1
|
Yan M, Wang X, Zhao Y, Bai Q, Ma S, Bo C, Ou J. Design and fabrication of acorn-like Janus molecularly imprinted materials for highly specific separation and enrichment of oxytetracycline from restaurant oily wastewater. Talanta 2025; 281:126898. [PMID: 39288587 DOI: 10.1016/j.talanta.2024.126898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/19/2024]
Abstract
Molecularly imprinted polymer (MIP) is dedicated to the adsorption of target substances in the aqueous phase, but ignores the adsorption in a more complex environment (oily wastewater). In order to explore the application field of existing MIPs, acorn-like Janus particles were fabricated by photo-initiated seed swelling polymerization. A novel amphiphilic Janus-MIP was prepared with the acorn-like Janus particles as matrix, methacrylic acid, ethylene dimethacrylate and oxytetracycline (OTC) as functional monomers, crosslinking agents and template molecules via surface initiated-atom transfer radical polymerization (SI-ATRP). For comparison, the poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EDMA)) microspheres were also utilized as the matrix to prepare common spherical-MIP. The adsorption capacity of Janus-MIP for OTC was 23.8 mg g-1 in oil-water system, while the adsorption capacity of spherical-MIP for OTC was only 12.6 mg g-1 in the same system. At the same time, through high performance liquid chromatography (HPLC) analysis, Janus-MIP can specifically recognize and adsorb trace OTC in restaurant oily wastewater samples, and the proposed method exhibited a lower limit of detection (LOD, 3 ng mL-1) and a higher OTC recovery rate (94.2 %-98.4 %). This work demonstrated great potential for the detection and control of OTC contamination from real samples in an oil-water mixed environment.
Collapse
Affiliation(s)
- Mingjia Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xiaoqiong Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Yashuai Zhao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Qingyan Bai
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
2
|
Ding S, Wu D. Comprehensive analysis of compost maturity differences across stages and materials with statistical models. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 193:250-260. [PMID: 39675299 DOI: 10.1016/j.wasman.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Aerobic composting is an environmentally friendly and effective approach to treating organic solid waste. The variability in material composition introduces complex interactions between environmental factors and materials, which in turn affects compost maturity. This study uses multiple statistical analyses to systematically compare key indicators across composting processes for kitchen waste, livestock manure, and sludge. The results show that material type and composting stage have a significant impact on compost maturity (p < 0.001). High-precision modeling (R2 > 0.90) was achieved using a Stacking model on the composting dataset, with interpretability analysis highlighting the important roles of temperature, moisture content, and nitrogen content across different composting materials. The combined effects of environmental and material changes jointly influence the composting progression. In kitchen waste composting, strong interactions between multiple indicators were observed, while moisture shifts in livestock manure and sludge composting primarily influenced compost maturity by promoting decomposition and enhancing nitrogen retention, respectively. Partial dependence analysis quantified the relationships between key indicators and compost maturity scores. These findings offer a scientific basis for identifying key factors and optimization paths in various composting processes, supporting the development of more effective composting strategies.
Collapse
Affiliation(s)
- Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Rong L, Wu L, Zong L, Wang W, Xiao Y, Yang C, Pan H, Zou X. Evolution of the Black solider fly larvae gut antibiotic resistome during kitchen waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135878. [PMID: 39321479 DOI: 10.1016/j.jhazmat.2024.135878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Kitchen waste (KW) is an important reservoir of antibiotic resistance genes (ARGs). Black solider fly larvae (BSFL) are extensively employed in KW disposal, closely linking to their robust gut microbes. However, antibiotic resistome in BSFL gut during the KW disposal processes and the mechanism remain unclear. In the present study, the antibiotic resistome in BSFL gut within the 12 days KW disposal processes were investigated. Results showed that, ARGs abundance initially increased and subsequently decreased, the five most prevalent core ARG classes were tetracycline, aminoglycoside, cephalosporin, lincosamide and multidrug. A total of 7 MGE types were observed and the horizontal gene transfer (HGT) of ARGs was predominantly mediated by plasmids. Host microbes were mainly categorized into Proteobacteria (98.12 %) and their assemblies were mainly classified into the deterministic processes. To elucidate the driving mechanisms, the mantel test and the structural equation model (SEM) were developed. Results indicated that microbial functions (0.912, p < 0.0001) and microbial community (1.014, p = 0.036), consistently showed very significant relationships with the patterns of ARGs, which presented higher direct effects than indirect effects. Overall, this study makes an initial contribution to a more deepgoing comprehension of the gut antibiotic resistome of BSFL during KW disposal.
Collapse
Affiliation(s)
- Lingling Rong
- School of Life Science, Jinggangshan University, Ji'an 343009, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Lihui Zong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Wei Wang
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Yi Xiao
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Chunyan Yang
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Hongcheng Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
4
|
Wang H, Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Mechanistic insights for efficient removal of intracellular and extracellular antibiotic resistance genes by iron-based nanocopper: Intracellular oxidative stress and internalization of nanocopper. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136745. [PMID: 39637796 DOI: 10.1016/j.jhazmat.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears. The composition of Fe-nCu particles consists of 75.90 % iron and 20.95 % copper. Fe-nCu demonstrates a unique capability in eliminating ARGs, achieving removal efficiencies of 3.75 and 4.36 logs for intracellular and extracellular ARGs, respectively. Furthermore, Fe-nCu remains stable in complex water environments and is unaffected by organic substances in the water. This material induces oxidative stress in cells within a short period, leading to an imbalance in intracellular redox levels and resulting in cell membrane damage. nCu causes severe membrane damage to E. coli, penetrating the cell due to its size advantage, which leads to the encapsulation and internalization of E. coli by the copper nanoparticles. Once inside, the nCu particles cleave DNA and disrupt the function of ARGs. This study not only provides a cost-effective material for the removal of ARGs but also offers an in-depth understanding of the action mechanism of Fe-nCu, presenting a novel pathway for inhibiting the propagation of ARGs.
Collapse
Affiliation(s)
- Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ping Yu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
5
|
Shang W, Zhang YM, Ding MZ, Sun HZ, He JX, Cheng JS. Improved engineered fungal-bacterial commensal consortia simultaneously degrade multiantibiotics and biotransform food waste into lipopeptides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123177. [PMID: 39500163 DOI: 10.1016/j.jenvman.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Resource utilization of food waste is necessary to reduce environmental pollution. However, antibiotics can enter the environment through food waste, resulting in antibiotic residues, which pose potential risks to human health. In this study, commensal artificial consortia were constructed through intercellular adaptation to simultaneously degrade antibiotics and bioconvert food waste into lipopeptides. The biodegradation efficiency of oxytetracycline in the three-strain consortium, which contained lipopeptide-producing Bacillus amyloliquefaciens HM618, high-level proline-producing Corynebacterium glutamate, and laccase-producing Pichia pastoris, was around 100% in the food waste medium at 72 h; this was higher than that in the pure culture of P. pastoris-Lac. Sulfamethoxazole could be removed at 48 h. However, the lipopeptide level in the three-strain consortium was only 77 mg/L. The four-strain consortium containing free fatty acid-producing Yarrowia lipolytica improved the lipopeptide level to around 218 mg/L. The degradation efficiency of oxytetracycline in the four-strain consortium was 100% at 48 h; however, only 56% of the sulfamethoxazole was removed over 96 h. Three five-strain consortia were formed by introducing recombinant manganese peroxidase-producing P. pastoris, recombinant HM618 with high-level amylase, and serine-producing C. glutamicum. In low starch food waste, the highest degradation efficiency of sulfamethoxazole was 71%, while oxytetracycline could be completely removed at 48 h. However, oxytetracycline inhibited starch degradation and lipopeptide production. The high level of starch improved lipopeptide synthesis to 1280 mg/L. The results of this study provide a feasible strategy for the resource utilization of inferior biomass food waste.
Collapse
Affiliation(s)
- Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Jia-Xuan He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China.
| |
Collapse
|
6
|
Han Y, Yang Z, Yin M, Zhang Q, Tian L, Wu H. Exploring product maturation, microbial communities and antibiotic resistance gene abundances during food waste and cattle manure co-composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175704. [PMID: 39214357 DOI: 10.1016/j.scitotenv.2024.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This study proposed combining food waste (FW) and cattle manure (CM) in composting to improve the product maturity. The findings suggested that the inclusion of CM effectively extended the thermophilic stage, facilitated the decomposition of cellulose, and enhanced the production of humus-like substances by enhancing beneficial microbial cooperation. Adding 40 % CW was optimal to reduce the nitrogen loss, increase the cellulose degradation rate to 22.07 %, increase germination index (GI) to 140 %, and reduce normalized antibiotic resistance gene (ARG) abundances. Adding CW could promote the transformation of protein-like compounds, thereby enhancing the humification process of organic substances. Structural equation modeling further verified that the temperature was the key factor affecting humification production, while the main driver for ARGs was physiochemical parameters. This study shows that co-composting of FW and CM offers the potential to promote humification, reduce ARG abundance, and improve fertilizer quality for utilization of both biowastes in the field.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zijian Yang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Meiqi Yin
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China.
| | - Lili Tian
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| | - Hao Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
7
|
Pan T, Zhou YY, Xiang Q, An XL, Pu Q, Su JQ. Efficient elimination of antibiotics and antibiotic resistance genes in hyperthermophilic sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135525. [PMID: 39217943 DOI: 10.1016/j.jhazmat.2024.135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.
Collapse
Affiliation(s)
- Ting Pan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan-Yan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
9
|
Yang Y, Wang J, Yin J, Cui Z, Li G, Liu G, Jiang J, Yuan J. Risk level and removal performance of antibiotic resistance genes and bacterial pathogens in static composting with different temperatures. BIORESOURCE TECHNOLOGY 2024; 412:131420. [PMID: 39233181 DOI: 10.1016/j.biortech.2024.131420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The effect of different levels of temperature on resistance genes is not clear in mesophilic static composting (<50 °C). This study conducted livestock manure composting with different temperature gradients from 20 to 50 °C, it was found that the reduction rates of risk rank-I antibiotic resistance genes (from 3 % to 66 %), metal resistance genes (from -50 % to 76 %) and bacterial pathogens (from 72 % to 91 %) all increased significantly with increasing temperature from 20 to 50°C. The vulnerability of bacterial communities increased significantly, and the assembly process of bacterial communities changed from deterministic to stochastic with the increase of composting temperature. Higher temperature could accelerate the removal of thermolabile resistance genes hosts or pathogenic hosts carrying mobile genetic elements by directly or indirectly affecting organic acids content. Therefore, for soil safety, the temperature of the manure recycling process should be increased as much as possible.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jie Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zhongliang Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jinhui Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Xie XJ, Zhang T, Yang J, Wang WF, Zhao ZQ, Barceló D, Zheng HB. Study on the biodegradation characteristics and mechanism of tetracycline by Serratia entomophila TC-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174414. [PMID: 38960187 DOI: 10.1016/j.scitotenv.2024.174414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Microbial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.0, and an inoculation amount of 1 % (v/v). Based on the intermediate products, a possible biological transformation pathway was proposed, including dehydration, oxidation ring opening, decarbonylation, and deamination. Using Escherichia coli and Bacillus subtilis as biological indicators, TC degraded metabolites have shown low toxicity. Whole-genome sequencing showed that the TC-1 strain contained tet (d) and tet (34), which resist TC through multiple mechanisms. In addition, upon TC exposure, TC-1 participated in catalytic and energy supply activities by regulating gene expression, thereby playing a role in TC detoxification. We found that TC-1 showed less interference with changes in the bacterial community in swine wastewater. Thus, TC-1 provided new insights into the mechanisms responsible for TC biodegradation and can be used for TC pollution treatment.
Collapse
Affiliation(s)
- Xiao-Jie Xie
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Zhang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian Yang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Fan Wang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhuo-Qun Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120 Almería, Spain
| | - Hua-Bao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
11
|
Yang F, Wang M, Zhao L, Fan B, Sun N, Liu J, Sun X, Dong Z. The role of cattle manure-driven polysaccharide precursors in humus formation during composting of spent mushroom substrate. Front Microbiol 2024; 15:1375808. [PMID: 39091308 PMCID: PMC11291364 DOI: 10.3389/fmicb.2024.1375808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
The study examined the impact of adding cattle manure to the composting process of Agaricus bisporus mushroom substrate on compost humification. A control group CK comprised entirely of Agaricus bisporus mushroom substrate, while the experimental group CD (70 percent Agaricus bisporus mushroom substrate and 30 percent cattle manure) comprised the two composting treatments that were established. The study determined that the addition of cow dung has promoted the formation of humus components. Particularly, humic substance (HS-C) and humic acid (HA) increased by 41.3 and 74.7%, respectively, and the ratio of humic acid to fulvic acid (HA/FA) also increased by 2.78. It showed that the addition of cow dung accelerated the synthesis and decomposition of precursors, such as polysaccharides, polyphenols, and reducing sugars. Thereby promoting the formation of humic acid. Network analysis revealed that adding cow dung promoted microbial interactions increased the complexity and stability of the bacterial and fungal symbiotic network, enhanced cooperation and reciprocity among microbes, and assisted in transforming fulvic acid (FA) components. Structural equation modeling (SEM) is a multivariate data analysis method for analyzing complex relationships among constructs and core indicators. SEM illustrated that introducing cattle manure into the composting process resulted in alterations to the correlation between physicochemical parameters and the microbial community, in addition to humus formation. Polysaccharides are the primary precursors for polymerization to form HA, which is an essential prerequisite for the conversion of fulvic acid to humic acid. Additionally, microbes affected the formation of humus, with bacteria substantially more influential than fungi. These findings provide new ideas for regulating the degree of humification in the composting process and have important practical implications for optimizing mushroom cultivation and composting techniques today.
Collapse
Affiliation(s)
- Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|
13
|
Li S, Li F, Bao Y, Peng A, Lyu B. Polyethylene and sulfa antibiotic remediation in soil using a multifunctional degrading bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172619. [PMID: 38649045 DOI: 10.1016/j.scitotenv.2024.172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.
Collapse
Affiliation(s)
- Shuo Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Fachao Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yanwei Bao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Ankai Peng
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Boya Lyu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| |
Collapse
|
14
|
Liu Y, Deng G, Liu H, Chen P, Pan Y, Chen L, Chen H, Zhang G. Seasonal variations of airborne microbial diversity in waste transfer stations and preventive effect on Streptococcus pneumoniae induced pulmonary inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168888. [PMID: 38030004 DOI: 10.1016/j.scitotenv.2023.168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Environment, location, and season are important factors that influence the microbiological community, yet, little research on airborne microorganisms in waste transfer stations (WTSs). Here, the airborne bacterial and fungal communities at four WTSs during different seasons were analyzed by high-throughput sequencing. The bacteria were isolated by cultural method and screened bacterium alleviate inflammation induced by Streptococcus pneumoniae (Spn) by regulating gut microbiome. The results revealed that collected bioaerosols from the WTSs varied significantly by location and season. Proteobacteria and Pseudomonadota are prevalent in summer and winter, respectively. Ascomycota was predominant in two seasons. Hazard quotients for adults from four WTSs were below one. Three selected potential probiotics were formulated into a microbial preparation with a carrier that effectively prevented inflammation in bacterial and animal experiments. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α in Pre group (0.11, 0.17, and 0.48-fold) were significantly lower than Spn group (2.75, 1.71, and 5.01-fold). These mechanisms are associated with changes in gut microbiota composition and short-chain fatty acids (SCFAs) levels, such as affecting Lachnospiraceae lachnospira abundance and acetic acid content. This study provides insights into the potential application of probiotics derived from WTSs as an alternative approach to preventing respiratory infections.
Collapse
Affiliation(s)
- Yuqi Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guanhua Deng
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Huanhuan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Nansha District Center for Disease Control and Prevention, Guangzhou 511455, China
| | - Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Liwan District Center for Disease Control and Prevention, Guangzhou 510176, China
| | - Lingyun Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huashan Chen
- Guoke (Foshan) Testing and Certification Co., Ltd, Foshan 528299, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Ding S, Jiang L, Hu J, Huang W, Lou L. Microbiome data analysis via machine learning models: Exploring vital players to optimize kitchen waste composting system. BIORESOURCE TECHNOLOGY 2023; 388:129731. [PMID: 37704090 DOI: 10.1016/j.biortech.2023.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Composting, reliant on microorganisms, effectively treats kitchen waste. However, it is difficult to precisely understand the specific role of key microorganisms in the composting process by relying solely on experimental research. This study aims to employ machine learning models to explore key microbial genera and to optimize composting systems. After introducing a novel microbiome preprocessing approach, Stacking models were constructed (R2 is about 0.8). The SHAP method (SHapley Additive exPlanations) identified Bacillus, Acinetobacter, Thermobacillus, Pseudomonas, Psychrobacter, and Thermobifida as prominent microbial genera (Shapley values ranging from 3.84 to 1.24). Additionally, microbial agents were prepared to target the identified key genera, and experiments demonstrated that the composting quality score was 76.06 for the treatment and 70.96 for the control. The exogenous agents enhanced decomposition and improved compost quality in later stages. In summary, this study opens up a new avenue to identifying key microorganisms and optimizing the biological treatment process.
Collapse
Affiliation(s)
- Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liyan Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiyuan Hu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wuji Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liping Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
17
|
Wang H, Lin S, Zhang H, Guo D, Dan L, Zheng X. Batch-fed composting of food waste: Microbial diversity characterization and removal of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023:129433. [PMID: 37399965 DOI: 10.1016/j.biortech.2023.129433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The aim of this work was to study the impact of batch-fed strategies on bacterial communities and ARGs in compost. The findings demonstrate that batch-feeding helped maintain high temperatures in the compost pile for an extended period (above 50 °C for 18 days), which in turn facilitated water dissipation. High-throughput sequencing showed that Firmicutes played a significant role in batch-fed composting (BFC). They had a high relative abundance at the beginning (98.64%) and end (45.71%) of compost. Additionally, BFC showed promising results in removing ARGs, with reductions of 3.04-1.09 log copies/g for Aminoglycoside and 2.26-2.44 log copies/g for β_Lactamase. This study provides a comprehensive survey of BFC and demonstrates its potential for eliminating resistance contamination in compost.
Collapse
Affiliation(s)
- Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Dong Guo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Liu Dan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Xiaowei Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China.
| |
Collapse
|
18
|
Zhang D, Li X, Li H, Xu Y. Microbial inoculants enhance the persistence of antibiotic resistance genes in aerobic compost of food waste mainly by altering interspecific relationships. BIORESOURCE TECHNOLOGY 2023:129443. [PMID: 37399957 DOI: 10.1016/j.biortech.2023.129443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The effects of microbial inoculants on ARG removal in composting are poorly understood. Here, a co-composting method for food waste and sawdust amended with different microbial agents (MAs) was designed. The results show that the compost without MA unexpectedly achieved the best ARG removal. The addition of MAs markedly increased the abundance of tet, sul and multidrug resistance genes (p < 0.05). Structural equation modeling demonstrated that MAs can enhance the contribution of the microbial community to ARG changes by reshaping community structure and altering the ecological niche, causing the proliferation of individual ARGs, an effect related to the MA component. Network analysis revealed that inoculants weakened the correlation between ARGs and community but increased the linkage between ARGs and core species, suggesting that inoculant-induced ARG proliferation may correspond with gene exchange occurring mainly between core species. The outcome provides new insights into MA application for ARG removal in waste treatment.
Collapse
Affiliation(s)
- Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
19
|
Yang J, Xiang J, Xie Y, Yu K, Li P, Yew-Hoong Gin K, He Y. Antibiotic resistome associated with influencing factors in industrial-scale organic waste aerobic composting plants. BIORESOURCE TECHNOLOGY 2023:129354. [PMID: 37336453 DOI: 10.1016/j.biortech.2023.129354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
This study investigated the fate of antibiotic resistance genes (ARGs) and bacterial evolution in six industrial-scale organic wastes aerobic composting plants and identified key factors driving ARGs dynamics. A total of 226 ARGs and 46 mobile genetic elements (MGEs), mainly resistant to aminoglycoside and MLSB, were detected by high-throughput qPCR. Briefly, aerobic composting showed good performance in reducing the diversity and abundance of ARGs, where the total absolute abundance was reduced by 88.34%-97.08% except for cattle manures. Rapid composting may lead to a rebound of ARGs due to long-term storage compared to traditional composting. Hub ARGs and bacterial genera were screened out by co-occurrence patterns. As the dominant phyla in composting, the main potential hosts of ARGs were Firmicutes, Bacteroidota and Proteobacteria. Structural equation model indicated that MGEs and heavy metals were key factors affecting ARGs dynamics. In addition, nutrients and bacterial α-diversity can indirectly influence ARGs by affecting MGEs.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
20
|
Zhang J, Yu X, Wang J, Sui Q, Zhao W. Impacts of garbage classification and disposal on the occurrence of pharmaceutical and personal care products in municipal solid waste leachates: A case study in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162467. [PMID: 36842588 DOI: 10.1016/j.scitotenv.2023.162467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Leachate generated during the treatment and disposal of municipal solid wastes (MSWs) can be an important source of pharmaceutical and personal care products (PPCPs) in the environment. With the implementation of garbage classification policy in China, the disposal methods of MSWs have changed, while its impacts on the occurrence of PPCPs in the generated leachate remain unknown. In this study, we investigated 49 target PPCPs in the leachates of classified MSWs, i.e. residual waste leachate (RWL) and food waste leachate (FWL), and revealed the influence of garbage classification implementation on the occurrence of PPCPs in leachates to be treated. The results showed the concentration and mass load of target PPCPs in the RWL samples (median values: 34.9 ng/L and 52.3 mg/d, respectively) were significantly higher than those in the FWL samples (median values: 19.3 ng/L and 14.5 mg/d, respectively). Macrolide (ML) antibiotics were the predominant PPCPs in the RWL samples, while in the FWL samples, quinolone (QL) antibiotics exhibited the highest concentration and mass load. The implementation of garbage classification policy led to the reduction of PPCP mass load (from 739 g/d to 262 g/d) in leachates to be treated. The findings are helpful for better designing or managing MSW treatment and disposal processes to minimize the emission of PPCPs from MSW leachates.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
21
|
Jiang H, Zhang L, Wang X, Gu J, Song Z, Wei S, Guo H, Xu L, Qian X. Reductions in abundances of intracellular and extracellular antibiotic resistance genes by SiO 2 nanoparticles during composting driven by mobile genetic elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118071. [PMID: 37148762 DOI: 10.1016/j.jenvman.2023.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Applying exogenous additives during the aerobic composting of livestock manure is effective for slowing down the spread of antibiotic resistance genes (ARGs) in the environment. Nanomaterials have received much attention because only low amounts need to be added and they have a high capacity for adsorbing pollutants. Intracellular ARGs (i-ARGs) and extracellular ARGs (e-ARGs) comprise the resistome in livestock manure but the effects of nanomaterials on the fates of these different fractions during composting are still unclear. Thus, we investigated the effects of adding SiO2 nanoparticles (SiO2NPs) at four levels (0 (CK), 0.5 (L), 1 (M), and 2 g/kg (H)) on i-ARGs, e-ARGs, and the bacterial community during composting. The results showed that i-ARGs represented the main fraction of ARGs during aerobic composting of swine manure, and their abundance was lowest under M. Compared with CK, M increased the removal rates of i-ARGs and e-ARGs by 17.9% and 100%, respectively. SiO2NPs enhanced the competition between ARGs hosts and non-hosts. M optimized the bacterial community by reducing the abundances of co-hosts (Clostridium_sensu_stricto_1, Terrisporobacter, and Turicibacter) of i-ARGs and e-ARGs (by 96.0% and 99.3%, respectively) and killing 49.9% of antibiotic-resistant bacteria. Horizontal gene transfer dominated by mobile genetic elements (MGEs) played a key role in the changes in the abundances of ARGs. i-intI1 and e-Tn916/1545 were key MGEs related closely to ARGs, and the maximum decreases of 52.8% and 100%, respectively, occurred under M, which mainly explained the decreased abundances of i-ARGs and e-ARGs. Our findings provide new insights into the distribution and main drivers of i-ARGs and e-ARGs, as well as demonstrating the possibility of adding 1 g/kg SiO2NPs to reduce the propagation of ARGs.
Collapse
Affiliation(s)
- Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
22
|
Wang C, Jia Y, Li J, Wang Y, Niu H, Qiu H, Li X, Fang W, Qiu Z. Effect of bioaugmentation on tetracyclines influenced chicken manure composting and antibiotics resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161457. [PMID: 36623656 DOI: 10.1016/j.scitotenv.2023.161457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Antibiotic residue in husbandry waste has become a serious concern. In this study, contaminated chicken manure composting was conducted to reveal the bioaugmentation effect on tetracyclines residue and antibiotics resistance genes (ARGs). The bioaugmented composting removed most of the antibiotics in 7 days. Under bioaugmentation, 96.88 % of tetracycline and 92.31 % of oxytetracycline were removed, 6.32 % and 20.93 % higher than the control (P < 0.05). The high-temperature period was the most effective phase for eliminating antibiotics. The treatment showed a long high-temperature period (7 days), while no high-temperature period was in control. After composting, the treatment showed 13.87 % higher TN (26.51 g/kg) and 13.42 % higher NO3--N (2.45 g/kg) than control (23.28 and 2.16 g/kg, respectively) but 12.72 % lower C/N, indicating fast decomposition and less nutrient loss. Exogenous microorganisms from bioaugmentation significantly reshaped the microbial community structure and facilitated the enrichment of genera such as Truepera and Fermentimonas, whose abundance increased by 71.10 % and 75.37 % than the control, respectively. Remarkably, ARGs, including tetC, tetG, and tetW, were enhanced by 198.77 %, 846.77 %, and 62.63 % compared with the control, while the integron gene (intl1) was elevated by 700.26 %, indicating horizontal gene transfer of ARGs. Eventually, bioaugmentation was efficient in regulating microbial metabolism, relieving antibiotic stress, and eliminating antibiotics in composting. However, the ability to remove ARGs should be further investigated. Such an approach should be further considered for treating pollutants-influenced organic waste to eliminate environmental concerns.
Collapse
Affiliation(s)
- Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| | - Yinxue Jia
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jianpeng Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Huan Niu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Hang Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China..
| |
Collapse
|
23
|
Sun R, Li T, Qiu S, Liu Y, Wu Z, Dai Z, Liao Y, Chen X, Chen S, Li C. Occurrence of antibiotic resistance genes carried by plastic waste from mangrove wetlands of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161111. [PMID: 36572308 DOI: 10.1016/j.scitotenv.2022.161111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Plastic waste can carry organisms such as bacterial pathogens and antibiotic resistance genes (ARGs) over long distances. However, only few studies have been conducted on the occurrence of ARGs in plastic waste from mangrove wetlands. This study evaluated the distribution characteristics and ecological risks of plastic waste from mangroves in the coastal areas of the South China Sea. The correlation between anthropogenic activity levels and abundance of ARGs in mangroves was evaluated. Transparent and white were the common colors of plastic waste in mangroves. The main shapes of plastic waste were foam and film. The predominant types of plastic waste order were as follows: polyethylene (30.18 %) > polypropylene (27.51 %) > polystyrene (23.59 %). The living area (LA) mangroves had the highest polymer hazard and pollution load indices of 329.09 and 10.03, respectively. The abundance of ARGs (5.08 × 108 copies/g) on the plastic surface in LA mangroves was significantly higher than that of the other mangrove areas. Furthermore, there was a significant correlation between ARGs and intI1 on the plastic surface in mangroves. Correlation analysis between the ARGs and intI1 showed that most of the ARGs were correlated with intI1 except for msbA. In LA mangroves, sociometric and environmental factors showed significant correlations with the absolute abundances of the four ARGs and intI1, indicating that anthropogenic activities may lead to changes in the amount of ARGs on plastic surfaces. Furthermore, the ARG storage of plastic waste from different mangroves was as follows: protected areas (3.12 × 1017 copies) > living areas (2.99 × 1017 copies) > aquaculture pond areas (2.88 × 1017 copies). The higher ARG storage of LA mangroves, with the smallest area, greatly increased its ecological risk. The results of this study can provide basic data for processes that influence the distribution of plastic waste and ARGs in mangroves.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shijie Qiu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China.
| | - Yuantao Liao
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Xin Chen
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Shuying Chen
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China.
| |
Collapse
|
24
|
The Preparation Processes and Influencing Factors of Biofuel Production from Kitchen Waste. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Kitchen waste is an important component of domestic waste, and it is both harmful and rich in resources. Approximately 1.3 billion tons of kitchen waste are produced every year worldwide. Kitchen waste is high in moisture, is readily decayed, and has an unpleasant smell. Environmental pollution can be caused if this waste is treated improperly. Conventional treatments of kitchen waste (e.g., landfilling, incineration and pulverization discharge) cause environmental, economic, and social problems. Therefore, the development of a harmless and resource-based treatment technology is urgently needed. Profits can be generated from kitchen waste by converting it into biofuels. This review intends to highlight the latest technological progress in the preparation of gaseous fuels, such as biogas, biohythane and biohydrogen, and liquid fuels, such as biodiesel, bioethanol, biobutanol and bio-oil, from kitchen waste. Additionally, the pretreatment methods, preparation processes, influencing factors and improvement strategies of biofuel production from kitchen waste are summarized. Problems that are encountered in the preparation of biofuels from kitchen waste are discussed to provide a reference for its use in energy utilization. Optimizing the preparation process of biofuels, increasing the efficiency and service life of catalysts for reaction, reasonably treating and utilizing the by-products and reaction residues to eliminate secondary pollution, improving the yield of biofuels, and reducing the cost of biofuels, are the future directions in the biofuel conversion of kitchen waste.
Collapse
|
25
|
Huang J, He P, Duan H, Yang Z, Zhang H, Lü F. Leaching risk of antibiotic resistance contamination from organic waste compost in rural areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121108. [PMID: 36669719 DOI: 10.1016/j.envpol.2023.121108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Composting is an important decentralized technology for treating multiple biodegradable organic wastes in rural areas. However, compared to industrial composting (i.e., time and temperature protocols), rural composting is less well-controlled, and the risk of antibiotic resistance genes (ARGs) in these composts needs to be determined. We performed a quantitative determination of ARGs and both prokaryotes and eukaryotes to investigate the liquid-solid leaching ratio and the relationship between ARGs and microbial communities in solid and water extracts of composts collected from rural areas. We observed a high level of sulfonamides resistance genes and tetracyclines resistance genes (10-4-10-2 copies/16S copies). Tet-C and tet-X show the strongest leaching potential in rural organic waste composts with complex hosts in solid and liquid phases. This study showed high ARG abundances in compost solid and water extracts, highlighting the leaching risk of compost ARGs when exposed to runoff or groundwater during open storage and field application.
Collapse
Affiliation(s)
- Jinghua Huang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China
| | - Haowen Duan
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China
| | - Zhan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
26
|
Mo J, Xin L, Zhao C, Qin Y, Nan Q, Mei Q, Wu W. Reducing nitrogen loss during kitchen waste composting using a bioaugmented mechanical process with low pH and enhanced ammonia assimilation. BIORESOURCE TECHNOLOGY 2023; 372:128664. [PMID: 36702327 DOI: 10.1016/j.biortech.2023.128664] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Exploring the regulation of nitrogen transformation in bioaugmented mechanical composting (BMC) process for rural kitchen waste (KW) is essential to avoid the "not-in-my-backyard" phenomenon caused by nitrogen loss. Herein, nitrogen transformation and loss in BMC versus conventional pile composting (CPC) of KW were compared. The results showed that the total nitrogen loss in the BMC was 6.87-39.32 % lower than that in the CPC. The main pathways to prevent nitrogen loss in the BMC were reducing NH3 by avoiding a sharp increase in pH followed by transforming the preserved NH4+-N into recalcitrant nitrogen reservoir via enhanced ammonia assimilation. The enriched thermophilic bacteria with mineralization capacities (e.g., Bacillus and Corynebacterium) during rapid dehydration and heating in the BMC accumulated organic acids and easy-to-use carbon sources, which could lead to lower pH and ammonia assimilation enhancement, respectively. This study provides new ideas for formulating low-cost nitrogen conservation strategies in decentralized KW composting.
Collapse
Affiliation(s)
- Jiefei Mo
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Liqing Xin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China.
| | - Qiong Nan
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Qingqing Mei
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| |
Collapse
|
27
|
Jin X, Liu S, Zhang Z, Liu T, Li N, Liang Y, Zheng J, Peng N. Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130261. [PMID: 36356515 DOI: 10.1016/j.jhazmat.2022.130261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.
Collapse
Affiliation(s)
- Xuexia Jin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Sizhen Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Tong Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Na Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Runge College of Bioengineering, Mianzhu, 618200 Deyang, Sichuan, PR China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
28
|
Wang X, Eltohamy KM, Liu C, Li F, Fang Y, Kawasaki A, Liang X. Biochar reduces colloidal phosphorus in soil aggregates: The role of microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116745. [PMID: 36375438 DOI: 10.1016/j.jenvman.2022.116745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Colloidal phosphorus (Pcoll) in paddy soils can pose a serious threat to the water environment. Biochar amendment not only directly absorb Pcoll to reduce the runoff loss, but also create hotspots for microbial communities which simultaneously affects soil Pcoll. However, despite the crucial role of microorganisms, it remains elusive regarding how biochar and its feedstock types affect the relationships of soil microbial communities and Pcoll in soil matrix (such as at soil aggregate level). To address the knowledge gap, we explored the (in)direct effects of biochar on the soil Pcoll in physically separated fractions including micro- (53-250 μm) and macroaggregates (250-2000 μm). Results showed that straw and manure biochars decreased the soil Pcoll content by 55.2-56.7% in microaggregates and 41.2-48.4% in macroaggregates after 120 days of incubation, compared to the respective control. The fungal communities showed a significantly correlation (0.34, p < 0.05) with Pcoll content in the macroaggregates, whereas the bacterial communities were extremely significantly correlated (0.66, p < 0.001) with Pcoll content in the microaggregates. Furthermore, the partial least squares path model analysis indicated that biochar amendments directly increased Pcoll content (0.76 and 0.61) in micro- and macroaggregates, but the reduced Pcoll content by biochar was mainly derived from indirect effects, such as changed soil biological characteristics carbon (C)/P (-0.69), microbial biomass C (-0.63), microbial biomass P (-0.68), keystone taxa Proteobacteria (-0.63), and Ascomycota (-0.59), particularly for the macroaggregates. This study highlights that to some extent, biochar addition can reduce soil Pcoll content by affecting microbial communities (some keystone taxa), and soil biological characteristics at soil aggregate level.
Collapse
Affiliation(s)
- Xiaochun Wang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Giza, Egypt
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China
| | - Yunying Fang
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Akitomo Kawasaki
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Advanced Gene Technology Centre, Menangle, NSW 2568, Australia
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| |
Collapse
|
29
|
Zhao Y, Chen W, Zhang P, Cai J, Lou Y, Hu B. Microbial cooperation promotes humification to reduce antibiotic resistance genes abundance in food waste composting. BIORESOURCE TECHNOLOGY 2022; 362:127824. [PMID: 36028052 DOI: 10.1016/j.biortech.2022.127824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) fate in a full-scale Food waste (FW) facility was investigated. Results showed that with the changes in ARGs, microbial networks could be naturally divided into two clusters, named as the ARGs increasing group (AI group) and the ARGs decreasing group (AD group). The significant difference between two groups (i.e. stronger microbial competition in the AI group and stronger microbial cooperation in the AD group) implied that the variation in ARGs over time were caused by a switch between competition and cooperation. These results indicated that microbial competition might increase ARGs abundance, while cooperation might reduce it. Meanwhile, structural-equation-model (SEM model) showed that humification indexes (e.g. GI value) was an indicator for characterizing microbial interactions and ARGs. The results of the linear model further confirmed that mature compost (GI values > 92.6 %) could reduce the risk of ARGs.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weizhen Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Feng L, Yuan F, Xie J, Duan X, Zhou Q, Chen Y, Wang Y, Fei Z, Yan Y, Wang F. Sulfadiazine inhibits hydrogen production during sludge anaerobic fermentation by affecting pyruvate decarboxylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156415. [PMID: 35660434 DOI: 10.1016/j.scitotenv.2022.156415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The overuse and random discharge of antibiotics can cause serious environmental pollution. Sludge acts as a repository for antibiotics, its anaerobic fermentation process will inevitably be affected. This study investigated the effects of a typical antibiotic contaminant, sulfadiazine (SDZ), on the anaerobic fermentation of sludge for hydrogen production. Results demonstrated that the production of hydrogen was significantly inhibited by SDZ, and the inhibition was enhanced with increasing SDZ content. Within 5 days, the cumulative amount of hydrogen with 500 mg SDZ/kg dry sludge was 8.5 mL, which was only 32.2% of that in the control (26.4 mL). Mechanistic investigation showed that the reduced hydrogen production when SDZ existed was mainly attributed to the suppression of pyruvate decarboxylation during the hydrogen production stage, and the diversity of microorganisms, especially the abundance of microorganisms and the activities of key enzymes closely related to hydrogen production were inhibited with SDZ, resulting in less hydrogen accumulation.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jing Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanqing Wang
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Zhenghao Fei
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province 224002, PR China.
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|