1
|
Qi S, Xu L, Su J, Li T, Wei H, Li X. Fe 3+/Fe 2+ cycling drove novel ammonia oxidation and simultaneously removed lead, cadmium, and copper. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136124. [PMID: 39405709 DOI: 10.1016/j.jhazmat.2024.136124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The discharge of several pollutants, such as ammonia (NH4+-N), nitrate (NO3--N), and heavy metals, from aquaculture wastewater into the aquatic environment can cause severe pollution issues. In this work, microbial techniques were employed to enable concurrent elimination of NH4+-N and NO3--N by Fe3+/Fe2+ cycling. The greatest NH4+-N and NO3--N removal efficiencies of 96.1 % and 97.6 % were gained by Aquabacterium sp. XL4 at NH4+/NO3- ratio of 1:1, carbon to nitrogen ratio of 4.0, pH of 6.5, and Fe3+ dosage of 20.0 mg L-1. Inhibitor and nitrogen balance assays suggested that nitrogen removal process of strain XL4 was a coupled function of anaerobic ammonia oxidation, ferric reduction driven ammonia oxidation, and iron-based denitrification. Furthermore, under the compound influence of strain XL4 metabolic processes and microbial iron oxide adsorption, the removal efficiencies of Pb2+, Cd2+, and Cu2+ reached above 90 %. This work contributes to theoretical grounding for microbial removal of multiple pollutants.
Collapse
Affiliation(s)
- Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
2
|
Ji L, Zhang X, Zhu X, Gao B, Zhao R, Wu P. Novel insights into Feammox coupled with the NDFO: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175721. [PMID: 39181258 DOI: 10.1016/j.scitotenv.2024.175721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process. An initial thorough exploration of the underlying mechanisms behind the coupling process is conducted, highlighting how the Fe(III)/Fe(II) cycle enables the concurrent occurrence of these reactions. Further, the functional microorganisms associated with and playing a crucial role in the Feammox-NDFO process are summarized. Next, the key influencing factors that govern the efficiency of the Feammox-NDFO process are explored. These include parameters such as pH, temperature, carbon source, iron source, nitrogen source, and various electron shuttles that may mediate electron transfer. Understanding the impact of these factors is essential for optimizing the process. The most recent trends and endeavors on the Feammox-NDFO coupling technology in wastewater treatment applications are also examined. This includes examining both laboratory-scale studies and field trials, highlighting their successes and challenges. Finally, an outlook is presented regarding the future advancement of the Feammox-NDFO technology. Areas of improvement and novel strategies that could further enhance the efficiency of simultaneous nitrogen removal from the iron cycle are discussed. In summary, this study aspires to offer a thorough comprehension of the Feammox-NDFO coupled process, with a focus on its mechanisms, influencing factors, applications, and prospects. It is anticipated to yield invaluable insights for the advancement of process optimization, thus sparking fresh ideas and strategies aimed at accomplishing the thorough elimination of nitrogen from wastewater via the iron cycle.
Collapse
Affiliation(s)
- Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Cao M, Bai Y, Su J, Wang Y, Feng J, Zhang Q. Denitrification performance of the nitrate-dependent manganese redox strain Dechloromonas sp. YZ8 under copper ion (Cu(Ⅱ)) stress: Promotion mechanism and immobilization efficacy. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135748. [PMID: 39243540 DOI: 10.1016/j.jhazmat.2024.135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
A novel nitrate-dependent manganese (Mn) redox strain was isolated and identified as Dechloromonas sp.YZ8 in this study. The growth conditions of strain YZ8 were optimized by kinetic experiments. The nitrate (NO3--N) removal efficiency was 100.0 % at 16 h at C/N of 2.0, pH of 7.0, and Mn(II) or Mn(IV) addition of 10.0 or 500.0 mg L-1, along with an excellent Mn redox capacity. Transmission electron microscopy supported the Mn redox process inside and outside the cells of strain YZ8. When strain YZ8 was exposed to different concentrations of copper ion (Cu(II)), it turned out that moderate amounts of Cu(II) increased microbial activity and metabolic activities. Moreover, it was discovered that the appropriate amount of Cu(II) promoted the conversion of Mn(IV) and Mn(II) to Mn(III) and improved electron transfer capacity in the Mn redox system, especially the Mn redox process dominated by Mn(IV) reduction. Then, δ-MnO2 and bio-manganese oxides (BMO) produced during the reaction process have strong adsorption of Cu(II). The surface valence changes of δ-MnO2 before and after the reaction and the production of BMO, Mn(III)-rich intermediate black manganese ore (Mn3O4), and Mn secondary minerals together confirmed the Mn redox pathway. The study provided new insights into the promotion mechanism and immobilization effects of redox-coupled denitrification of Mn in groundwater under Cu(II) stress.
Collapse
Affiliation(s)
- Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qingli Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Jiménez-Venegas J, Zamora-Leiva L, Univaso L, Soto J, Tapia Y, Paneque M. Profile of Bacterial Communities in Copper Mine Tailings Revealed through High-Throughput Sequencing. Microorganisms 2024; 12:1820. [PMID: 39338494 PMCID: PMC11433839 DOI: 10.3390/microorganisms12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace metals in solid copper (Cu) mine tailings from the Ovejería Tailings Dam of the National Copper Corporation of Chile and used high-throughput sequencing techniques to determine the microbial community diversity of the tailings using 16S rRNA gene-based amplicon sequence analysis. The concentrations of the detected metals were highest in the following order: iron (Fe) > Cu > manganese (Mn) > molybdenum (Mo) > lead (Pb) > chromium (Cr) > cadmium (Cd). Furthermore, 16S rRNA gene-based sequence analysis identified 12 phyla, 18 classes, 43 orders, 82 families, and 154 genera at the three sampling points. The phylum Proteobacteria was the most dominant, followed by Chlamydiota, Bacteroidetes, Actinobacteria, and Firmicutes. Genera, such as Bradyrhizobium, Aquabacterium, Paracoccus, Caulobacter, Azospira, and Neochlamydia, showed high relative abundance. These genera are known to possess adaptation mechanisms in high concentrations of metals, such as Cd, Cu, and Pb, along with nitrogen-fixation capacity. In addition to their tolerance to various metals, some of these genera may represent pathogens of amoeba or humans, which contributes to the complexity and resilience of bacterial communities in the studied Cu mining tailings. This study highlights the unique microbial diversity in the Ovejería Tailings Dam, including the discovery of the genus Neochlamydia, reported for the first time for heavy metal resistance. This underscores the importance of characterizing mining sites, particularly in Chile, to uncover novel bacterial mechanisms for potential biotechnological applications.
Collapse
Affiliation(s)
- Joseline Jiménez-Venegas
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
- Master Program in Territorial Management of Natural Resources, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - Leonardo Zamora-Leiva
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Luciano Univaso
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Jorge Soto
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Yasna Tapia
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| | - Manuel Paneque
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| |
Collapse
|
5
|
Wang Y, Bai Y, Su J, Xu L, Ren Y, Ren M, Hou C, Cao M. Enhanced denitrification and p-nitrophenol removal performance via hydrophilic sponge carriers fixed with dual-bacterial: Optimization, performance, and enhancement mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134922. [PMID: 38885589 DOI: 10.1016/j.jhazmat.2024.134922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
7
|
Zeng Y, Xu L, Su J, Liu S, Ali A, Zhang P, Cao S. Denitrification driven by additional ferrous (Fe 2+) and manganous (Mn 2+) and removal mechanism of tetracycline and cadmium (Cd 2+) by biogenic Fe-Mn oxides. ENVIRONMENTAL RESEARCH 2024; 246:118159. [PMID: 38218519 DOI: 10.1016/j.envres.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Zoogloea sp. MFQ7 achieved excellent denitrification of 91.71% at ferrous to manganous ratio (Fe/Mn) of 3:7, pH of 6.5, nitrate concentration of 25 mg L-1 and carbon to nitrogen ratio of 1.5. As the Fe/Mn ratio increasd, the efficiency of nitrate removal gradually decreased, indicating that strain MFQ7 had a higher affinity for Mn2+ than Fe2+. In situ generated biogenic Fe-Mn oxides (BFMO) contained many iron-manganese oxides (MnO2, Mn3O4, FeO(OH), Fe2O3, and Fe3O4) as well as reactive functional groups, which play an significant part in tetracycline (TC) and cadmium (Cd2+) adsorption. The adsorption of TC and Cd2+ by BFMO can better fit the pseudo-second-order and Langmuir models. In addition, multiple characterization results of before and after adsorption indicated that the removal mechanism of BFMO on TC and Cd2+ was probably surface complexation adsorption and redox reactions.
Collapse
Affiliation(s)
- Yuxin Zeng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Zhang L, Wang Z, Su J, Ali A, Li X. Mechanisms of ammonia, calcium and heavy metal removal from nutrient-poor water by Acinetobacter calcoaceticus strain HM12. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119912. [PMID: 38176381 DOI: 10.1016/j.jenvman.2023.119912] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
An Acinetobacter calcoaceticus strain HM12 capable of heterotrophic nitrification-aerobic denitrification (HN-AD) under nutrient-poor conditions was isolated, with an ammonia nitrogen (NH4+-N) removal efficiency of 98.53%. It can also remove heavy metals by microbial induced calcium precipitation (MICP) with a Ca2+ removal efficiency of 75.91%. Optimal conditions for HN-AD and mineralization of the strain were determined by kinetic analysis (pH = 7, C/N = 2.0, Ca2+ = 70.0 mg L-1, NH4+-N = 5.0 mg L-1). Growth curves and nitrogen balance elucidated nitrogen degradation pathways capable of converting NH4+-N to gaseous nitrogen. The analysis of the bioprecipitation showed that Zn2+ and Cd2+ were removed by the MICP process through co-precipitation and adsorption (maximum removal efficiencies of 93.39% and 80.70%, respectively), mainly ZnCO3, CdCO3, ZnHPO4, Zn3(PO4)2 and Cd3(PO4)2. Strain HM12 produces humic and fulvic acids to counteract the toxicity of pollutants, as well as aromatic proteins to increase extracellular polymers (EPS) and promote the biomineralization process. This study provides a experimental evidence for the simultaneous removal of multiple pollutants from nutrient-poor waters.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
9
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Qin W, Zheng C, Yang J, Hong M, Song Y, Ma J. Long-term performance and biofilms of the novel nano manganese dioxide coupling carbon source pre-loaded biological activated carbon filters for drinking water. ENVIRONMENTAL RESEARCH 2024; 240:117436. [PMID: 37865322 DOI: 10.1016/j.envres.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In order to accelerate the start-up of biological activated carbon (BAC) filters and enhance ammonium (NH4+-N) removal performance, three substrates (sucrose and/or nano manganese dioxide (nMnO2)) pre-loaded BAC filters were set up to investigate the pollutants removals and microbiological characteristics for a long-term operation of 197 days. The average NH4+-N removal performance treated by the sucrose coupled with nMnO2 loaded BAC filter was the highest (71.18 %), which was 3.83 times of that by the control filter (18.58 %). 29 % of NH4+-N treated by the sucrose coupled with nMnO2 loaded BAC removed through the traditional nitrification and denitrification, or simultaneous nitrification and denitrification (SND) pathways according to the calculation of the alkalinity consumption (6.12 mmol/L). There was no leakage of carbon source and Mn, and no accumulation of nitrite from the substrates loaded BAC. The dominant bacteria in the sucrose coupled with nMnO2 loaded BAC were Dechloromona (accounting for 8.02% of the total bacterial) and Acidaminobacter (accounting for 15.16% of total bacterial) on the Day 180, which had the capacity of nitrification or denitrification. NH4+-N and micropollutants removals treated by the combined process of peracetic acid (PAA) pre-oxidation and substrates loaded BAC were significant due to the generation of assimilable organic carbon (AOC) (5.98 ± 1.93 μg-C/mL) by PAA (100 μM)/Fe2+ pre-oxidation and the higher biomass ((4.57 ± 3.07) × 107 cells/g DW BAC) in the sucrose coupled with nMnO2 loaded BAC filter. Therefore, nMnO2 coupling carbon source pre-loading strategy could not only enhance initial colonization, but also promote pollutants removals for long-term operation.
Collapse
Affiliation(s)
- Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Chengyuan Zheng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jingru Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Miaoqing Hong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
11
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
12
|
Li Y, Su Z, Dai T, Zheng Y, Chen W, Zhao Y, Wen D. Moderate anthropogenic disturbance stimulates versatile microbial taxa contributing to denitrification and aromatic compound degradation. ENVIRONMENTAL RESEARCH 2023; 238:117106. [PMID: 37699472 DOI: 10.1016/j.envres.2023.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Wastewater treatment plants (WWTPs) effluent often contains a significant amount of residual organic pollutants and nutrients, causing disturbance to the coastal effluent receiving areas (ERA). Microbial communities in coastal ERA sediments may benefit from the coexistence of organic pollutants and nutrients, promoting the emergence of versatile taxa that are capable of eliminating these substances simultaneously. However, the identification and exploration of versatile taxa in natural environments under anthropogenic disturbances remain largely uncharted territory. In this study, we specifically focused on the versatile taxa coupled by the degradation of aromatic compounds (ACs) and denitrification, using Hangzhou Bay in China as our study area. We explored how WWTPs effluent disturbance would affect the versatile taxa, and particularly examined the role of disturbance intensity in shaping their composition. Intriguingly, we found that versatile taxa were mainly derived from denitrifiers like Pseudomonas, suggesting the fulfilled potential of denitrifiers regarding ACs degradation. We also discovered that moderate disturbance stimulated the diversity of versatile taxa, resulting in strengthened functional redundancy. Through correlation network analysis, we further demonstrated that moderate disturbance enhanced the community-level cooperation. Thus, moderate disturbance serves as a catalyst for versatile taxa to maintain community function, making them more resilient to effluent disturbances. Additionally, we identified COD and NO3--N concentrations as significant environmental factors influencing the versatile taxa. Overall, our findings reveal the role of effluent disturbances in the promotion of versatile taxa, and highlight moderate disturbance can foster more robust versatile taxa that are better equipped to handle effluent disturbances.
Collapse
Affiliation(s)
- Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Liang E, Xu L, Su J, Liu Y, Qi S, Li X. Hydrogel bioreactor drives Feammox and synergistically removes composite pollutants: Performance optimization, microbial communities and functional genetic differences. BIORESOURCE TECHNOLOGY 2023; 387:129604. [PMID: 37544543 DOI: 10.1016/j.biortech.2023.129604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
14
|
Fan Y, Su J, Xu L, Liu S, Hou C, Liu Y, Cao S. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116307. [PMID: 37268205 DOI: 10.1016/j.envres.2023.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Wang Z, Su J, Ali A, Gao Z, Zhang R, Li Y, Yang W. Microbially induced calcium precipitation driven by denitrification: Performance, metabolites, and molecular mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117826. [PMID: 37001427 DOI: 10.1016/j.jenvman.2023.117826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Microbially induced calcium precipitation (MICP) driven by denitrification has attracted extensive attention due to its application potential in nitrate removal from calcium-rich groundwater. However, little research has been conducted on this technique at the molecular level. Here, Pseudomonas WZ39 was used to explore the molecular mechanisms of nitrate-dependent MICP and the effects of Ca2+ on bacterial transcriptional regulation and metabolic response. The results exhibited that appropriate Ca2+ concentration (4.5 mM) can promote denitrification and the production of ATP, EPSs, and SMPs. Genome-wide analysis showed that the nitrate-dependent MICP was accomplished through heterotrophic denitrification and CO2 capture. During this process, EPS biosynthesis and Ca2+ signaling regulation were involved in the nucleation template supply and Ca2+ homeostasis balance. Untargeted transcriptome- and metabolome-association analyses revealed that the addition of Ca2+ triggered the significant up-regulation in several key pathways, such as transmembrane transporter and channel activities, amino acid metabolism, fatty acid biosynthesis, and carbon metabolism, which played a momentous role in the mineral nucleation and energy provision. The detailed information provided novel insights for understanding the active control of bacteria on MICP, and has great significance for deepening the cognition of groundwater remediation using nitrate-dependent MICP technique.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Yan H, Xu L, Su J, Wei H, Li X, Cao S. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4: Removal efficiency, pathways, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 385:129422. [PMID: 37406832 DOI: 10.1016/j.biortech.2023.129422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In this study, the SMX degrading strain Proteus mirabilis sp. ZXY4 with surfactant manufacturing potential was isolated from sludge utilizing blood agar and CTAB agar plate. FTIR analysis indicated that the biosurfactant generated by strain ZXY4 was glycolipid. 3D-EEM demonstrated that SMX biodegradation was strongly connected to biosurfactants, the synergistic effect of biodegradation and biosurfactant made strain ZXY4 have excellent SMX degradation performance. Under the optimal conditions of inoculation dosage of 15%, temperature of 30 ℃, pH of 7 and initial SMX concentration of 5 mg L-1, strain ZXY4 could completely degrade SMX within 24 h. SMX biodegrades at low concentrations (less than5 mg L-1) followed by the zero-order kinetic model, high concentration (>5 mg L-1) is more consistent with the first-order kinetic model. LC-MS analysis revealed 14 SMX degradation intermediates, and five potential biodegradation mechanisms were postulated. The findings provide new insights into the biodegradation of SMX.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ling Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
18
|
Liang E, Xu L, Su J, Yang Y, Liu Y. Nano iron tetroxide-modified rice husk biochar promoted Feammox performance of Klebsiella sp. FC61 and synergistically removed Ni 2+ and ciprofloxacin. BIORESOURCE TECHNOLOGY 2023; 382:129183. [PMID: 37210034 DOI: 10.1016/j.biortech.2023.129183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The iron reduction coupled with ammonia oxidation process (Feammox) is a biological reaction process associated with the nitrogen cycle that has been discovered in recent years. In this study, the iron-reducing bacterium Klebsiella sp. FC61 was attached by synthesizing nano-loadings of iron tetroxide (nFe3O4) onto rice husk biochar (RBC), and the RBC-nFe3O4 was used as an electron shuttle to participate in the biological iron reduction process of soluble and insoluble Fe3+ to improve the ammonia oxidation efficiency to 81.82%. This acceleration of electron transfer increased the carbon consumption rate and further tuned up the COD removal efficiency to 98.00%. The Feammox could be coupled with iron denitrification for internal nitrogen/iron cycling to reduce the accumulation of nitrate by-products and achieve the recycling of iron. In addition, pollutants such as Ni2+, ciprofloxacin, and formed chelates could be removed by pore adsorption and π-π interactions using bio-iron precipitates produced by iron-reducing bacteria.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Ma B, Niu L, Li N, Pan S, Li A, Chu M, Liu H, Kosolapov DB, Xin X, Zhi W, Hou L, Chen Z, Zhang Y, Cao S, Huang T, Zhang H. Promoted aerobic denitrification through denitrifying fungal communities: Co-occurrence patterns and treatment of low C/N micro-polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163859. [PMID: 37142031 DOI: 10.1016/j.scitotenv.2023.163859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Despite the growing interest in using mixed-culture aerobic denitrifying fungal flora (mixed-CADFF) for water remediation, there is limited research on their nitrogen removal performance in low C/N polluted water bodies. To address this knowledge gap, we isolated three mixed-CADFFs from overlying water in urban lakes to evaluate their removal performance. The total nitrogen (TN) removal efficiencies were 93.60 %, 94.64 %, and 95.18 %, while the dissolved organic carbon removal efficiencies were 96.64 %, 95.12 %, and 96.70 % for mixed-CADFF LN3, LN7, and LN15, respectively in the denitrification medium under aerobic conditions at 48 h cultivation. The three mixed-CADFFs could utilize diverse types of low molecular weight carbon sources to drive the aerobic denitrification processes efficiently. The optimal C/N ratio for the mixed-CADFFs were C/N = 10, and then C/N = 15, 7, 5, and 2. The high-throughput sequencing analysis of three mixed-CADFFs indicated that Eurotiomycetes, Cystobasidiomycetes, and Sordariomycetes were the dominant class in the communities at class level. The network analysis showed that the rare fungal species, such as Scedosporium dehoogii Saitozyma, and Candida intermedia presented positively co-occurred with the TN removal and organic matter reduction capacity. Immobilization mixed-CADFFs treatment raw water experiments indicated that three mixed-CADFFs could reduce nearly 62.73 % of TN in the low C/N micro-polluted raw water treatment. Moreover, the cell density and cell metabolism indexes were also increased during the raw water treatment. This study will provides new insight into resource utilization of the mixed-culture aerobic denitrifying fungal community in field of environment restoration.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, UT 84322, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
20
|
Min Y, Wang Z, Su J, Ali A, Huang T, Yang W. Simultaneous removal of ammonia nitrogen, recovery of phosphate, and immobilization of nickel in a polyester fiber with shell powder and iron carbon spheres bioreactor: Optimization and pathways mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115476. [PMID: 36805352 DOI: 10.1016/j.envres.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.
Collapse
Affiliation(s)
- Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
21
|
Liang E, Ali A, Su J, Xu L, Huang T, Yang Y, Liu Y. Treatment of micro-polluted water with low C/N ratio by immobilized bioreactor using PVA/sintered ores@sponge cube: Performance effects and potential removal pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162003. [PMID: 36737021 DOI: 10.1016/j.scitotenv.2023.162003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of industrial products containing lead (Pb2+) and tetracycline (TC) medications led to the combined pollution of nitrate, Pb2+, and TC in water. A novel biomaterial containing polyvinyl alcohol (PVA) and sponge cube with sintered ores (PVA/sintered ores@sponge cube) was prepared to ensure the maximum NO3--N removal efficiency (96.21 %) of the bioreactor under the hydraulic retention time (HRT) of 7.0 h, pH of 6.0, and the carbon to nitrogen (C/N) of 1.5 that had the ability to remove TC and Pb2+ synergistically. Composite pollutants slightly decreased denitrification performance in the combined pollution system on account of the addition of sintered ores. Results of scanning electron microscopy (SEM) showed that the sintered ores in the biocarrier induced denitrification and the adsorption of bio‑iron oxides were involved in the removal of TC and Pb2+. The simultaneous removal of composite pollutants during denitrification was facilitated by extracellular polymeric substances (EPS) as revealed by Fourier transform infrared spectroscopy (FTIR) and fluorescence excitation-emission matrix (EEM). In addition, high-throughput sequencing results showed that Zoogloea had the highest proportion in the bioreactor.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Feng L, Yan J, Jiang Z, Chen X, Li Z, Liu J, Qian X, Liu Z, Liu G, Liu C, Wang Y, Hu G, Dong W, Cui Z. Characterization of polyhydroxybutyrate (PHB) synthesized by newly isolated rare actinomycetes Aquabacterium sp. A7-Y. Int J Biol Macromol 2023; 232:123366. [PMID: 36693609 DOI: 10.1016/j.ijbiomac.2023.123366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Polyhydroxyalkanoates (PHAs) as biodegradable plastics have attracted increasing attention due to its biodegradable, biocompatible and renewable advantages. Exploitation some unique microbes for PHAs production is one of the most competitive approaches to meet complex industrial demand, and further develop next-generation industrial biotechnology. In this study, a rare actinomycetes strain A7-Y was isolated and identified from soil as the first PHAs producer of Aquabacterium genus. Produced PHAs by strain A7-Y was identified as poly(3-hydroxybutyrate) (PHB) based on its structure characteristics, which is also similar with commercial PHB. After optimization of fermentation conditions, strain A7-Y can produce 10.2 g/L of PHB in 5 L fed-batch fermenter, corresponding with 54 % PHB content of dry cell weight, which is superior to the reported actinomycetes species. Furthermore, the phaCAB operon in stain A7-Y was excavated to be responsible for the efficient PHB production and verified in recombinant Escherichia coli. Our results indicate that strain A7-Y and its biosynthetic gene cluster are potential candidates for developing a microbial formulation for the PHB production.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Life Sciences, Shihezi University, Shihezi 832003, PR China
| | - Jinyuan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ziqiang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guangyu Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chongyu Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuehan Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Yan H, Ali A, Su J, Shi J, Xu L, Huang T, Wang Y. Sodium alginate/sinter gel spheres immobilized lysozyme producing strain SJ25 enhanced sludge reduction: Optimization and mechanism. BIORESOURCE TECHNOLOGY 2023; 371:128643. [PMID: 36681345 DOI: 10.1016/j.biortech.2023.128643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
In order to promote sludge hydrolysis and improve the efficiency of aerobic digestion, the sodium alginate immobilized gel spheres pellet B (SIP B) were prepared using sodium alginate (SA) and sinter as carrier to immobilize lysozyme producing strain SJ25. The optimal conditions for SIP B to promote sludge hydrolysis were 5.6 mg SS-1 dosage and pH of 9.0. Under the optimal condition compared with the control group, the reduction efficiency of suspended solids (SS) in 24 h was increased by 26.89 %, the release of soluble chemical oxygen demand (SCOD) was increased by 517.79 mg L-1, polysaccharide (PS) and protein (PN) concentrations were increased by 186.69 and 368.68 mg L-1, respectively. SIP B enhanced the degradation efficiency of sludge by promote the release of lysozyme, prolonging the action time of the enzyme, enhancing the metabolism and membrane transport of xenobiotics, carbohydrate and amino.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Xu L, Yang Y, Su J, He C, Shi J, Yan H, Wei H. Simultaneous removal of nitrate, lead, and tetracycline by a fixed-biofilm reactor assembled with kapok fiber and sponge iron: Comparative analysis of operating conditions and biotic community. ENVIRONMENTAL RESEARCH 2023; 219:115163. [PMID: 36580984 DOI: 10.1016/j.envres.2022.115163] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In recent years, under the condition of lack of carbon source, the presence of composite micro-pollutants make the removal of nitrate seriously damaged, and to find a suitable way to solve this problem is imminent. A fixed-biofilm carrier modified by mixing sponge iron (SI) and kapok fiber (KF) combined with strain Zoogloea sp. FY6 was constructed in this study to get a fixed-biofilm reactor with merit denitrification performance. By adjusting the operation parameters, it can be concluded that when the carbon to nitrogen (C/N) ratio was 1.5, the hydraulic retention time (HRT) was 6.0 h, and the pH was 6.0, the nitrate removal efficiency (NRE) of the fixed-biofilm reactor was up to 95.4% (2.95 mg L-1 h-1). In addition, the fixed-biofilm reactor constructed in this study can remove lead (Pb2+) and tetracycline (TC) excellently in the presence of SI and Zoogloea sp. FY6, and the denitrification performance can still maintain a high level under the influence of different concentrations of Pb2+ and TC. Furthermore, the addition of SI not only removes the compound pollutants, but also protects the toxicity of the pollutant inflow in the bioreactor, and the metabolic process of microorganisms in the bioreactor also removes some of the compound pollutants. The high-throughput data showed the abundance of strain Zoogloea sp. FY6 was still the highest value under the influence of various pollutants, and the metagenomic prediction showed that the fixed-biofilm reactor had perfect denitrification process and iron redox cycle benefits. This study provides a valuable reference for sustainable utilization of natural biological resources and reduction of material costs in wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Chong He
- School of Water Resource and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Shanghai Baoye Metallurgical Engineering Co., Ltd, Baoshan District, Shanghai, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
25
|
Wang Y, Ren S, Wang P, Wang B, Hu K, Li J, Wang Y, Li Z, Li S, Li W, Peng Y. Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159721. [PMID: 36306837 DOI: 10.1016/j.scitotenv.2022.159721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
As a newly identified nitrogen loss pathway, the nitrate-dependent ferrous oxidation (NDFO) process is emerging as a research hotspot in the field of low carbon to nitrogen ratio (C/N) wastewater treatment. This review article provides an overview of the NDFO process and summarizes the functional microorganisms associated with NDFO from different perspectives. The potential mechanisms by which external factors such as influent pH, influent Fe(II)/N (mol), organic carbon, and chelating agents affect NDFO performance are also thoroughly discussed. As the electron-transfer mechanism of the NDFO process is still largely unknown, the extensive chemical Fe(II)-oxidizing nitrite-reducing pathway (NDFOchem) of the NDFO process is described here, and the potential enzymatic electron transfer mechanisms involved are summarized. On this basis, a three-stage electron transfer pathway applicable to low C/N wastewater is proposed. Furthermore, the impact of Fe(III) mineral products on the NDFO process is revisited, and existing crusting prevention strategies are summarized. Finally, future challenges facing the NDFO process and new research directions are discussed, with the aim of further promoting the development and application of the NDFO process in the field of nitrogen removal.
Collapse
Affiliation(s)
- Yaning Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Shuang Ren
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Peng Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China.
| | - Bo Wang
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China; Gansu membrane science and technology research institute Co.,Ltd., Lanzhou 730020, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou 730020, China
| | - Yae Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| | - Zongxing Li
- Key Laboratory of Ecohydrology of Inland River Basin/Gansu Qilian Mountains Ecology Research Center, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sumei Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wang Li
- Taiyuan university of technology, Taiyuan 030024, China; State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan 030024, China
| | - Yuzhuo Peng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China
| |
Collapse
|
26
|
Li J, Ali A, Su J, Huang T, Zhai Z, Xu L. Synergistic removal of nitrate by a cellulose-degrading and denitrifying strain through iron loaded corn cobs filled biofilm reactor at low C/N ratio: Capability, enhancement and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 369:128433. [PMID: 36473584 DOI: 10.1016/j.biortech.2022.128433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Optimization of nitrate removal rate under low carbon-to-nitrogen ratio has always been one of the research hotspots. Biofilm reactor based on functional carrier and using interspecific synergic effect of strains provides an insight. In this study, iron-loaded corn cob was used as a functional carrier that can contribute to the cellulose degradation, iron cycling, and collaborative denitrification process of microorganisms. During biofilm reactor operation, the maximum nitrate removal efficiency was 99.30% and could reach 81.73% at no carbon source. Dissolved organic carbon and carrier characterization showed that strain ZY7 promoted the release of carbon source. The crystallinity of cellulose I and II in carrier of experimental group increased by 31.26% and decreased by 21.83%, respectively, in comparison to the control group. Microbial community showed the synergistic effect among different strains. The vitality and metabolic activity of the target microorganisms in bioreactor were increased through interspecific bacterial cooperation.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
27
|
Acylamino-functionalized hyper-cross-linked polymers for efficient adsorption removal of phenol in aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Yang W, Xu L, Wang Z, Li K, Hu R, Su J, Zhang L. Synchronous removal of ammonia nitrogen, phosphate, and calcium by heterotrophic nitrifying strain Pseudomonas sp. Y1 based on microbial induced calcium precipitation. BIORESOURCE TECHNOLOGY 2022; 363:127996. [PMID: 36150425 DOI: 10.1016/j.biortech.2022.127996] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Pseudomonas sp. Y1, a strain with superior synchronous removal ability of ammonia nitrogen (NH4+-N), phosphate (PO43--P), and calcium (Ca2+) was isolated, with the removal efficiencies of 92.04, 99.98, and 83.40 %, respectively. Meanwhile, the chemical oxygen demand (COD) was degraded by 90.33 %. Through kinetic analysis, the optimal cultivated conditions for heterotrophic nitrification-aerobic denitrification (HNAD) and biomineralization were determined. The growth curves experimental results of different nitrogen sources indicated that strain Y1 could remove NH4+-N through HNAD. The results of excitation-emission matrix (EEM) proved that the appearance of extracellular polymeric substances (EPS) promoted the precipitation of phosphate minerals. Finally, the characterization results of the bioprecipitates showed that the HNAD process produced the alkalinity required for microbial induced calcium precipitation (MICP), resulting in the removal of PO43- via adsorption and co-precipitation. This study provides a theoretical basis for the application of microorganisms to achieve synchronous nutrient removal and phosphorus recovery in wastewater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
29
|
Xu L, Su J, Li K, Hu R, Yan H, Liang E, Zhou Z, Shi J. Performance of hydrogel immobilized bioreactors combined with different iron ore wastes for denitrification and removal of copper and lead: Optimization and possible mechanism. WATER RESEARCH 2022; 225:119196. [PMID: 36206681 DOI: 10.1016/j.watres.2022.119196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Reasonable and efficient removal of mixed pollutants (nitrate and heavy metals) in industrial wastewater under heavy metal pollution has attracted more attention in recent years. The target strain Aquabacterium sp. XL4 was immobilized with different iron ore wastes (IOW) using polyvinyl alcohol (PVA) to construct four immobilized bioreactors. The results showed that when the ratio of C/N was 1.5 and the hydraulic retention time (HRT) was 8.0h, the denitrification performance of the bioreactor was the best, and the maximum denitrification efficiency of the bioreactor with sponge iron (SI) as the iron source was 97.19% (2.42mg L-1 h-1). Furthermore, by adjusting the concentration of Cu2+ and Pb2+, the stress behavior of the bioreactor to heavy metals under the influence of each IOW was investigated. The bioreactor has stronger tolerance and removal efficiency to Pb2+ and Cu2+ in the presence of pellets ore (PO) and refined iron ore (RO), respectively. Moreover, the high-throughput data showed that Aquabacterium accounted for a high proportion in the immobilized bioreactor, and the prediction of functional genes based on the KEGG database showed that the addition of IOW was closely related to the acceleration of nitrate transformation and the inflow and outflow of iron in cells.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kai Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruizhu Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
30
|
Zhang R, Wang X, Ali A, Su J, Wang Z, Li J, Liu Y. Single-step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ3 via facultative anaerobic microbially induced calcium precipitation: Kinetics, mechanism, and characterization. BIORESOURCE TECHNOLOGY 2022; 361:127707. [PMID: 35905871 DOI: 10.1016/j.biortech.2022.127707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Confronting the complex contaminated water, Aquabacterium sp. CZ3 could perform microbially induced calcium precipitation (MICP) under facultative anaerobic condition using phenol as supplementary carbon source. Strain CZ3 exhibited a remarkable ability to remove nitrate, fluoride, calcium and phenol with removal rates of 100.00, 87.50, 66.24 and 100.00%, respectively. The Modified Gompertz model was used for kinetic analysis to determine the optimum conditions for denitrification and degradation of phenol. The mechanism of anaerobic MICP was enhanced by measuring the self-aggregation properties of the isolates. The mechanism of fluoride removal was identified as co-precipitation and adsorption by characterization analysis of the bioprecipitation. Furthermore, the changes in soluble metabolites under phenol stress explained the utilization of phenol as a co-substrate by microorganisms. This is a novel report on phenol degradation by anaerobic MICP, which provides a theoretical basis for expanding its practical application.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xumian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
31
|
Zhai Z, Su J, Ali A, Xu L, Wahid F. Biological denitrification potential of cellulase-producing Cupriavidus sp. ZY7 and denitrifying Aquabacterium sp. XL4 at low carbon-to-nitrogen ratio: Performance and synergistic properties. BIORESOURCE TECHNOLOGY 2022; 360:127600. [PMID: 35820558 DOI: 10.1016/j.biortech.2022.127600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
This study emphasizes on the cellulase production characteristics of strain ZY7 and its collaboration with nitrate-dependent ferrous oxidizing (NFO) strain XL4 to achieve efficient denitrification at low carbon-to-nitrogen (C/N) ratio. Results indicated that the denitrification efficiency increased from 65.47 to 97.99% at 24 h after co-culture at C/N of 1.0. Three-dimensional fluorescence excitation-emission matrix (3D-EEM) showed significant changes in the intensity of soluble microbial products (SMP), fulvic-like materials, and aromatic proteins after co-culture. Bio-precipitates were characterized by Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and X-ray diffraction (XRD), which showed that cellulose structure was disrupted and the metabolites were potential carbon source for denitrification. In addition, cellulase activity suggested that the hydrolysis of β-1,4-glycosidic bonds and oligosaccharides may be the rate-limiting steps in cellulose degradation. This work promoted the understanding of denitrification characteristics of co-culture and expanded the application of cellulose degrading bacteria in sewage treatment.
Collapse
Affiliation(s)
- Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fazli Wahid
- Department of Agriculture, The University of Swabi, Swabi 23561, Pakistan
| |
Collapse
|
32
|
Yang Y, Ali A, Su J, Xu L, Wang X, Liang E. Simultaneous removal of nitrate, tetracycline, and Pb(II) by iron oxidizing strain Zoogloea sp. FY6: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 360:127569. [PMID: 35788391 DOI: 10.1016/j.biortech.2022.127569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Based on the prevalence of combined antibiotics and heavy metals contamination in the aquatic environment, this study utilized a microbial approach to achieve simultaneous removal of nitrate (NO3--N), tetracycline (TTC), and Pb(II). Zoogloea sp. FY6 could achieve an optimal NO3--N removal efficiency of 91.5% under C/N ratio of 2.0, at a pH of 6.3, and Fe(II) concentration of 20.23 mg L-1 based on response surface methodology. Additionally, strain FY6 was further found to achieve 89.9 and 81.7% removal of TTC and Pb(II) at 6 h under the optimal conditions. Finally, the results of Fluorescence excitation-emission matrix, X-ray diffraction, Fourier transform infrared spectrometer, and X-ray photoelectron spectroscopy further proved that the biologically formed nanoscale iron oxides and biological action jointly led to the removal of TTC and Pb(II). This study provided a theoretical basis for the application of microbially driven process to remove multi-pollutants in micro-polluted water bodies.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xumian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Tang Z, Song X, Xu M, Yao J, Ali M, Wang Q, Zeng J, Ding X, Wang C, Zhang Z, Liu X. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128969. [PMID: 35472535 DOI: 10.1016/j.jhazmat.2022.128969] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of per- and polyfluoroalkyl substances (PFASs) and chlorinated aliphatic hydrocarbons (CAHs) co-contamination on the microbial community in the field have not been studied. In this study, we evaluated the presence of PFASs and CAHs in groundwater collected from a fluorochemical plant (FCP), and carried out Illumina MiSeq sequencing to understand the impact of mixed PFASs and CAHs on the indigenous microbial community. The sum concentrations of 20 PFASs in FCP groundwater ranged from 2.05 to 317.40 μg/L, and the highest PFOA concentration was observed in the deep aquifer (60 m below ground surface), co-contaminated by dense non-aqueous-phase liquid (DNAPL). The existence of PFASs and CAHs co-contamination in groundwater resulted in a considerable decrease in the diversity of microbial communities, while the abundance of metabolisms associated with contaminants biodegradation has increased significantly compared to the background wells. Furthermore, Acinetobacter, Pseudomonas and Arthrobacter were the dominant genera in PFASs and CAHs co-contaminated groundwater. The presence of high concentrations of PFASs and CAHs has been positively associated with the genus of Citreitalea. Finally, geochemical parameters, such as ORP, sulfate and nitrate were the key factors to shape up the structure of the microbial community and sources to rich the abundance of the potential functional bacteria.
Collapse
Affiliation(s)
- Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Jin Yao
- Zhongke Hualu Soil Remediation Engineering Co., LTD, Dezhou 253500, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
34
|
Shi J, Su J, Ali A, Xu L, Yan H, Su L, Qi Z. Newly isolated lysozyme-producing strain Proteus mirabilis sp. SJ25 reduced the waste activated sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 358:127392. [PMID: 35640815 DOI: 10.1016/j.biortech.2022.127392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To promote aerobic digestion of sludge, a lysozyme-producing strain was screened and identified as Proteus mirabilis sp. SJ25. The results of response surface methodology (RSM) showed that at the temperature of 30.8 °C, pH of 6.69, and the inoculum amount of 2.81%, the sludge reduced by 26.58%. Compared with the control group, the removal efficiency of suspended solids (SS) from sludge in the experimental group increased by 14.60%, the release of soluble chemical oxygen demand (SCOD) increased by 2.21 times, and the release of intracellular substances increased significantly. Actinobacteriota, Chloroflexi, Proteobacteria, Bacteroidota, and Firmicutes were the main phyla involved in the sludge reduction process. Strain SJ25 enhanced the degradation rate of sludge by releasing lysozyme lysis to lyse bacteria, enhancing the metabolism and membrane transport of carbohydrates and amino acids. This study provides a new perspective in the field of efficient degradation of waste sludge.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| |
Collapse
|
35
|
Xu L, Su J, Ali A, Huang T, Yang Y, Shi J, Liang E. Magnetite-loaded rice husk biochar promoted the denitrification performance of Aquabacterium sp. XL4 under low carbon to nitrogen ratio: Optimization and mechanism. BIORESOURCE TECHNOLOGY 2022; 348:126802. [PMID: 35131457 DOI: 10.1016/j.biortech.2022.126802] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The removal of nitrate (NO3--N) under the low carbon to nitrogen (C/N) ratio is a widespread issue. Here in, a modified biochar (MRHB) was prepared by combining rice husk and magnetite to promote the denitrification performance of Aquabacterium sp. XL4 under low C/N ratio. In addition, when the modified H2O2 concentration was 0.6 mM, the dosage was 5.0 g L-1, the C/N ratio was 1.5, and the pH was neutral, the nitrate removal efficiency is 97.9%. Fluorescence excitation-emission matrix spectra (3D-EEM) showed that the metabolism of strain XL4 was stable under optimal conditions. Furthermore, the results of flow cytometry (FC) showed that the amounts of intact cells with MRHB was excellent. The measurement of cytochrome c concentration, total membrane permeability (Tmp), electron transport system activity (ETSA), and cyclic voltammetry curve (CV) confirmed that the MRHB improved the electron transfer and membrane activity of strain XL4.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|