab, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
16
|
Luo N, Cai H, Lu B, Xue Z, Xu J. Pt-functionalized Amorphous RuO x as Excellent Stability and High-activity Catalysts for Low Temperature MEMS Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300006. [PMID: 37086145 DOI: 10.1002/smll.202300006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The unsaturated coordination and abundant active sites endow amorphous metals with tremendous potential in improving metal oxide semiconductors' gas-sensing properties. However, the amorphous materials maintain the metastable status and easily transfer into the lower-active crystals during the gas-sensing process at high working temperatures, significantly limiting their further applications. Here, a bimetal amorphous PtRu catalyst is developed by accurately regulating the introduction of Pt species into amorphous RuOx supports to realize the highly active and stable H2 S gas-sensing detection. It is found that incorporation of low-concentration Pt species can effectively maintain the amorphous state of initial RuOx and delay the crystallization temperature as high as 100 °C. Further, ex situ XPS and in situ Raman spectroscopy analysis confirm that active Pt species can facilitate H2 S adsorption by strong Pt-S coordination and dissociate the sulfur species to the surrounding support, which contribute to the chemisorption and sensitization of H2 S. Meanwhile, electron transport at the interface between Pt, RuOx and ZnO further activates the reaction process at the surface of the gas-sensitive material. The final PtRu-modified ZnO (PtRu/ZnO) sensor enables the detection of H2 S in the ultra-low concentration range of 15-2000 ppb with remarkable stability.
Collapse
Affiliation(s)
- Na Luo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - HaiJie Cai
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Bo Lu
- Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenggang Xue
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaqiang Xu
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
17
|
Liu H, Kong J, Dong Z, Zhao Y, An B, Dong J, Xu J, Wang X. Preparation of MOF-derived ZnO/Co 3O 4 nanocages and their sensing performance toward H 2S. Phys Chem Chem Phys 2023. [PMID: 37378864 DOI: 10.1039/d3cp02310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We report a type of micro-electro-mechanical system (MEMS) H2S gas sensors with excellent sensing performance at the ppb level (lowest detection limit is 5 ppb). The sensors were fabricated with ZnO/Co3O4 sensing materials derived from Zn/Co-MOFs by annealing at a suitable temperature of 500 °C. ZnO/Co3O4-500 exhibits the highest response when exposed to 10 ppb H2S gas at 120 °C, and the response/recovery times are 10 s/21 s. Moreover, it exhibits outstanding selectivity, long-term stability (retained 95% response after 45 days), and moisture resistance (only a minor fluctuation of 2% even at 90% RH). This can be ascribed to the fact that ZnO/Co3O4-500 has regular morphology, abundant oxygen vacancies (52.8%) and high specific surface area (96.5 m2 g-1). This work provides not only a high performance H2S MEMS gas sensor but also a systematic study of the effect of the annealing temperature on the sensing performance of ZnO/Co3O4 sensing materials derived from bimetal organic frameworks.
Collapse
Affiliation(s)
- Han Liu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiawei Kong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhe Dong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongmei Zhao
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Baoli An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Junping Dong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Liu F, Song H, Wu L, Zhao J, Yao X, Fu K, Jin Z, Liu J, Wang F, Wang Z. Excellent NO2 gas sensor based on the oxygen inhibiting effect of Ni3+-doped WO3. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
19
|
Li C, Choi PG, Masuda Y. Large-lateral-area SnO 2 nanosheets with a loose structure for high-performance acetone sensor at the ppt level. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131592. [PMID: 37167866 DOI: 10.1016/j.jhazmat.2023.131592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Gas sensors with high sensitivity and high selectivity are required in practical applications to distinguish between target molecules in the detection of volatile organic compounds, real-time security alerts, and clinical diagnostics. Semiconducting tin oxide (SnO2) is highly regarded as a gas-sensing material due to its exceptional responsiveness to changes in gaseous environments and outstanding chemical stability. Herein, we successfully synthesized a large-lateral-area SnO2 nanosheet with a loose structure as a gas sensing material by a one-step facile aqueous solution process without a surfactant or template. The SnO2 sensor exhibited a remarkable sensitivity (Ra/Rg = 1.33) at 40 ppt for acetone, with a theoretical limit of detection of 1.37 ppt, which is the lowest among metal oxide semiconductor-based gas sensors. The anti-interference ability of acetone was higher than those of pristine SnO2 and commercial sensors. These sensors also demonstrated perfect reproducibility and long-term stability of 100 days. The ultrasensitive response of the SnO2 nanosheets toward acetone was attributed to the specific loose large lateral area structure, small grain size, and metastable (101) crystal facets. Considering these advantages, SnO2 nanosheets with larger lateral area sensors have great potential for the detection and monitoring of acetone.
Collapse
Affiliation(s)
- Chunyan Li
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan
| | - Pil Gyu Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan.
| |
Collapse
|
20
|
Xing X, Li Z, Zhao X, Tian Y, Chen X, Lang X, Yang D. Two-dimensional Aluminum Oxide Nanosheets Decorated with Palladium Oxide Nanodots for Highly Stable and Selective Hydrogen Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208026. [PMID: 37013451 DOI: 10.1002/smll.202208026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/21/2023] [Indexed: 06/19/2023]
Abstract
Hydrogen (H2 ) sensing materials such as semiconductor metal oxides may suffer from poor long-term stability against humidity and unsatisfactory selectivity against other interfering gases. To address the above issues, highly stable and selective H2 sensing built with palladium oxide nanodots decorating aluminum oxide nanosheets (PdO NDs//Al2 O3 NSs) has been achieved via combined template synthesis, photochemical deposition, and oxidation. Typically, the PdO NDs//Al2 O3 NSs are observed with thin NSs (≈17 nm thick) decorated with nanodots (≈3.3 nm in diameter). Beneficially, the sensor prototypes built with PdO NDs//Al2 O3 NSs show excellent long-term stability for 278 days, high selectivity against interfering gases, and outstanding stability against humidity at 300 °C. Remarkably, the sensor prototypes enable detection of a wide-range of 20 ppm - 6 V/V% H2 , and the response and recovery times are ≈5 and 16 s to 1 V/V% H2 , respectively. Theoretically, the heterojunctions of PdO NDs-Al2 O3 NSs with a large specific surface ratio and Al2 O3 NSs as the support exhibit excellent stability and selective H2 sensing. Practically, a sensing device integrated with the PdO NDs//Al2 O3 NSs sensor prototype is simulated for detecting H2 with reliable sensing response.
Collapse
Affiliation(s)
- Xiaxia Xing
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenxu Li
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xinhua Zhao
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yingying Tian
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyu Chen
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyan Lang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Dachi Yang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education and Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
21
|
Xie S, Zhao C, Shen J, Wei J, Liu H, Pan Y, Zhao Y, Zhu Y. Hierarchical Flower-like WO 3 Nanospheres Decorated with Bimetallic Au and Pd for Highly Sensitive and Selective Detection of 3-Hydroxy-2-butanone Biomarker. ACS Sens 2023; 8:728-738. [PMID: 36696471 DOI: 10.1021/acssensors.2c02257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Listeria monocytogenes, which is abundant in environment, can lead to many kinds of serious illnesses and even death. Nowadays, indirectly detecting the metabolite biomarker of L. monocytogenes, 3-hydroxy-2-butanone, has been verified to be an effective way to evaluate the contamination of L. monocytogenes. However, this detection approach is still limited by sensitivity, selectivity, and ppb-level detection limit. Herein, low-cost and highly sensitive and selective 3-hydroxy-2-butanone sensors have been proposed based on the bimetallic AuPd decorated hierarchical flower-like WO3 nanospheres. Notably, the 1.0 wt % AuPd-WO3 based sensors displayed the highest sensitivity (Ra/Rg = 84 @ 1 ppm) at 250 °C. In addition, the sensors showed outstanding selectivity, rapid response/recovery (8/4 s @ 10 ppm), and low detection limit (100 ppb). Furthermore, the evaluation of L. monocytogenes with high sensitivity and specificity has been achieved using 1.0 wt % AuPd-WO3 based sensors. Such a marvelous sensing performance benefits from the synergistic effect of bimetallic AuPd nanoparticles, which lead to thicker electron depletion layer and increased adsorbed oxygen species. Meanwhile, the unique hierarchical nanostructure of the flower-like WO3 nanospheres benefits the gas-sensing performance. The AuPd-WO3 nanosphere-based sensors exhibit a particular and highly selective method to detect 3-hydroxy-2-butanone, foreseeing a feasible route for the rapid and nondestructive evaluation of foodborne pathogens.
Collapse
Affiliation(s)
- Siqi Xie
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Cheng Zhao
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Jiabin Shen
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haiquan Liu
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
22
|
Sriram S, Parne SR, Pothukanuri N, Joshi D, Edla DR. Facile Synthesis of Pure and Cr-Doped WO 3 Thin Films for the Detection of Xylene at Room Temperature. ACS OMEGA 2022; 7:47796-47805. [PMID: 36591164 PMCID: PMC9798732 DOI: 10.1021/acsomega.2c05589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
This paper focused on the preparation of pure and Cr-doped tungsten trioxide (WO3) thin films using the spray pyrolysis method. Different techniques were adopted to analyze these films' structural and morphological properties. The X-ray detection analysis showed that the average crystallite size of the WO3-nanostructured thin films increased as the Cr doping concentration increased. The atomic force microscopy results showed that the root-mean-square roughness of the films increased with Cr doping concentration up to 3 wt % and then decreased. The increased roughness is favorable for gas-sensing applications. Surface morphology and elemental analysis of the films were studied by field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. The 3 wt % Cr-WO3 has a large nanoflake-like structure with high surface roughness and porous morphology. Gas-sensing characteristics of undoped and Cr-doped WO3 thin films were investigated with various gases at room temperature. The results showed that 3 wt % Cr-doped WO3 film performed the maximum response toward 50 ppm of xylene with excellent selectivity at room temperature. We believe that increased lattice defects, surface morphology, and roughness due to Cr doping in the WO3 crystal matrix might be responsible for increased xylene sensitivity.
Collapse
Affiliation(s)
- Srinivasa
Rao Sriram
- Department
of Applied Sciences, National Institute
of Technology-Goa, Ponda403401, India
| | - Saidi Reddy Parne
- Department
of Applied Sciences, National Institute
of Technology-Goa, Ponda403401, India
| | - Nagaraju Pothukanuri
- Nanosensor
Research Laboratory, CMR Technical Campus, Kandlakoya, Medchal, Hyderabad501401, India
- Sreenidhi
University, Ghatkesar, Hyderabad, Telangana501301, India
| | - Dhananjay Joshi
- Department
of Physics, Indian Institute of Science
Education and Research Mohali, Mohali140306, India
| | - Damodar Reddy Edla
- Department
of Computer Science, National Institute
of Technology-Goa, Ponda403401, India
| |
Collapse
|
23
|
Zhu LY, Yuan K, Li ZC, Miao XY, Wang JC, Sun S, Devi A, Lu HL. Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. J Colloid Interface Sci 2022; 622:156-168. [DOI: 10.1016/j.jcis.2022.04.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
24
|
Li M, Xu W, Jiang R, Du M, Zhang L, Yang S, Wang S, Cao J. Constructing ZnCo2O4 hierarchical porous architectures for enhanced xylene gas detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Abstract
There is an increasing need for the development of low-cost and highly sensitive gas sensors for environmental, commercial, and industrial applications in various areas, such as hazardous gas monitoring, safety, and emission control in combustion processes. Considering this, resistive-based gas sensors using metal oxide semiconductors (MOSs) have gained special attention owing to their high sensing performance, high stability, and low cost of synthesis and fabrication. The relatively low final costs of these gas sensors allow their commercialization; consequently, they are widely used and available at low prices. This review focuses on the important MOSs with different morphologies, including quantum dots, nanowires, nanofibers, nanotubes, hierarchical nanostructures, and other structures for the fabrication of resistive gas sensors.
Collapse
|
26
|
Cai H, Luo N, Hu Q, Xue Z, Wang X, Xu J. Multishell SnO 2 Hollow Microspheres Loaded with Bimetal PdPt Nanoparticles for Ultrasensitive and Rapid Formaldehyde MEMS Sensors. ACS Sens 2022; 7:1484-1494. [PMID: 35482555 DOI: 10.1021/acssensors.2c00228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-cost and real-time formaldehyde (HCHO) monitoring is of great importance due to its volatility, extreme toxicity, and ready accessibility. In this work, a low-cost and integrated microelectromechanical system (MEMS) HCHO sensor is developed based on SnO2 multishell hollow microspheres loaded with a bimetallic PdPt (PdPt/SnO2-M) sensitizer. The MEMS sensor exhibits a high sensitivity to HCHO ((Ra/Rg - 1) % = 83.7 @ 1 ppm), ultralow detection limit of 50 ppb, and ultrashort response/recovery time (5.0/7.0 s @ 1 ppm). These excellent HCHO sensing properties are attributed to its unique multishell hollow structure with a large and accessible surface, abundant interfaces, suitable mesoporous structure, and synergistic catalytic effects of bimetal PdPt. The well-defined multishell hollow structure also shows fascinating capacities as good hosts for noble metal loading. Therefore, PdPt bimetallic nanoparticles can be employed to construct a synergistic sensitizer with a high content and good dispersity on this multishell hollow structure, further exhibiting a reduced working temperature and ultrasensitive detection of HCHO. This PdPt/SnO2-M-based MEMS sensor presents a unique and highly sensitive means to detect HCHO, establishing its great promise for potential application in environmental monitoring.
Collapse
Affiliation(s)
- Haijie Cai
- NEST Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Na Luo
- NEST Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaohong Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
27
|
Al-Okby MFR, Neubert S, Roddelkopf T, Thurow K. Mobile Detection and Alarming Systems for Hazardous Gases and Volatile Chemicals in Laboratories and Industrial Locations. SENSORS (BASEL, SWITZERLAND) 2021; 21:8128. [PMID: 34884132 PMCID: PMC8662412 DOI: 10.3390/s21238128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are significant to keep the safety conditions for the people and life forms who are work in and live around these places. In this paper, we investigate the available mobile detection and alarming systems for toxic, hazardous gases and volatile chemicals, especially in the laboratory environment. We included papers from January 2010 to August 2021 which may have the newest used sensors technologies and system components. We identified (236) papers from Clarivate Web of Science (WoS), IEEE, ACM Library, Scopus, and PubMed. Paper selection has been done based on a fast screening of the title and abstract, then a full-text reading was applied to filter the selected papers that resulted in (42) eligible papers. The main goal of this work is to discuss the available mobile hazardous gas detection and alarming systems based on several technical details such as the used gas detection technology (simple element, integrated, smart, etc.), sensor manufacturing technology (catalytic bead, MEMS, MOX, etc.) the sensor specifications (warm-up time, lifetime, response time, precision, etc.), processor type (microprocessor, microcontroller, PLC, etc.), and type of the used communication technology (Bluetooth/BLE, Wi-Fi/RF, ZigBee/XBee, LoRa, etc.). In this review, attention will be focused on the improvement of the detection and alarming system of hazardous gases with the latest invention in sensors, processors, communication, and battery technologies.
Collapse
Affiliation(s)
- Mohammed Faeik Ruzaij Al-Okby
- Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Kufa 54003, Iraq
- Center for Life Science Automation (Celisca), University of Rostock, 18119 Rostock, Germany;
| | - Sebastian Neubert
- Institute of Automation, University of Rostock, 18119 Rostock, Germany; (S.N.); (T.R.)
| | - Thomas Roddelkopf
- Institute of Automation, University of Rostock, 18119 Rostock, Germany; (S.N.); (T.R.)
| | - Kerstin Thurow
- Center for Life Science Automation (Celisca), University of Rostock, 18119 Rostock, Germany;
| |
Collapse
|