1
|
Zhang R, Zhang Y, Xi Y, Zhou J, Han T, Ma Q, Wang C, Zhu F, Ye X. Effect of black soldier fly larvae frass addition on humus content during low temperature co-composting. BIORESOURCE TECHNOLOGY 2024; 412:131379. [PMID: 39214182 DOI: 10.1016/j.biortech.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Initiating aerobic fermentation under low temperature is the main challenge for winter livestock manure composting. This study aims to address this issue by applying black soldier fly larvae (BSFL) frass as a co-composting additive to enhance the low-temperature composting process. Specifically, this work explored the effects of chicken manure and BSFL frass co-composting on the temperature, humus content, and microorganisms with fresh weight ratio of 2:1, 1:1, 1:2 (w/w) at 6 °C. The result showed frass could rapidly rise the temperature to 50 °C and significantly increased the humus content by 15.6 % ∼ 26.3 %. Moreover, microbial analysis revealed that Sphingobacteriaceae accelerated temperature rise via low-temperature reproduction, creating proper temperature for thermophilic bacteria (Truepera and Georgia). Additionally, Cellulomonas and other bacteria promoted organic matter degradation and participated in humus formation. This study presents a novel solution for low-temperature composting, providing practical insights for improving manure management in winter.
Collapse
Affiliation(s)
- Ruju Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yingpeng Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yonglan Xi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jin Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ting Han
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qiuqin Ma
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cong Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fei Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaomei Ye
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
2
|
Xie C, Wang X, Zhang B, Liu J, Zhang P, Shen G, Yin X, Kong D, Yang J, Yao H, You X, Li Y. Co-composting of tail vegetable with flue-cured tobacco leaves: analysis of nitrogen transformation and estimation as a seed germination agent for halophyte. Front Microbiol 2024; 15:1433092. [PMID: 39296297 PMCID: PMC11408338 DOI: 10.3389/fmicb.2024.1433092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.
Collapse
Affiliation(s)
- Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | | | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guangcai Shen
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Xingsheng Yin
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Decai Kong
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Junjie Yang
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
3
|
Liu J, Zeng D, Pan J, Hu J, Zheng M, Liu W, He D, Ye Q. Effects of polyethylene microplastics occurrence on estrogens degradation in soil. CHEMOSPHERE 2024; 355:141727. [PMID: 38499076 DOI: 10.1016/j.chemosphere.2024.141727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Growing focus has been drawn to the continuous detection of high estrogens levels in the soil environment. Additionally, microplastics (MPs) are also of growing concern worldwide, which may affect the environmental behavior of estrogens. However, little is known about effects of MPs occurrence on estrogens degradation in soil. In this study, polyethylene microplastics (PE-MPs) were chosen to examine the influence on six common estrogens (estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), diethylstilbestrol (DES), and 17α-ethinylestradiol (17α-EE2)) degradation. The results indicated that PE-MPs had little effect on the degradation of E3 and DES, and slightly affected the degradation of 17α-E2, however, significantly inhibited the degradation of E1, 17α-EE2, and 17β-E2. It was explained that (i) obvious oxidation reaction occurred on the surface of PE-MPs, indicating that PE-MPs might compete with estrogens for oxidation sites, such as redox and biological oxidation; (ii) PE-MPs significantly changed the bacterial community in soil, resulting in a decline in the abundance of some bacterial communities that biodegraded estrogens. Moreover, the rough surface of PE-MPs facilitated the estrogen-degrading bacterial species (especially for E1, E2, and EE2) to adhere, which decreased their reaction to estrogens. These findings are expected to deepen the understanding of the environmental behavior of typical estrogens in the coexisting system of MPs.
Collapse
Affiliation(s)
- Jiangyan Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Jie Pan
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Jiawu Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Mimi Zheng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
4
|
Zhou SP, Ke X, Jin LQ, Xue YP, Zheng YG. Sustainable management and valorization of biomass wastes using synthetic microbial consortia. BIORESOURCE TECHNOLOGY 2024; 395:130391. [PMID: 38307483 DOI: 10.1016/j.biortech.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
In response to the persistent expansion of global resource demands, considerable attention has been directed toward the synthetic microbial consortia (SMC) within the domain of microbial engineering, aiming to address the sustainable management and valorization of biomass wastes. This comprehensive review systematically encapsulates the most recent advancements in research and technological applications concerning the utilization of SMC for biomass waste treatment. The construction strategies of SMC are briefly outlined, and the diverse applications of SMC in biomass wastes treatment are explored, with particular emphasis on its potential advantages in waste degradation, hazardous substances control, and high value-added products conversion. Finally, recommendations for the future development of SMC technology are proposed, and prospects for its sustainable application are discussed.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
6
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Qv M, Bao J, Wang W, Dai D, Wu Q, Li S, Zhu L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132655. [PMID: 37827101 DOI: 10.1016/j.jhazmat.2023.132655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Soil contamination with petroleum significantly threatens the ecological equilibrium and human health. In this context, aerobic co-composting of waste heavy oil with agricultural wastes was performed in the present study to remediate petroleum pollutants through four treatments: CK (control), T1 (petroleum pollutant), T2 (petroleum pollutant with bentonite), and T3 (petroleum pollutant with humic acid-modified bentonite). Comprehensive analyses were conducted to determine the physicochemical parameters, enzymatic activities, removal of petroleum pollutants, microbial community structure, and water-extractable organic matter in different composting systems. Structural equation modeling was employed to identify the key factors influencing the removal of petroleum pollutants. According to the results, petroleum pollutant removal percentages of 44.94%, 79.09%, and 79.67% could be achieved with T1, T2, and T3, respectively. In addition, the activities of polyphenol oxidase (51.21 U/g) and catalase (367.91 U/g), which are the enzymes related to petroleum hydrocarbon degradation, were the highest in T3. Moreover, bentonite addition to the treatment increased the nitrate nitrogen storage in the compost from 10.95 mg/kg in T1 to 18.63 and 17.41 mg/kg in T2 and T3, respectively. Humic acid-modified bentonite could enhance the degree of compost humification, thereby leading to a higher-quality compost product. Collectively, these findings established bentonite addition as an efficient approach to enhance the compost remediation of petroleum pollutants.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jianfeng Bao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Cui W, Meng J, Wang S, Hu Z, Liu G, Zhan X. 17β-estradiol (E2) removal in anode-electrodialysis (anode-ED) during nutrient recovery from pig manure digestate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132754. [PMID: 37839370 DOI: 10.1016/j.jhazmat.2023.132754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Nutrient recovery from anaerobic digestate through electrodialysis technology (ED) has been investigated and shown high promise, but the removal of 17β-estradiol (E2), which is a natural estrogen and widely found in manure digestate, is not clear. This study examined the mechanism of membrane adsorption and anodic oxidation of E2 during recovering nutrient from manure digestate, and further investigated the performance of Anode-ED in E2 removal. The results showed that the removal of E2 in conventional ED was primarily attributed to membrane adsorption, resulting in no detectable E2 in the product solution. The adsorption capacity of the anion exchange membrane for E2 was significantly higher compared to that of the cation exchange membrane. During Anode-ED operation, E2 was efficiently removed by electrochemical oxidation, in which the chlorination played a primary role. Moreover, the oxidation intermediates of E2 were further removed after 40 min. Even though the carbonate, volatile fatty acid (VFA), and humic acid in the real wastewater have a negative impact on E2 oxidation, the E2 was completely removed from digestate during nutrient recovery in the anode-ED. This study indicates that anode-ED is a promising technology for the removal of E2 during nutrient recovery from digestate.
Collapse
Affiliation(s)
- Wanjun Cui
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| |
Collapse
|
9
|
Li Y, Zeng D, Jiang XL, He DC, Hu JW, Liang ZW, Wang JC, Liu WR. Effect comparisons of different conditioners and microbial agents on the degradation of estrogens during dairy manure composting. CHEMOSPHERE 2023; 345:140312. [PMID: 37863209 DOI: 10.1016/j.chemosphere.2023.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
To investigate the degradation efficiency of conditioners and commercial microbial agents on estrogens (E1, 17α-E2, 17β-E2, E3, EE2, and DES) in the composting process of dairy manure, seven different treatments (RHB-BF, OSP-BF, SD-BF, MR-BF, MR-FS, MR-EM, and MR-CK) under forced ventilation conditions were composted and monitored regularly for 30 days. The results indicated that the removal rates of estrogens in seven treatments ranged from 95.35% to 99.63%, meanwhile the degradation effect of the composting process on 17β-Estradiol equivalent (EEQ) was evaluated, and the removal rate of ΣEEQ ranged from 96.42% to 99.72%. With the combined addition of rice husk biochar (RHB) or oyster shell powder (OSP) and bio-bacterial fertilizer starter cultures (BF), namely RHB-BF and OSP-BF obviously promoted the rapid degradation of estrogens. 17β-E2 was completely degraded on the fifth day of composting in OSP-BF. Microbial agents have some promotional effect and enhances the microbial degradation of synthetic estrogen (EE2, DES). According to the results of RDA, pH and EC were the main environmental factors affecting on the composition and succession of estrogen-related degrading bacteria in composting system. As predominant estrogens-degrading genera, Acinetobacter, Bacillus, and Pseudomonas effected obviously on the change of estrogens contents. The research results provide a practical reference for effective composting of dairy manure to enhancing estrogens removal and decreasing ecological risk.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Chongqing Three Gorges University, Chongqing, Wanzhou 404100, China
| | - Dong Zeng
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Xiao-Lu Jiang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Zi-Wei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510550, China
| | - Jia-Cheng Wang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China.
| |
Collapse
|
10
|
Pan C, Zhao Y, Chen X, Zhang G, Xie L, Wei Z, Song C. Improved carbon sequestration by utilization of ferrous ions during different organic wastes composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119188. [PMID: 37801948 DOI: 10.1016/j.jenvman.2023.119188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
The humic acid (HA) possesses a more recalcitrant structure, making it crucial carbon components that improve carbon sequestration. Moreover, ferrous ions could improve microbial activity and enhance compost humification, and their oxidation into iron oxides could adsorb carbon components for sequestration. Based on the advantages of low cost and easy availability of ferrous sulfate (FeSO4), this study investigated the effect of FeSO4 on carbon sequestration during composting. Chicken manure (CM) and food waste (FW) composting were carried out in four treatments, namely control (CM, FW) and 5% (w/w) FeSO4 treated groups (CM+, FW+). Results indicated that FeSO4 increased HA content, improved organic carbon stability. Carbon loss for CM, CM+, FW and FW + treatments were 48.5%, 46.2%, 45.0%, and 40.3%, respectively. Meanwhile, FeSO4 enhanced the function of bacterial taxa involved in HA synthesis in CM + treatment, and improved the number of core bacteria significantly associated with formation of HA and iron oxide. SEM analysis verified that role of FeSO4 was significant in promoting HA synthesis during CM + composting, while it was remarkably in enhancing HA sequestration during FW + composting. This article provided fundamental theoretical backing for enhancing HA production and improving carbon sequestration during different materials composting.
Collapse
Affiliation(s)
- Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| |
Collapse
|
11
|
Odinga ES, Chen X, Mbao EO, Waigi MG, Gudda FO, Zhou X, Ling W, Czech B, Oleszczuk P, Abdalmegeed D, Gao Y. Estrogens and xenoestrogen residues in manure-based fertilizers and their potential ecological risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118609. [PMID: 37473553 DOI: 10.1016/j.jenvman.2023.118609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Optimal manure treatment aimed at usage as agricultural soil fertilizers is a prerequisite ecological pollution control strategy. In this work, livestock manure-based fertilizers were collected from 71 animal farms across 14 provinces in China. The contamination levels and potential ecotoxicological risks of residual steroid estrogens (SEs): estrone (E1), estriol (E3), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2) and xenoestrogen (XE) bisphenol A (BPA), were investigated. The results showed that the occurrence frequencies for SEs and XE ranged from 66.67% to 100%, and the mean concentration varied considerably across the study locations. The total content of SEs and XE in Hebei province was the highest, and swine manure-based fertilizers concentrations were higher than the levels reported in other animal fertilizers. Compared with farm level manure, manure-based fertilizers are processed by composting, and the micropollutants quantities are significantly reduced (mean: 87.65 - 534.02 μg/kg). The total estradiol equivalent quantity (EEQ) that might migrate to the soil was estimated to be 1.23 μg/kg. Based on the estimated application rate of manure, 38% of the fertilizers risk quotients exceeded 0.1, indicating medium to high risks pressure on terrestrial organisms. Nonetheless, the estrogenic risk was lower in manure-based fertilizers than in manure. This study highlights the significance of proper treatment of livestock manure and designing an optimal manure fertilization strategy to mitigate the risks posed by SEs and XEs to the agroecosystems.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/541 20-031, Lublin, Poland
| | - Dyaaaldin Abdalmegeed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Wu S, Tursenjan D, Sun Y. Independent and combined effects of sepiolite and palygorskite on humus spectral properties and heavy metal bioavailability during chicken manure composting. CHEMOSPHERE 2023; 329:138683. [PMID: 37059193 DOI: 10.1016/j.chemosphere.2023.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The effects of the independent and combined addition strategies of sepiolite and palygorskite on humification and heavy metals (HMs) during chicken manure composting were evaluated. Results showed that clay mineral addition showed a favorable effect on composting, prolonged the duration of the thermophilic phase (5-9 d) and improved the TN content (14%-38%) compared to CK. Independent strategy enhanced the humification degree in equal measures with the combined strategy. Carbon nuclear magnetic resonance spectroscopy (13C NMR) and fourier transform infrared spectroscopy (FTIR) confirmed that aromatic carbon species increased by 31%-33% during composting process. Excitation-emission matrix (EEM) fluorescence spectroscopy showed that humic acid-like compounds increased by 12%-15%. In addition, the maximum passivation rate of Cr, Mn, Cu, Zn, As, Cd, Pb and Ni were 51.35%, 35.98%, 30.39%, 32.46%, -87.02%, 36.61% and 27.62%, respectively. The independent addition of palygorskite exhibits the most potent effects for most HMs. Pearson correlation analysis indicated that pH and aromatic carbon were the key determinants of the HMs passivation. This study provided preliminary evidence and perspective of the application of clay minerals on the humification and safety of composting.
Collapse
Affiliation(s)
- Shihang Wu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Dina Tursenjan
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
13
|
Pei F, Cao X, Sun Y, Kang J, Ren Y, Ge J. Manganese dioxide eliminates the phytotoxicity of aerobic compost products and converts them into a plant friendly organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 373:128708. [PMID: 36746215 DOI: 10.1016/j.biortech.2023.128708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study mainly confirmed the exogenous substances (pomace, biochar, MnO2) and the quorum sensing of bacterial communities jointly regulate the metabolic conversion of toxic substances in manures and agricultural wastes, and converts them into a plant-friendly organic fertilizer through aerobic composting and pot experiment. The results showed the composting products had positive performance in bacterial communities, physicochemical indicators, and phytotoxicity. Meanwhile, the addition of exogenous substances could significantly improve seed germination index, promote metabolites conversion, and optimize bacterial community structure. Furthermore, the exogenous substances mainly regulated the functions of the three bacterial communities by quorum sensing system, then promoted the beneficial metabolites, and inhibited the harmful metabolites. Finally, pot experiments suggested compost products could significantly promote plant growth. Thus, these important discoveries extend the knowledge of the previous work and provide an economical and simple method to convert wastes into organic fertilizers that are friendly to plants and soil.
Collapse
Affiliation(s)
- Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - YanXin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
14
|
Sadeq BM, Tan Kee Zuan A, Kasim S, Mui Yun W, Othman NMI, Alkooranee JT, Chompa SS, Akter A, Rahman ME. Humic Acid-Amended Formulation Improves Shelf-Life of Plant Growth-Promoting Rhizobacteria (PGPR) Under Laboratory Conditions. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts soil and crops. These microbes invade plant roots, promote plant growth, and improve crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its structural and cellular components, with a non-producing resistance structure (spores). Therefore, optimum formulations must be developed to prolong the bacterial shelf-life by adding humic acid (HA) as an amendment that could benefit the microbes by providing shelter and carbon sources for bacteria. Thus, a study was undertaken to develop a biofertilizer formulation from locally isolated PGPR, using HA as an amendment. Four doses of HA (0, 0.01, 0.05, and 0.1%) were added to tryptic soy broth (TSB) media and inoculated with B. subtilis (UPMB10), Bacillus tequilensis (UPMRB9) and the combination of both strains. The shelf-life was recorded, and viable cells count and optical density were used to determine the bacterial population and growth trend at monthly intervals and endospores detection using the malachite green staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded the highest bacterial population significantly with inoculation of UPMRB9, followed by mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, respectively. Results showed that a higher concentration of HA has successfully prolonged the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum concentration of humic acid can extend the bacterial shelf-life and improve the quality of a biofertilizer.
Collapse
|
15
|
Miao L, Sun S, Ma T, Abdelrahman Yousif Abdellah Y, Wang Y, Mi Y, Yan H, Sun G, Hou N, Zhao X, Li C, Zang H. A Novel Estrone Degradation Gene Cluster and Catabolic Mechanism in Microbacterium oxydans ML-6. Appl Environ Microbiol 2023; 89:e0148922. [PMID: 36847539 PMCID: PMC10057884 DOI: 10.1128/aem.01489-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Global-scale estrone (E1) contamination of soil and aquatic environments results from the widespread use of animal manure as fertilizer, threatening both human health and environmental security. A detailed understanding of the degradation of E1 by microorganisms and the associated catabolic mechanism remains a key challenge for the bioremediation of E1-contaminated soil. Here, Microbacterium oxydans ML-6, isolated from estrogen-contaminated soil, was shown to efficiently degrade E1. A complete catabolic pathway for E1 was proposed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), genome sequencing, transcriptomic analysis, and quantitative reverse transcription-PCR (qRT-PCR). In particular, a novel gene cluster (moc) associated with E1 catabolism was predicted. The combination of heterologous expression, gene knockout, and complementation experiments demonstrated that the 3-hydroxybenzoate 4-monooxygenase (MocA; a single-component flavoprotein monooxygenase) encoded by the mocA gene was responsible for the initial hydroxylation of E1. Furthermore, to demonstrate the detoxification of E1 by strain ML-6, phytotoxicity tests were performed. Overall, our findings provide new insight into the molecular mechanism underlying the diversity of E1 catabolism in microorganisms and suggest that M. oxydans ML-6 and its enzymes have potential applications in E1 bioremediation to reduce or eliminate E1-related environmental pollution. IMPORTANCE Steroidal estrogens (SEs) are mainly produced by animals, while bacteria are major consumers of SEs in the biosphere. However, the understanding of the gene clusters that participate in E1 degradation is still limited, and the enzymes involved in the biodegradation of E1 have not been well characterized. The present study reports that M. oxydans ML-6 has effective SE degradation capacity, which facilitates the development of strain ML-6 as a broad-spectrum biocatalyst for the production of certain desired compounds. A novel gene cluster (moc) associated with E1 catabolism was predicted. The 3-hydroxybenzoate 4-monooxygenase (MocA; a single-component flavoprotein monooxygenase) identified in the moc cluster was found to be necessary and specific for the initial hydroxylation of E1 to generate 4-OHE1, providing new insight into the biological role of flavoprotein monooxygenase.
Collapse
Affiliation(s)
- Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | | | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yaozu Mi
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Haohao Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
16
|
Xiong W, Peng W, Fu Y, Deng Z, Lin S, Liang R. Identification of a 17β-estradiol-degrading Microbacterium hominis SJTG1 with high adaptability and characterization of the genes for estrogen degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130371. [PMID: 36423453 DOI: 10.1016/j.jhazmat.2022.130371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Environmental estrogen contamination poses severe threat to wildlife and human. Biodegradation is an efficient strategy to remove the wide-spread natural estrogen, while strains suitable for hostile environments and fit for practical application are rare. In this work, Microbacterium hominis SJTG1 was isolated and identified with high degrading efficiency for 17β-estradiol (E2) and great environment fitness. It could degrade nearly 100% of 10 mg/L E2 in minimal medium in 6 days, and remove 93% of 1 mg/L E2 and 74% of 10 mg/L E2 in the simulated E2-polluted solid soil in 10 days. It maintained stable E2-degrading efficiency in various harsh conditions like non-neutral pH, high salinity, stress of heavy metals and surfactants. Genome mining and comparative genome analysis revealed that there are multiple genes potentially associated with steroid degradation in strain SJTG1. One 3β/17β-hydroxysteroid dehydrogenase HSD-G129 induced by E2 catalyzed the 3β/17β-dehydrogenation of E2 and other steroids efficiently. The transcription of hsd-G129 gene was negatively regulated by the adjacent LysR-type transcriptional regulator LysR-G128, through specific binding to the conserved site. E2 can release this binding and initiate the degradation process. This work provides an efficient and adaptive E2-degrading strain and promotes the biodegrading mechanism study and actual remediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
17
|
Zhong L, Wu T, Ding J, Xu W, Yuan F, Liu BF, Zhao L, Li Y, Ren NQ, Yang SS. Co-composting of faecal sludge and carbon-rich wastes in the earthworm's synergistic cooperation system: Performance, global warming potential and key microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159311. [PMID: 36216047 DOI: 10.1016/j.scitotenv.2022.159311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Composting is an effective alternative for recycling faecal sludge into organic fertilisers. A microflora-earthworm (Eisenia fetida) synergistic cooperation system was constructed to enhance the composting efficiency of faecal sludge. The impact of earthworms and carbon-rich wastes (rice straw (RS) and sawdust (S)) on compost properties, greenhouse gas emissions, and key microbial species of composting were evaluated. The addition of RS or S promoted earthworm growth and reproduction. The earthworm-based system reduced the volatile solid of the final substrate by 13.19-16.24 % and faecal Escherichia coli concentrations by 1.89-3.66 log10 cfu/g dry mass compared with the earthworm-free system. The earthworm-based system increased electrical conductivity by 0.322-1.402 mS/cm and reduced C/N by 56.16-64.73 %. The NH4+:NO3- ratio of the final faecal sludge and carbon-rich waste was <0.16. The seed germination index was higher than 80 %. These results indicate that earthworms contribute to faecal sludge maturation. Earthworm addition reduced CO2 production. The simultaneous addition of earthworms and RS system (FRS2) resulted in the lowest global warming potential (GWP). The microbial diversity increased significantly over time in the RS-only system, whereas it initially increased and later decreased in the FRS2 system. Cluster analysis revealed that earthworms had a more significant impact on the microbial community than the addition of carbon-rich waste. Co-occurrence networks for earthworm-based systems were simple than those for earthworm-free systems, but the major bacterial genera were more complicated. Highly abundant key species (norank_f_Chitinophagaceae and norank_f_Gemmatimonadaceae) are closely related. Microbes may be more cooperative than competitive, facilitating the conversion of carbon and nitrogen in earthworm-based systems. This work has demonstrated that using earthworms is an effective approach for promoting the efficiency of faecal sludge composting and reducing GWP.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Abdellah YAY, Luo YS, Sun SS, Yang X, Ji HY, Wang RL. Phytochemical and underlying mechanism of Mikania micrantha Kunth on antibiotic resistance genes, and pathogenic microbes during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128241. [PMID: 36332871 DOI: 10.1016/j.biortech.2022.128241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.
Collapse
Affiliation(s)
- Yousif Abdelrahman Yousif Abdellah
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shan-Shan Sun
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Xi Yang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yi Ji
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Long Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Wang Y, Fu M, Wu B, Huang M, Ma T, Zang H, Jiang H, Zhang Y, Li C. Insight into biofilm-forming patterns: biofilm-forming conditions and dynamic changes in extracellular polymer substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89542-89556. [PMID: 35852740 DOI: 10.1007/s11356-022-21645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The microbial biofilm adheres to the surface of the carrier, which protects the pollutant-degrading bacteria and resists harsh environments; thus, research on biofilm-forming patterns will help promote the application of biofilms in wastewater treatment. Herein, univariate analysis and response surface methodology (RSM) confirmed that glucose and mannose at 3-5 g/L promoted biofilm formation. Notably, the microplate method demonstrated that compared to trivalent cations, divalent cations could more greatly enhance the activity (especially magnesium) of the biofilm matrix, and the period of biofilm formation in the three strains was divided into the following stages: initial attachment (0-10 h), microcolony (10-24 h), maturation (24-48 h), and dispersion (36-72 h). During maturation, large amounts of extracellular polysaccharides (EPs) and extracellular DNA (eDNA) were distributed in the extracellular and intracellular spaces, respectively, as observed by super-resolution structured illumination microscopy (SR-SIM). This study enhances the understanding of the characteristics and patterns of biofilm formation and can facilitate the application of biofilms in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Meng Fu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Mingyan Huang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuting Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Zhang S, Zhong B, An X, Han Y, Xiao X, Zhang Q. Effect of moisture content on the evolution of bacterial communities and organic matter degradation during bioaugmented biogas residues composting. World J Microbiol Biotechnol 2022; 39:1. [PMID: 36344669 DOI: 10.1007/s11274-022-03454-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Composting is an excellent way to recycle biogas residues into a stable, non-toxic agricultural end product. In this study, the dynamic changes of physical-chemical parameters and bacterial community in three groups of bioaugmentation composting systems at different moisture contents (MC) of 50% (MC50), 60% (MC60) and 70% (MC70) were monitored. The differences of bacterial communities in composts with different initial MC were compared, and the interaction between biological and non-biological parameters was also explored. The results revealed that after 30 days of composting, the biogas residues compost in MC60 reached highest temperature of 64 °C, total Kjeldahl nitrogen (TKN) of 2%, seed germination index (GI) of 110%, and the longest thermophilic period duration of 5 days (55 °C). Additionally, the result of high-throughput sequencing showed that the diversity of bacterial communities in MC60 was the highest, and the abundance of Actinobacteria (16.93-52.63%), Firmicutes (8.71-56.75%), and Proteobacteria (16.88-46.95%) in all groups were the highest at phylum level. The LEfSe analysis indicated that the abundance of Ochrobactrum and Cellulomonadaceae in MC60 was significantly (p < 0.05) higher than with other treatments. Moreover, canonical correspondence analysis (CCA) indicated thermophilic period duration is significantly (p < 0.05) positively correlated with Paenibacillus. Besides, it was found the relative abundance of Nocardiopsis and Georgenia has a significant (p < 0.01) correlation with the fertilizer efficiency of compost. These results showed that controlling the initial moisture content at 60% can improve the maturity and fertilizer efficiency of compost, and enable the bacteria beneficial to composting to gain the advantage of proliferation.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Xiaoshuang Xiao
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
21
|
Wang Y, Chen X, Wu B, Ma T, Jiang H, Mi Y, Jiang C, Zang H, Zhao X, Li C. Potential and mechanism for bioremediation of papermaking black liquor by a psychrotrophic lignin-degrading bacterium, Arthrobacter sp. C2. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129534. [PMID: 35850064 DOI: 10.1016/j.jhazmat.2022.129534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
To meet the challenge of bioremediation of black liquor in pulp and paper mills at low temperatures, a psychrotrophic lignin-degrading bacterium was employed in black liquor treatment for the first time. In this study, Arthrobacter sp. C2 exhibited excellent cold adaptability and lignin degradation ability, with a lignin degradation rate of 65.5% and a mineralization rate of 43.9% for 3 g/L lignin at 15 °C. Bioinformatics analysis and multiple experiments confirmed that cold shock protein 1 (Csp1) was the dominant cold regulator of strain C2, and dye-decolorizing peroxidase (DyP) played a crucial role in lignin degradation. Moreover, structural equation modeling (SEM), mRNA monitoring, and phenotypic variation analysis demonstrated that Csp1 not only mediated cold adaptation but also modulated DyP activity by controlling dyp gene expression, thus driving lignin depolymerization for strain C2 at low temperatures. Furthermore, 96.4% of color, 64.2% of chemical oxygen demand (COD), and 100% of nitrate nitrogen (NO₃--N) were removed from papermaking black liquor by strain C2 within 15 days at 15 °C. This study provides insights into the association between the cold regulator and catalytic enzyme of psychrotrophic bacteria and offers a feasible alternative strategy for the bioremediation of papermaking black liquor in cold regions.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bowen Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hanyi Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yaozu Mi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Cheng Jiang
- College of Life Sciences, Resources and Environment, Yichun University, Yichun 336000, Jiangxi, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
22
|
Zhang S, An X, Gong J, Xu Z, Wang L, Xia X, Zhang Q. Molecular response of Anoxybacillus sp. PDR2 under azo dye stress: An integrated analysis of proteomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129500. [PMID: 35792431 DOI: 10.1016/j.jhazmat.2022.129500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Treating azo dye wastewater using thermophilic bacteria is considered a more efficient bioremediation strategy. In this study, a thermophilic bacterial strain, Anoxybacillus sp. PDR2, was regarded as the research target. This strain was characterized at different stages of azo dye degradation by using TMT quantitative proteomic and non-targeted metabolome technology. A total of 165 differentially expressed proteins (DEPs) and 439 differentially metabolites (DMs) were detected in comparisons between bacteria with and without azo dye. It was found that Anoxybacillus sp. PDR2 can degrade azo dye Direct Black G (DBG) through extracellular electron transfer with glucose serving as electron donors. Most proteins related to carbohydrate metabolism, including acetoacetate synthase, and malate synthase G, were overexpressed to provide energy. The bacterium can also self-synthesize riboflavin as a redox mediator of in vitro electron transport. These results lay a theoretical basis for industrial bioremediation of azo dye wastewater.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaming Gong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Xia
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
23
|
Zhao M, Liu D, Zhou J, Wei Z, Wang Y, Zhang X. Ammonium stress promotes the conversion to organic nitrogen and reduces nitrogen loss based on restructuring of bacterial communities during sludge composting. BIORESOURCE TECHNOLOGY 2022; 360:127547. [PMID: 35777648 DOI: 10.1016/j.biortech.2022.127547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to clarify the conversion relationship between organic and inorganic nitrogen. The NH4Cl was used to enhance the inorganic nitrogen content. The key role of bacterial conversion of ammonium to organic nitrogen under ammonium stress was explored. Studies had shown that ammonium stress increased the amide nitrogen and bioavailable nitrogen content by 36.95% and 32.25%, respectively. Network and regression analyses showed that the microbial community structure was restructured by high ammonium and more bacteria were involved in the conversion of inorganic nitrogen to organic nitrogen(i.e., amide nitrogen, unknown nitrogen). Variation partition analysis and structural equation model showed that the bacterial community was the main contributor to organic nitrogen production(up to 67.4%), which reduced the nitrogen loss by 6.03%. These findings shed light on the poorly understood interaction between inorganic and organic nitrogen by clarifying the role of core bacterial communities in nitrogen conversion.
Collapse
Affiliation(s)
- Meiyang Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yumeng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinlin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
25
|
Wang L, Qu F, Zhu Z, Zhao Y, Chen X, Shi M, Wei Z. The important role of tricarboxylic acid cycle metabolism pathways and core bacterial communities in carbon sequestration during chicken manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:20-29. [PMID: 35785624 DOI: 10.1016/j.wasman.2022.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
As a kind of livestock manure, chicken manure (CM) was rich in organic matter and microorganisms. However, a large amount of foul gas discharged by its random stacking not only threatened the environment, but also caused harm to human health. In view of the serious carbon loss and the unclear action mechanism of microbial community on carbon metabolism during CM composting, the effect of adding regulators on the sequestration of organic carbon was explored. Therefore, the purpose of this study was to explore the regulation mechanism of adding tricarboxylic acid cycle (TCA cycle) regulators on the core carbon metabolism pathway during CM composting. The results showed that the adenosine triphosphate (ATP) and malonic acid (MA) slowed down organic carbon degradation, resulting in lower carbon loss rate, which were 64.99% (CK), 62.35% (MA), and 61.26% (ATP) in each treatment. By comparing the abundance and structure of the carbon-related bacterial communities in different treatments, it was found that adding ATP and MA not only reduced the bacterial community abundance, but also tended to be similar in bacterial community composition. Moreover, the microbial specificity related to carbon metabolism pathway was enhanced, while the related gene expression and gene abundance were weakened. The regulation of TCA cycle metabolism pathway was confirmed to be the main way to improve organic carbon content. These findings revealed the positive effects of ATP and MA on carbon fixation from the perspective of gene metabolism.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Zhao X, Meng X, Liu Y, Bai S, Li B, Li H, Hou N, Li C. Single-cell sorting of microalgae and identification of optimal conditions by using response surface methodology coupled with life-cycle approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155061. [PMID: 35395299 DOI: 10.1016/j.scitotenv.2022.155061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Response surface methodology (RSM) has been widely used to identify optimal conditions for environmental microorganisms to maximize degrading pollutants and accumulating biomass. However, to date, environmental impact and economic cost have rarely been considered. In this study, a single cell of microalgae Chlorella sorokiniana ZM-5 was sorted, and its enrichment was carried out for the first time. The optimized conditions by RSM for achieving the highest COD, TN, TP removal and 352.61 mg/g lipid production were 24 h light time, 4.3:1C/N, 7.2 pH, and 30 °C temperature, respectively. Life-cycle approaches were then carried out upon this illustrative case, and the results indicated that the implementation of the above optimal conditions could reduce the total environmental impact by 48.0% and the total economic impact by 10.2%. This study showed the feasibility of applying life-cycle approaches to examine the optimal conditions of a biological process in terms of minimizing environmental impact and economic costs.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China; HOOKE Instruments Ltd., Changchun 130033, China
| | - Hang Li
- HOOKE Instruments Ltd., Changchun 130033, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Pan C, Zhang G, Yang Y, Chen X, Wu J, Wang L, Wei Z, Kang K. Identifying the role of fired clay minerals on reducing of nitrogen loss and immobilization of organic nitrogen during chicken manure composting. BIORESOURCE TECHNOLOGY 2022; 349:126839. [PMID: 35150855 DOI: 10.1016/j.biortech.2022.126839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
This study compared effects of clay minerals before and after firing in immobilization of organic nitrogen and reducing of nitrogen loss during chicken manure composting. The clay minerals and fired clay minerals treatments increased organic nitrogen contents and significantly reduced nitrogen loss, the loss was in order CK (52.61%) > M (47.15%) > I (45.90%) > M- (42.58%) > I- (40.59%). Meanwhile, network analysis indicated that core bacterial community associated with nitrogen transformation were more abundant, and conversion effect of single core bacteria on nitrogen components was enhanced in fired clay minerals treatments. In addition, fired clay minerals strengthened correlation between environmental factors, bacterial community and organic nitrogen, and enhanced interaction of abiotic and biotic pathways, which verified by variance partitioning analysis and structural equation model. Therefore, fired clay minerals play a remarkable driving role in formation and immobilization of organic nitrogen.
Collapse
Affiliation(s)
- Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guogang Zhang
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuran Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|