1
|
Patchaiyappan A, Singh A, Bautès N, Abimannan A. Face mask littering in coastal environment of Coromandel beaches, a comparison between street and beach littering - perspective and perceptions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61270-61282. [PMID: 39412720 DOI: 10.1007/s11356-024-35014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The usage of face mask has been encouraged globally to combat the COVID-19 pandemic. However, their improper disposal has begun to impact the environment. In the present study, face mask littering was assessed in sixteen stations across the beaches in Coromandel coast of South India for a period of four weeks. Moreover, an online questionnaire was recorded to evaluate the people's perception about face mask usage and littering. In terms of land use pattern, stations with both fishing and tourism activities had higher abundance of face mask littering when compared with exclusive fishing and tourism stations. The study also found that mask littering was higher in streets when compared to the beaches. Of 163 respondents, most of the respondents preferred using disposable single use masks and 39.9% of the respondents preferred to dispose of the face masks along with other wastes. The study highlights the lack of proper solid waste management, negligent littering, and the need for raising awareness, strategic intervention to control this menace.
Collapse
Affiliation(s)
- Arunkumar Patchaiyappan
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India.
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
- Svarnim, Sri Aurobindo Society, Puducherry, 605001, India.
| | - Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nicolas Bautès
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India
| | - Arulkumar Abimannan
- Department of Biotechnology, Achariya Arts and Science College, Affiliated to Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
2
|
De-la-Torre GE, Dioses-Salinas DC, Ribeiro VV, Castro ÍB, Ben-Haddad M, Ortega-Borchardt JÁ. Marine litter along the Peruvian coast: spatiotemporal composition, sources, hazard, and human modification relations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58396-58412. [PMID: 39312112 DOI: 10.1007/s11356-024-34834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/24/2024] [Indexed: 10/11/2024]
Abstract
Marine litter (ML) represents an escalating environmental issue, particularly in Latin America, where comprehensive studies are scarce despite critical solid waste management challenges and continuous human modification occurring on the coasts. To contribute to the knowledge of ML in the southeast Pacific, this study examined contamination across 10 beaches on Peru's extensive coast. Overall, ML contamination was categorized as moderate (with an ML concentration of 0.49 ± 0.64 items∙m-2), while significantly differing between summer (dirty with an ML concentration of 0.56 ± 0.66 items∙m-2) and winter (moderate with an ML concentration of 0.47 ± 0.60 items∙m-2). Three beaches were extremely dirty (concentrations of ML exceeded 1.0 items∙m-2). Predominant materials, items, and sources were plastic, cigarette butts (CBs), and mixed packaging. The Peruvian coast faced CB leachate impact (CBPI = 3.5 ± 3.5), reaching severe levels on two beaches, with considerable hazardous litter (HALI = 3.0 ± 2.9). Additionally, a higher degree of human modification was associated with higher ML levels along the coast.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (Unifesp), Santos, Brazil
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | | |
Collapse
|
3
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
4
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Minaz M, Ipek ZZ, Bayçelebi E, Oral M, Mutlu T, Karsli B, Kayis S. Effect of parasitic infection on microplastic ingestion in a native leuciscid hybrid species (Alburnus derjugini x Squalius orientalis) from Kürtün Dam Lake, Türkiye. CHEMOSPHERE 2024; 363:142978. [PMID: 39084304 DOI: 10.1016/j.chemosphere.2024.142978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Microplastic (MP) pollution is currently one of the most serious environmental issues. MPs were investigated in the Kürtün Dam Lake in healthy individuals of the native leuciscid hybrid (Alburnus derjugini x Squalius orientalis) species and individuals infected with the Ligula intestinalis parasite. Although MP abundance appeared to be higher in non-infected fish (NIF) than in L. intestinalis (L) and infected fish (IF), the MP abundance in IF was higher, because the parasite theoretically belongs to IF. In addition to the observation of MPs in the gastrointestinal tract (GIT) of fish, the diffusion of MPs by parasites settled in the body cavity indicates that MPs are not only present in the GIT. Therefore, predation on existing fish by birds causes MP dispersion. In the present study, the most common MP shape was fiber (100% for NIF and IF, 85.7% for L), the MP color was black (57.1% for IF and L) and orange (50% for NIF), and the polymer type was polyamide (57.1% for IF, 50% for NIF) and polyethylene terephthalate (28.5% for L). These MP compositions led us to believe that textile effluents and aquaculture operations in dam lakes could be sources of pollution. Therefore, this study provides insights for future research to elucidate the connection between MP consumption and parasite infection.
Collapse
Affiliation(s)
- Mert Minaz
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Zeynep Zehra Ipek
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Munevver Oral
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Baris Karsli
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Sevki Kayis
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| |
Collapse
|
6
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Ben-Haddad M, Dobaradaran S. Floating microplastic pollution in the vicinity of a marine protected area and semi-enclosed bay of Peru. MARINE POLLUTION BULLETIN 2024; 205:116659. [PMID: 38950515 DOI: 10.1016/j.marpolbul.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
A baseline survey for floating microplastics (MPs) in the vicinity of a marine protected area and semi-enclosed bay of northern Peru was carried out. An average concentration of 0.22 MPs/L was estimated, primarily dominated by blue polyethylene terephthalate fibers. The distribution of floating MPs suggests that they tend to accumulate within the semi-enclosed Sechura Bay regardless of the sampling season. This behavior may be explained by local surface currents in the bay, which flow inwards and exhibit vorticities that could entrap MPs. Future studies are suggested to investigate the trajectory and fate of floating MPs within semi-enclosed areas. On the other hand, the impact of floating MPs on the trophic chain of coastal marine protected areas requires further research.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| |
Collapse
|
7
|
Weng Y, Yan H, Nan X, Sun H, Shi Y, Zhang Y, Zhang N, Zhao X, Liu B. Potential health risks of microplastic fibres release from disposable surgical masks: Impact of repeated wearing and handling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134219. [PMID: 38615647 DOI: 10.1016/j.jhazmat.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Disposable surgical masks undeniably provide important personal protection in daily life, but the potential health risks by the release of microplastic fibres from masks should command greater attention. In this study, we conducted a microplastic fibre release simulation experiment by carrying masks in a pocket and reusing them, to reveal the number and morphological changes of microfibres released. Fourier transform infrared spectrometry, scanning electron microscopy, and optical microscopy were employed to analyse the physical and chemical characteristics of the mask fibres. The results indicated that the reuse of disposable masks led to a significant release of microplastic fibres, potentially leading to their migration into the respiratory system. Furthermore, the release of microplastic fibres increased with prolonged external friction, particularly when masks were stored in pockets. The large-scale release of microplastic fibres due to mask reuse raises concerns about potential health risks to the human respiratory system. The reuse of disposable masks should be also strictly avoided in daily life in the future. Furthermore, the current study also established a robust foundation for future research endeavours on health risks associated with microplastic fibres entering the respiratory system through improper mask usage.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Hua Yan
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xinrui Nan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yutian Shi
- 108K of Clinical Medicine, Innovation School, China Medical University, Shenyang 110122, China
| | - Yueao Zhang
- 106K of Clinical Medicine (5+3 integration), the First Clinical Medical School, China Medical University, Shenyang 110001, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Baoqin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Han Y, Gu X, Lin C, He M, Wang Y. Effects of COVID-19 on coastal and marine environments: Aggravated microplastic pollution, improved air quality, and future perspective. CHEMOSPHERE 2024; 355:141900. [PMID: 38579953 DOI: 10.1016/j.chemosphere.2024.141900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.
Collapse
Affiliation(s)
- Yixuan Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiang Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Rangel DF, Costa LL, Ribeiro VV, De-la-Torre GE, Castro ÍB. Protective personal equipment on coastal environments: Identifying key drivers at a global scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133839. [PMID: 38402681 DOI: 10.1016/j.jhazmat.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The contamination of coastal ecosystems by personal protective equipment (PPE) emerged as a significant concern immediately following the declaration of the COVID-19 pandemic by the World Health Organization (WHO). Hence, numerous studies have assessed PPE occurrence on beaches worldwide. However, no predictors on PPE contamination was so far pointed out. The present study investigated social and landscape drivers affecting the PPE density in coastal environments worldwide using a meta-analysis approach. Spatial variables such as urban modification levels, coastal vegetation coverage, population density (HPD), distance from rivers (DNR), and poverty degree (GGRDI) were derived from global satellite data. These variables, along with the time elapsed after WHO declared the pandemic, were included in generalized additive models as potential predictors of PPE density. HPD consistently emerged as the most influential predictor of PPE density (p < 0.00001), exhibiting a positive effect. Despite the presence of complex non-linear relationships, our findings indicate higher PPE density in areas with intermediate GGRDI levels, indicative of emerging economies. Additionally, elevated PPE density was observed in areas located further away from rivers (p < 0.001), and after the initial months of the pandemic. Despite the uncertainties associated with the varied sampling methods employed by the studies comprising our database, this study offers a solid baseline for tackling the global problem of PPE contamination on beachesguiding monitoring assessments in future pandemics.
Collapse
Affiliation(s)
| | - Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Instituto Solar Brasil de Desenvolvimento Saúde e Pesquisa - ISOBRAS, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
10
|
Ortega-Borchardt JÁ, Barba-Acuña ID, De-la-Torre GE, Ramírez-Álvarez N, García-Hernández J. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic on beaches in the eastern region of the Gulf of California, Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167539. [PMID: 37797773 DOI: 10.1016/j.scitotenv.2023.167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The COVID-19 pandemic has led to an increase in plastic pollution, including improper disposal of personal protective equipment (PPE). This study focuses on examining the presence and distribution of discarded PPE in three locations in Sonora, Mexico, located within the Gulf of California. Transects were conducted in 2021 and 2022, during which PPE items were visually identified, photographed, and classified. Face masks were found to be the most prevalent PPE type (96% of the total), with polymer-based masks being the most commonly observed (97% of the total). The density of PPE was higher on recreational beaches compared to non-recreational ones. Statistical analysis revealed a significant difference (W = 217.5, p = 0.014) in the PPE density between the sampled recreational beaches in 2021 and 2022, with a higher density recorded in the first year. Improper disposal of PPE poses environmental risks and potential threats to marine organisms. The documented discarded COVID-19-related PPE in this study provides important baseline information for future research and monitoring. This information is valuable to better understand the ecotoxicological effects of PPE and develop effective waste management strategies in the Gulf of California.
Collapse
Affiliation(s)
- José Ángel Ortega-Borchardt
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico.
| | - Isai David Barba-Acuña
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas-UABC, Carretera Tijuana-Ensenada 3917, Col. Playitas, Ensenada, B.C. C.P. 22860, Mexico
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| |
Collapse
|
11
|
Paço A, Oliveira AM, Ferreira-Filipe DA, Rodrigues ACM, Rocha RJM, Soares AMVM, Duarte AC, Patrício Silva AL, Rocha-Santos T. Facemasks: An insight into their abundance in wetlands, degradation, and potential ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166232. [PMID: 37574074 DOI: 10.1016/j.scitotenv.2023.166232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.
Collapse
Affiliation(s)
- Ana Paço
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Forero López AD, Fernández Severini MD, Rimondino GN, Malanca FE, Dobaradaran S, Aragaw TA, Mghili B, Ayala F. Plastic and paint debris in marine protected areas of Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165788. [PMID: 37524177 DOI: 10.1016/j.scitotenv.2023.165788] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
13
|
Aslan H, Yılmaz O, Benfield MC, Becan SA. Temporal trends in personal protective equipment (PPE) debris during the COVID-19 pandemic in Çanakkale (Turkey). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165377. [PMID: 37422228 DOI: 10.1016/j.scitotenv.2023.165377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
This study examines trends in PPE (masks, gloves) and disinfecting wipes over three years of the pandemic. The densities of discarded masks, wet wipes, and gloves (personal protective equipment: PPE), were quantified on the streets of Canakkale, Turkey during similar time periods in 2020, 2021 and 2022. Geotagged images of PPE on the streets and sidewalks were documented with a smartphone, while the track of an observer was recorded using a fitness tracker app along a 7.777 km long survey route in the city center, parallel to the Dardanelles Strait. A total of 18 surveys were conducted over three years, and the survey route was subdivided into three zones based on utilization patterns: pedestrian zone, traffic zone and a recreational park zone. The combined densities of all types of PPE density were high in 2020, lower in 2021 and highest in 2022. The within year trend showed an increase over the three study years. The average density of gloves declined from an initially high level in 2020, when the SARS-CoV-2 virus was thought to be transmitted by contact, to near zero in 2021 and to zero in 2022. Densities of wipes were similar in 2020 and 2021 and higher in 2022. Masks were initially difficult to procure in 2020, and their densities progressively increased during that year reaching a plateau in 2021 with similar densities in 2022. PPE densities were significantly lower in the pedestrian route relative to the traffic and park routes, which were not different from each other. The partial curfews implemented by the Turkish government and the effects of prevention measures taken on the PPE concentration in the streets are discussed along with the importance of waste management practices.
Collapse
Affiliation(s)
- Herdem Aslan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Okan Yılmaz
- Department of Landscape Architecture, Faculty of Architecture and Design, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Ahmet Becan
- Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
14
|
Aragaw TA. Sustainable management of drinking plastic straws is required to reduce plastic pollution: Are we using them more during COVID-19? JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 12:100328. [PMID: 37324518 PMCID: PMC10234838 DOI: 10.1016/j.hazadv.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, single-use plastic pollution attracts the attention of scholars, policymakers, and practitioners. In addition to personal protective equipment (PPEs) waste during the COVID-19 pandemic, other unpreceded plastic wastes such as packaging from online shopping and food delivery, viruses confirmatory testing, and drinking straws also contributed to pollution and worsened around the globe. This perspective aimed to provide insights into drinking plastic straws as an important source of plastic pollution. Literature searches confirmed that drinking plastic straws, unlike PPEs, have not been researched whether it is an important contributor to pollution or not during the COVID-19 pandemic. Thus, research on the pollution level of this plastic waste and its association with COVID-19 is required. Drinking straw producers and users require adequate strategies and management of this plastic pollution and more widespread rules and regulations to prevent environmental implications and health risks. This study can usefully give highlights for environmentalists, solid waste management experts, policymakers, and governments by describing the environmental impact and raising health risks of drinking plastic straw pollution.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| |
Collapse
|
15
|
Ayala F, Rangel-Vega A, Quinde E, Reyes E, Zeta-Flores M, Tume-Ruiz J, De-la-Torre GE. Bibliometric review on microplastic contamination in the Pacific Alliance countries. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1369. [PMID: 37880459 DOI: 10.1007/s10661-023-11990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Microplastics, capable of absorbing persistent organic compounds, heavy metals, and emerging pollutants, are of global concern due to their potential to alter the behavior and metabolism of biota. In Latin America, the Pacific Alliance, comprising Mexico, Colombia, Peru, and Chile, stands out for its biological wealth and productive ecosystems, which account for 37% of the region's gross domestic product. The leaders of these countries expressed their concern about microplastic pollution and pledged to take joint action. We conducted an analysis of the scientific production of these countries and the collaborations of their researchers, focused on the period 2015-2023, using Scopus and SCImago. We observed that marine-coastal/wetland ecosystems are the most studied, with a focus on fish, and that Mexico leads in publications, followed by Colombia, Peru, and Chile. In addition, we note the absence of an inter-institutional group dedicated to microplastics research in these countries. We recommend promoting collaboration between academic institutions specialized in microplastic research and government agencies dedicated to the promotion of science and technology in the countries belonging to the Pacific Alliance.
Collapse
Affiliation(s)
- Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Antia Rangel-Vega
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo Quinde
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Eddy Reyes
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Martín Zeta-Flores
- Facultad de Ingeniería de Minas, Universidad Nacional de Piura, Piura, Peru
| | - Juan Tume-Ruiz
- Facultad de Ingeniería Pesquera, Universidad Nacional de Piura, Piura, Peru
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
16
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
17
|
Chorographic assessment on the overburden of single-use plastics bio-medical wastes risks and management during COVID-19 pandemic in India. TOTAL ENVIRONMENT RESEARCH THEMES 2023; 7:100062. [PMCID: PMC10275774 DOI: 10.1016/j.totert.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 09/03/2023]
Abstract
Amid the rapid influx of SARS‑CoV‑2 patients in various hospitals across India, the disposal of COVID-19 bio-medical wastes become a major challenging crisis in these days. As a consequence, the unexpected surge of utilizing Single-Use Plastics (SUP) from Personal Protection Equipments (PPEs) in particular protective gloves, nose masks, body aprons. is common in day to day and estimated as minimum of 730 g of waste can be generated per day/person in India. The research objectives on a national scale focuses that the document being active belongings, communications and preparations associated with hospital desecrates care and the existing facts on the physical condition and ecological risk on health care biomedical throw away which dropped during the SARS‑CoV‑2 virus disease pandemic. Based on number of confirmed COVID-19 cases 5,78,578 and 3,92,1149 health care workers as of 1st July 2020 (includes active, recovered and deaths) in India is assessed using GIS that an average 3150 tons per day of SUP waste generated only due to COVID-19 even though the hospitals make all safety measures to put away the clinical wastes. The States like Maharashtra (484.12tons/day), Tamil Nadu (337.76 tons/day), Andhra Pradesh (229.23 tons/day), Rajasthan (183.87 tons/day), Gujarat (181.41 tons/day), Karnataka, Kerala and Uttar Pradesh are over loaded with 212.73, 244.36 and 176.86 tons/day respectively greater than their normal per day bio-medical waste generated. This study finds the space in handling of Bio-Medical Waste Management of the pandemic COIVD-19 outbreaks and its’ remedial actions to improve the necessity in the future emergency in the developing countries like India.
Collapse
|
18
|
Hasan M, Islam ARMT, Jion MMMF, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Islam A, Choudhury TR, Rakib MRJ, Idris AM, Malafaia G. Personal protective equipment-derived pollution during Covid-19 era: A critical review of ecotoxicology impacts, intervention strategies, and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164164. [PMID: 37187394 PMCID: PMC10182863 DOI: 10.1016/j.scitotenv.2023.164164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.
Collapse
Affiliation(s)
- Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700 014, West Bengal, India.
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka (AECD), Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
19
|
Gupta DK, Vishwakarma A, Singh A. Release of microplastics from disposable face mask in tropical climate. REGIONAL STUDIES IN MARINE SCIENCE 2023; 61:102847. [PMID: 36741923 PMCID: PMC9884611 DOI: 10.1016/j.rsma.2023.102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 05/04/2023]
Abstract
Outbreak of COVID 19 has caused an abrupt surge in the consumption of disposable face masks around the world. WHO has stated that wearing a face mask in public reduces the chances of being exposed to COVID 19 virus. With unchecked disposal of these used masks, a new kind of pollutant has emerged in the environment. Since these masks are generally made of polypropylene and polyurethane material, they can be considered as a potential source of microplastics (MPs) in the environment. In this study, we have evaluated the release of MPs particles from these face masks (namely from N95 and surgical masks) in deionized (DI) water and tap water over the span of 1 to 180 days. More specifically, a systematic study has been carried out to see the effect of temperature on release of MPs in water. MPs particles released in tap water (837 ± 113 particles/piece in 30 days) were significantly higher than that in DI water (564 ± 37 particles/piece in 30 days). When these masks were kept at a constant temperature of 45 °C for 30 Days, highest amount of MPs release (N95 899 ± 65 particles, Surgical 1038 ± 65 particles/piece) was observed as compared to other conditions. Most of the MPs particles released were polypropylene which were transparent and white in case of N95 while for surgical mask they were found to be of blue and white colour. With the aging of masks in water, quantity of MPs release was increased with simultaneous reduction in their size. Our study indicates that these disposable face masks are emerging to be a prominent source of MPs release in the environment and more hazardous for the tropical climate.
Collapse
Affiliation(s)
- Dinesh Kumar Gupta
- Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Department of Civil Engineering, University Institute of Technology RGPV, Bhopal, 462033, India
| | - Amit Vishwakarma
- Department of Civil Engineering, University Institute of Technology RGPV, Bhopal, 462033, India
| | - Archana Singh
- Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
20
|
Karthikeyan P, Subagunasekar M, Lenin N, Prabhu K. Abundance, spatial distribution, and chemical characterization of face masks on the beaches of SE Kanyakumari, India. MARINE POLLUTION BULLETIN 2023; 192:115031. [PMID: 37210985 PMCID: PMC10198033 DOI: 10.1016/j.marpolbul.2023.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
Personal Protective Equipment (PPE) is a new world of waste during the COVID-19 pandemic. In this baseline study, the occurrence of PPE faces masks were assessed on the eleven beaches of Kanyakumari, India concerning the abundance, spatial distribution, and chemical characterization (ATR-FTIR spectroscopy). A total of 1593 items/m2 of PPE face masks and their mean density of 0.16 PPE/m2, ranging from 0.02 to 0.54 PPE/m2 were determined in the study area. Kanyakumari beach (n = 430 items/m2) has the highest concentration of masks (26.99 %), with a mean density of 0.54 m2 due to recreational, sewage disposal, and tourism activities. This is perhaps the most important study describing the scientific data that focuses on the significant effects of communal activities and accessibility on COVID-19 PPE face mask pollution. It also highlights the need for sufficient management facilities to optimize PPE disposal.
Collapse
Affiliation(s)
- P Karthikeyan
- School of Marine Sciences, Department of Oceanography and Coastal Area Studies Alagappa University, Karaikudi 630 003, Tamil Nadu, India; Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695 581, Kerala, India.
| | - M Subagunasekar
- Centre for Geoinformatics, School of Health Sciences & Rural Development, The Gandhigram Rural Institute, Dindigul 624 302, Tamil Nadu, India
| | - N Lenin
- Department of Physics, Sethu Institute of Technology, Virudhunagar 626 115, Tamil Nadu, India
| | - K Prabhu
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
21
|
Liu Y, Yang X, Luo L, Chen L, Zhou Y, He Q, Liu S, Li Y, Tian K. Long-term release kinetic characteristics of microplastic from commonly used masks into water under simulated natural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162526. [PMID: 36893658 DOI: 10.1016/j.scitotenv.2023.162526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Masks-related microplastic pollution poses a new threat to the environment and human health that has gained increasing concern. However, the long-term release kinetics of microplastic from masks in aquatic environments have yet to studied, which hampers its risk assessment. Four types of masks, namely cotton mask, fashion mask, N95 mask, and disposable surgical mask were exposed to systematically simulated natural water environments to determine the time-dependent microplastic release characteristics at 3, 6, 9, and 12 months, respectively. In addition, the structure changes of employed masks were examined by scanning electron microscopy. Moreover, Fourier transform infrared spectroscopy was applied to analyze the chemical composition and groups of released microplastic fibers. Our results showed that the simulated natural water environment could degrade four types of masks and continuously produce microplastic fibers/fragments in a time-dependent manner. The dominant size of released particles/fibers was below 20 μm across four types of face masks. The physical structure of all four masks was damaged to varying degrees concomitant with photo-oxidation reaction. Collectively, we characterized the long-term release kinetics of microplastic from four types of commonly used masks under a well-mimic real word water environment. Our findings suggest that urgent action must be taken to properly manage disposable masks and ultimately limit the health threats associated with discarded masks.
Collapse
Affiliation(s)
- Ying Liu
- School of Anesthesiology, Zunyi Medical University, Zunyi 563000, China
| | - Xiaoxia Yang
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Lei Luo
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhou
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Qian He
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Shuli Liu
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Yan Li
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Kunming Tian
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
22
|
Ortega F, Calero M, Rico N, Martín-Lara MA. COVID-19 personal protective equipment (PPE) contamination in coastal areas of Granada, Spain. MARINE POLLUTION BULLETIN 2023; 191:114908. [PMID: 37086548 PMCID: PMC10080275 DOI: 10.1016/j.marpolbul.2023.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The use of disposable personal protective equipment (PPE) as a control measure to avoid transmission against COVID-19 has generated a challenge to the waste management and enhances plastic pollution in the environment. The research aims to monitor the presence of PPE waste and other plastic debris, in a time interval where the use of face mask at specific places was still mandatory, on the coastal areas of Granada (Spain) which belongs to the Mediterranean Sea. Four beaches called La Rijana, La Charca, La Rábita and Calahonda were examined during different periods. The total amount of sampled waste was 17,558 plastic units. The abundance, characteristics and distribution of PPE and other plastic debris were determined. Results showed that the observed amount of total plastic debris were between 2.531·10-2 and 24.487·10-2 units per square meter, and up to 0.136·10-2 for PPE debris, where face masks represented the 92.22 % of the total PPE debris, being these results comparable to previous studies in other coastal areas in the world. On the other hand, total plastic debris densities were in the range from 2.457·10-2 to 92.219·10-2 g/m2 and densities were up to 0.732·10-2 for PPE debris. PPE debris supposed 0.79 % of the weight of total waste and the 0.51 % of total items. Concerning non-PPE plastic waste: cigarettes filters, food containers and styrofoam were the most abundant items (42.95, 10.19 and 16.37 % of total items, respectively). During vacation periods, total plastic debris amount increased 92.19 % compared to non-vacation periods. Regarding type of beaches, the presence of plastic debris was significantly higher on touristic/recreational than in fishing beaches. Data showed no significant differences between accessible and no-accessible beaches, but between periods with restrictive policy about mask face use and periods with non-restrictive policy data suggest significant differences between densities (g/m2) for PPE litter. The amount of PPEs debris is also correlated with the number of cigarettes filters (Person's r = 0.650), food containers (r = 0.782) and other debris (r = 0.63). Finally, although interesting results were provided in this study, further research is required to better understand the consequences of this type of pollution and to provide viable solutions to this problem.
Collapse
Affiliation(s)
- F Ortega
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Calero
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - N Rico
- Department of Statistics and Operations Research, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M A Martín-Lara
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
23
|
De-la-Torre GE, Pizarro-Ortega CI, Dioses-Salinas DC, Ribeiro VV, Urizar Garfias Reyes DF, Ben-Haddad M, Rakib MRJ, Dobaradaran S. Micro- and mesoplastic pollution along the coast of Peru. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27707-6. [PMID: 37199842 DOI: 10.1007/s11356-023-27707-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Peru suffers from poor solid waste and coastal management, as well as evidenced plastic pollution in various forms. However, studies in Peru focusing on small plastic debris (i.e., meso- and microplastics) are still limited and inconclusive. Thus, the present study investigated the abundance, characteristics, seasonality, and distribution of small plastic debris along the coast of Peru. The abundance of small plastic debris is predominantly driven by specific locations, where a source of contamination is present, rather than presenting seasonal patterns. Meso- and microplastics were strongly correlated in both seasons (summer and winter), suggesting meso-plastic constantly breaking down as microplastic sources. Additionally, heavy metals (e.g., Cu, Pb) were found in low concentrations (mean concentrations < 0.4%) on the surface of some mesoplastics. Here, we provided a baseline on the multiple factors involving small plastic debris on the Peruvian coast and preliminarily identify associated contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente Y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | | | - Damarisch Fernanda Urizar Garfias Reyes
- Círculo de Investigación en Contaminación Por Plásticos, Universidad Nacional Agraria La Molina, Lima, Peru
- Grupo de Investigación Salud Pública, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
24
|
Ma J, Chen F, Chen CC, Zhang Z, Zhong Z, Jiang H, Pu J, Li Y, Pan K. Comparison between discarded facemask and common plastic waste on microbial colonization and physiochemical properties during aging in seawater. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131583. [PMID: 37201275 DOI: 10.1016/j.jhazmat.2023.131583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Facemasks are indispensable for preventing the spread of COVID-19. However, improper disposal of discarded facemasks has led to their contamination in the marine environment. To understand the environmental risk of this emerging plastic pollution, it's important to clarify the features that distinguish discarded facemasks from common plastic waste during aging. This study compared the microbial colonization, degradation-related enzymes, and physicochemical properties among surgical masks, polystyrene cups, polycarbonate bottles, and polyethylene terephthalate bottles in their aging processes in natural seawater. Compared to the other plastic wastes, surgical masks were colonized by the most diverse microorganisms, reaching 1521 unique prokaryotic OTUs after 21-day exposure in seawater. Moreover, the activity of eukaryotic enzymes associated with plastic degradation was 80-fold higher than that in seawater, indicating that the colonized eukaryotes would be the major microorganisms degrading the surgical masks. Meanwhile, the nano-sized defects (depth between 8 and 61 nm) would evolve into cracks of bigger sizes and result in the breakage of the microfibers and releasing microplastics into the ocean. Overall, our study demonstrated a distinctive plastisphere occurred in surgical masks from both microbial and physiochemical aspects. This work provides new insights for assessing the potential risk of plastic pollution caused by the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, Guangdong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China
| | - Zihan Zhong
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Junbao Pu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China.
| |
Collapse
|
25
|
López ADF, De-la-Torre GE, Fernández Severini MD, Prieto G, Brugnoni LI, Colombo CV, Dioses-Salinas DC, Rimondino GN, Spetter CV. Chemical-analytical characterization and leaching of heavy metals associated with nanoparticles and microplastics from commercial face masks and the abundance of personal protective equipment (PPE) waste in three metropolitan cities of South America. MARINE POLLUTION BULLETIN 2023; 191:114997. [PMID: 37148588 DOI: 10.1016/j.marpolbul.2023.114997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
In this study, we surveyed the presence of personal protective equipment (PPE) waste on the streets of Bogotá-Colombia, Lima-Perú, and Mar del Plata-Argentina. Furthermore, this work is also focused on the release capacity of Ag, Cu, and Zn metals associated with nanoparticles, and microplastics (MPs) from textile face masks (TFMs) and disposable face masks. According to our results, an association between low-income areas and PPE waste was found, which may be related to the periodicity of waste collection and economic activity. Polymers, like polypropylene, cotton-polyester, and additives, such as CaCO3, MgO, and Ag/Cu as nanoparticles, were identified. TFMs released high levels of Cu (35,900-60,200 μg·L-1), Zn (2340-2380 μg·L-1), and MPs (4528-10,640 particles/piece). Metals associated with nanoparticles leached by face masks did not present any antimicrobial activity against P. aeruginosa. Our study suggests that TFMs may leach large amounts of polluting nano/micromaterials in aquatic environments with potential toxicological effects on organisms.
Collapse
Affiliation(s)
- A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina.
| | - G E De-la-Torre
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - M D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina; IFISUR, Universidad Nacional del Sur - CONICET, Av. Alem 1253, Bahía Blanca, Argentina
| | - L I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), San Juan 670, 8000 Bahía Blanca, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - D C Dioses-Salinas
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
26
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
27
|
Valderrama-Herrera M, Cardenas SA, Calvo-Mac C, Celi-Vértiz RG, Chumpitaz-Levano VL, Flores-Miranda WE, Lopez-Tirado ZMT, Molina-Alvarez M, Rubio-Cheon DN, Trucios-Castro M, Fernández Severini MD, Forero López AD, Ramos W, Pretell V, Castro IB, Ribeiro VV, Dobaradaran S, Espinoza-Morriberón D, Ben-Haddad M, Dioses-Salinas DC, De-la-Torre GE. Rajids ovipositing on marine litter: A potential threat to their survival. MARINE POLLUTION BULLETIN 2023; 191:114941. [PMID: 37080019 DOI: 10.1016/j.marpolbul.2023.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Marine litter is a complex environmental issue threatening the well-being of multiple organisms. In the present study, we present an overlooked pathway by which marine litter interaction with certain ovigerous skates (Family: Rajidae) communities could compromise their survival. We propose that skates from the genus Sympterygia deposit their egg capsules on marine litter substrates by accident, which are then washed ashore still unhatched. We conducted 10 monitoring surveys on three beaches of La Libertad Region, on the north coast of Peru, looking for marine litter conglomerates to determine the presence of egg capsules. We registered a total of 75 marine litter conglomerates, containing 1595 egg capsules, out of which only 15.9 % were presumably hatched, and 15.8 % were still fresh. Fishing materials were identified as the main item in marine litter conglomerates. We conclude that this behavior could contribute to the decline of Sympterygia communities, although further research is needed.
Collapse
Affiliation(s)
| | - Sara Amada Cardenas
- ONG Conservacción, Calle Ugarte y Moscoso 535, San Isidro, Lima, Peru; Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Carlos Calvo-Mac
- ONG Conservacción, Calle Ugarte y Moscoso 535, San Isidro, Lima, Peru
| | | | | | | | | | | | | | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - Williams Ramos
- Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Lima, Peru
| | - Victor Pretell
- Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Lima, Peru
| | - Italo B Castro
- Institute of Oceanography, Universidade Federal Do Rio Grande, Brazil; Instituto do Mar Universidade Federal de São Paulo, Santos, SP 11070, Brazil
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Dante Espinoza-Morriberón
- Universidad Tecnológica del Perú (UTP), Facultad de Ingeniería, Jirón Hernán Velarde 260, Cercado de Lima, 15046 Lima, Peru; Universidad Científica del Sur, Facultad de Ciencias Veterinarias y Biológicas, Carrera de Biología Marina, Antigua Panamericana Sur Km. 19, Villa El Salvador, Lima, Peru
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | | | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
28
|
Costa LL, Rangel DF, Zalmon IR. The presence of COVID-19 face masks in the largest hypersaline lagoon of South America is predicted by urbanization level. MARINE POLLUTION BULLETIN 2023; 189:114746. [PMID: 36857992 PMCID: PMC9941313 DOI: 10.1016/j.marpolbul.2023.114746] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 05/23/2023]
Abstract
The inadequate disposal of face masks has caused a widespread presence of COVID-19 litter in the environment. We monitored 10 beach arcs along approximately 15 km of the largest hypersaline lagoon of South America looking for face masks during the lockdown (2021) and in the "new normal" (2022) period. Our working hypothesis is that the probability of finding face masks increases with higher urbanization levels, which was estimated by the Human Modification Metric. Approximately 3 × 10-3 face masks m-2 were found on nine of 10 beaches (90 %) during the lockdown. However, this reduced to 1 × 10-4 face masks m-2 found in eight beaches (80 %) after the lockdown. The probability of finding a face mask was significantly higher as urbanization increased (z = 2.799; p = 0.005). This situation imposes the need for a better waste management and environmental education actions, targeting the reduction of direct littering on coastal ecosystem.
Collapse
Affiliation(s)
- Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | | | - Ilana Rosental Zalmon
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
31
|
Morales IDG, Macusi ED, Jondonero MAP, Guihawan JQ, Bacosa HP, Amparado RF. Facemask: Protection or threat? MARINE POLLUTION BULLETIN 2023; 188:114681. [PMID: 36758311 PMCID: PMC9902895 DOI: 10.1016/j.marpolbul.2023.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Facemasks were widely used as a protection against SARS-COV-2, which significantly reduced COVID-19 transmission during the pandemic. However, concerns have been raised regarding its adverse impacts on human health due to intense use and mismanagement. Although rampant plastic littering was the norm before the pandemic, the magnitude of the problem is worsening as potentially COVID-19-infected facemasks are thrown along the shoreline. This study assessed the discarded facemasks on the most popular beach destinations in Mati City, Davao Oriental, Philippines. A total of N = 284 discarded facemasks were found in a cumulative area of 22,500 m2, with an average density of 8.4 × 10-4 items/m2. The surgical facemask (82 %; n = 234) was the most abundant type of facemask found in the areas, followed by KF94 (16 %; n = 45) and KN95 (2 %; n = 5). The Analysis of Variance (ANOVA) showed significant differences in the visual counts of facemasks on the three beaches (p < 0.05).
Collapse
Affiliation(s)
- Ilah Dianne G Morales
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines.
| | - Edison D Macusi
- Institute of Agriculture and Life Sciences (IALS), Davao Oriental State University (DOrSU), Mati City, Davao Oriental, Philippines
| | | | - Jaime Q Guihawan
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| | - Ruben F Amparado
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| |
Collapse
|
32
|
Joseph A, Parveen N, Ranjan VP, Goel S. Drinking hot beverages from paper cups: Lifetime intake of microplastics. CHEMOSPHERE 2023; 317:137844. [PMID: 36640991 DOI: 10.1016/j.chemosphere.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been found in many packaged food products such as salt, tea bags, milk, and fish. In a previous study by this group, MPs were found to leach into hot water from the plastic lining of disposable paper cups. No studies were found in the literature quantifying health risks or lifetime intake of MPs. At present, it is not possible to quantify health risks due to MPs because dose-response and toxicity assessments are not available. Therefore, the objective of the current study was to assess the intake of MPs and associated contaminants like fluoride that are released into these hot beverages. MPs in the previous study were quantified in terms of particle counts only and a simple method was adopted in the present study to convert the microplastics count into its respective mass. Chronic daily intake (CDI) and lifetime intake (LTI) of MPs through the ingestion pathway were calculated. CDI and Hazard Quotient (HQ) due to fluoride ingestion were also estimated following USEPA guidelines. Monte Carlo (MC) simulations were used to account for the variability in input variables such as concentration of MPs, body weight, averaging time, exposure duration, exposure frequency and ingestion rate to evaluate the impact on CDI and LTI values. The CDI was used to estimate the LTI of MPs and HQ for fluoride ingestion. MC simulations with 100,000 iterations resulted in an average CDI of 0.03 ± 0.025 mg of microplastic per kg of body weight per day and 7.04 ± 8.8 μg fluoride per kg body weight per day. This study takes us one step closer to estimating the human health risk due to the ingestion of microplastics and other contaminants through food items.
Collapse
Affiliation(s)
- Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Naseeba Parveen
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ved Prakash Ranjan
- Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sudha Goel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
33
|
France RL, Heung B. Density variability of COVID-19 face mask litter: A cautionary tale for pandemic PPE waste monitoring. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100220. [PMID: 36818682 PMCID: PMC9758072 DOI: 10.1016/j.hazadv.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Despite the requirement for data to be normally distributed with variance being independent of the mean, some studies of plastic litter, including COVID-19 face masks, have not tested for these assumptions before embarking on analyses using parametric statistics. Investigation of new data and secondary analyses of published literature data indicate that face masks are not normally distributed and that variances are not independent of mean densities. In consequence, it is necessary to either use nonparametric analyses or to transform data prior to undertaking parametric approaches. For the new data set, spatial and temporal variance functions indicate that according to Taylor's Power Law, the fourth-root transformation will offer most promise for stabilizing variance about the mean.
Collapse
Affiliation(s)
- Robert L France
- Department of Plants, Food and Environmental Science, Dalhousie University, Truro, Nova Scotia, Canada, B2N 5E3
| | - Brandon Heung
- Department of Plants, Food and Environmental Science, Dalhousie University, Truro, Nova Scotia, Canada, B2N 5E3
| |
Collapse
|
34
|
Rai PK, Sonne C, Song H, Kim KH. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159880. [PMID: 36328266 PMCID: PMC9618453 DOI: 10.1016/j.scitotenv.2022.159880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/06/2023]
Abstract
The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a "nexus" framework are expected to help reduce plastic waste into desirable directions.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
35
|
Kannan G, Mghili B, De-la-Torre GE, Kolandhasamy P, Machendiranathan M, Rajeswari MV, Saravanakumar A. Personal protective equipment (PPE) pollution driven by COVID-19 pandemic in Marina Beach, the longest urban beach in Asia: Abundance, distribution, and analytical characterization. MARINE POLLUTION BULLETIN 2023; 186:114476. [PMID: 36529014 PMCID: PMC9726691 DOI: 10.1016/j.marpolbul.2022.114476] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 05/13/2023]
Abstract
COVID-19 pandemic has enforced the use of personal protective equipment (PPE, masks and gloves). However, the mismanagement of litter are exacerbating the increasing plastic issue worldwide. In the present study, we sampled discarded PPE in 10 sites along Marina Beach, India. We characterized the litter types by chemical analysis techniques. A total of 1154 COVID-19-associated PPE items were found on Marina beach. The highest number of items were face masks (97.9 %) and the mean PPE density in the sites studied was 4 × 10-3 PPE m-2. The results demonstrate that poor solid waste management and lack of awareness are the main causes of pollution at Marina beach. FTIR spectroscopy revealed that face masks and gloves were principally made of polypropylene and latex, respectively. The FTIR spectra also showed signs of chemical degradation. Our results suggest that plastic pollution is increasing, possibly becoming more impactful to marine biota. Beach management measures were discussed.
Collapse
Affiliation(s)
- Gunasekaran Kannan
- Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Bilal Mghili
- LESCB, URL-CNRST N 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | | | - Prabhu Kolandhasamy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India
| | - Mayakrishnan Machendiranathan
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
| | | | - Ayyappan Saravanakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India
| |
Collapse
|
36
|
Mohamadi S, Madadi R, Rakib MRJ, De-la-Torre GE, Idris AM. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158678. [PMID: 36099950 PMCID: PMC9464308 DOI: 10.1016/j.scitotenv.2022.158678] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
37
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
38
|
Lin Q, Zhao S, Pang L, Sun C, Chen L, Li F. Potential risk of microplastics in processed foods: Preliminary risk assessment concerning polymer types, abundance, and human exposure of microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114260. [PMID: 36343455 DOI: 10.1016/j.ecoenv.2022.114260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of microplastics (MPs) has been widely reported in human foodstuffs, and their potential negative effects on human health have been brought into focus. Processed foods are more susceptible to MPs as contamination can be introduced during processing and packaging. However, the risk posed by MPs in processed foods remained unclear. This work aims to critically review the available data for MPs in 11 types of possessed foods and to conduct a preliminary risk assessment of MPs in processed foods. For a comprehensive evaluation, three indicators were selected and determined, namely chemical risk, pollution load, and estimated daily intake (EDI). Our results suggest that nori has the highest chemical risk, followed by canned fish, beverages, table salt, and other food items. In the case of pollution load, nori and milk fall into the risk category of Ⅳ and Ⅲ respectively. Table salts, bottled water, and sugar exhibited lower MPs pollution load (risk category of Ⅱ), whereas the pollution loads of other foods were calculated to be category Ⅰ. Moreover, a correlation between the pollution load of sea salts and MPs pollution level in ambient seawater was found. Regarding EDI of MPs from different processed foods, MPs intakes through bottled water (14.3 ± 3.4 n kg-1 d-1) and milk (6.6 ± 2.4 n kg-1 d-1) are significantly higher than that of the other foods (< 1 n kg-1 d-1). The probabilistic estimation of MPs daily intake indicated that children (19.7 n kg-1 d-1) are at a higher health risk than adults (female: 17.6 n kg-1 d-1, male: 12.6 n kg-1 d-1). Nevertheless, the exposure dose used in toxicological studies was about 10 times higher than the MPs intake via processed foods. Therefore, we argued that MPs in processed foods only carry limited risk. Overall, this study would provide the basis for risk management of MPs in processed food products.
Collapse
Affiliation(s)
- Qianhui Lin
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shasha Zhao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lihua Pang
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China; Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
39
|
De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Nabipour I, Keshtkar M, Akhbarizadeh R, Tangestani M, Abedi D, Javanfekr F. Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 215:114337. [PMID: 36116495 PMCID: PMC9476362 DOI: 10.1016/j.envres.2022.114337] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Marine pollution with personal protective equipment (PPE) has recently gained major attention. Multiple studies reported the release of microplastics (MPs) and chemical contaminants from face masks, the most used PPE type. However, not much is known concerning the release of phthalate esters (PAEs) in aquatic media, as well as the hazard posed by other types of PPE. In the present study, we investigated the release of MPs and PAEs from face masks and gloves recovered from the environment. The results indicated that both PPEs release MPs comparable to the literature, but higher concentrations were presented by face masks. In turn, the total concentration of six PAEs was higher in gloves than in face masks. The release of these contaminants is exacerbated over time. The present study allows researchers to understand the contribution of PPE to marine pollution while accounting for gloves, a generally overlooked source of contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Jörg Spitz
- Akademie Fur Menschliche Medizin GmbH, Schlangenbad, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahbubeh Tangestani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Javanfekr
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
40
|
Kouvara K, Papatheodorou G, Kosmopoulou A, Giovos I, Charitou A, Filippides A, Kaberi H, Kalaitzi L, Kyrkitsos F, Koundouri P, Triantafyllou C, Gletsos M, Fakiris E, Geraga M. COVID-19-related litter pollution on Greek beaches and nearshore shallow water environments. MARINE POLLUTION BULLETIN 2022; 185:114250. [PMID: 36274560 PMCID: PMC9561433 DOI: 10.1016/j.marpolbul.2022.114250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 05/07/2023]
Abstract
COVID-19 pandemic has led to an increase in certain types of litter, many of which are expected to end up in the marine environment. The present study aimed to monitor the pandemic-related litter pollution along the Greek coastal environment. Overall, 59 beach and 83 underwater clean-ups were conducted. Litter was categorized as: PPE (face masks and gloves), COVID-19-related, single-use plastic (SUP) and takeaway items. PPE, dominated by face masks (86.21 %), accounted for 0.29 % of all litter. The average PPE density was 3.1 × 10-3 items m-2 and 2.59 items/ 100 m. COVID-19-related items represented 1.04 % of the total. Wet wipes showed higher densities (0.67 % of all litter) than in the pre-COVID era, while no increase in SUP and takeaway items was observed. Benthic PPE, dominated by gloves (83.95 %), represented 0.26 % of the total. The mean PPE density was 2.5 × 10-3 items m-2.
Collapse
Affiliation(s)
- Konstantina Kouvara
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, 26504 Patras, Greece
| | - George Papatheodorou
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, 26504 Patras, Greece.
| | | | - Ioannis Giovos
- iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, 54645 Thessaloniki, Greece
| | - Anastasia Charitou
- iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, 54645 Thessaloniki, Greece
| | | | - Helen Kaberi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013 Anavyssos, Greece
| | | | - Filippos Kyrkitsos
- Ecological Recycling Society, Νon-profit Οrganization, 10432 Athens, Greece
| | - Phoebe Koundouri
- Department of International and European Economic Studies, Athens University of Economics and Business, 10434, Athens, Greece
| | | | - Miltos Gletsos
- Hellenic Society for the Protection of Nature (HSPN), 10557 Athens, Greece
| | - Elias Fakiris
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, 26504 Patras, Greece
| | - Maria Geraga
- Laboratory of Marine Geology and Physical Oceanography, Department of Geology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
41
|
Ammendolia J, Saturno J, Bond AL, O'Hanlon NJ, Masden EA, James NA, Jacobs S. Tracking the impacts of COVID-19 pandemic-related debris on wildlife using digital platforms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157614. [PMID: 35901900 PMCID: PMC9310380 DOI: 10.1016/j.scitotenv.2022.157614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
Since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) pandemic in December 2019, there have been global surges of single-use plastic use. Due to the importance of personal protective equipment (PPE) and sanitation items in protecting against virus transmission and from testing, facemasks, respirators, disposable gloves and disposable wet wipes have become global staples in households and institutions. Widespread use and insufficient infrastructure, combined with improper waste management have resulted in an emerging category of litter. With widespread presence in the environment, such items pose a direct threat to wildlife as animals can interact with them in a series of ways. We examined the scope of COVID-19 pandemic-related debris, including PPE and sanitation items, on wildlife from April 2020 to December 2021. We document the geographic occurrence of incidents, debris types, and consequences of incidents that were obtained from social media searches, unpublished reports from colleagues, and reports available from the citizen science database "Birds and Debris". There were 114 unique sightings of wildlife interactions with pandemic-related debris (38 from 2020 and 76 from 2021). Within the context of this dataset, most incidents involved birds (83.3 %), while fewer affected mammals (10.5 %), invertebrates (3.5 %), fish (1.8 %), and sea turtles (0.9 %). Sightings originated in 23 countries, and consisted mostly of entanglements (42.1 %) and nest incorporations (40.4 %). We verified sightings by contacting the original observers and were able to identify replicated sightings and increase the resolution of the data collected compared with previously published results. Due to the complexities associated with global use and accessibility of digital platforms, we likely underestimate the number of animals harmed by debris. Overall, the global scope of this study demonstrates that online and social media platforms are a valuable way to collect biologically relevant citizen science data and track rapidly emerging environmental challenges.
Collapse
Affiliation(s)
- Justine Ammendolia
- Faculty of Graduate Studies, Interdisciplinary Studies, Dalhousie University, Halifax B3H 4R2, Canada.
| | - Jacquelyn Saturno
- School for Resources and Environmental Studies, Dalhousie University, Halifax B3H 4R2, Canada
| | - Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Nina J O'Hanlon
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Elizabeth A Masden
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Neil A James
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Shoshanah Jacobs
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
42
|
Rivas ML, Albion I, Bernal B, Handcock RN, Heatwole SJ, Parrott ML, Piazza KA, Deschaseaux E. The plastic pandemic: COVID-19 has accelerated plastic pollution, but there is a cure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157555. [PMID: 35878850 PMCID: PMC9304335 DOI: 10.1016/j.scitotenv.2022.157555] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 05/10/2023]
Abstract
Plastic pollution is now present in all areas of our planet, including its last wilderness, Antarctica, and the plastic crisis has further escalated because of COVID-19. The pandemic has caused a significant increase in the global consumption of single-use protective items such as masks and gloves. These and other plastic items add to the suite of plastic pollution issues, from entanglement of wildlife to microplastic bioaccumulation. Given plastics are a major threat facing humans and wildlife, swift action to reduce plastic pollution is urgently needed. Solutions to plastic pollution are within reach. With collective, impactful action we will ensure a better future for our planet and ourselves. Here, we propose several measures for decision-makers to implement to achieve a solution and tackle plastic pollution as a united, global community.
Collapse
Affiliation(s)
- Marga L Rivas
- Biology Department, Campus of Excellence of Marine Science (CEIMAR), University of Cádiz, Spain.
| | - Ingrid Albion
- Australian Association for Environmental Education, PO Box 926, Cannington, WA 6987, Australia
| | - Blanca Bernal
- GreenCollar US, International Projects. Chicago IL, USA
| | - Rebecca N Handcock
- Curtin Institute for Computation, Curtin University, Bentley, WA 6102, Australia
| | - Siobhan J Heatwole
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marissa L Parrott
- Wildlife Conservation and Science, Zoos Victoria, Parkville, VIC 3052, Australia
| | - Kathryn A Piazza
- Department of Chemistry, State University of New York at Oswego, Oswego, NY, USA
| | - Elisabeth Deschaseaux
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
43
|
Dioses-Salinas DC, Pizarro-Ortega CI, Dobaradaran S, Ben-Haddad M, De-la-Torre GE. Face masks invading protected areas: Risks and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157636. [PMID: 35905957 PMCID: PMC9316628 DOI: 10.1016/j.scitotenv.2022.157636] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 05/05/2023]
Abstract
Among the indirect environmental impacts generated by the global COVID-19 pandemic, contamination with personal protective equipment (PPE), like face masks, may be one of the most relevant ones. PPE has been found in multiple aquatic, marine, and terrestrial environments, including places of absolute relevancy to biodiversity conservation, such as protected areas (PAs). Here, a brief report of the presence of PPE in six PAs of Peru is presented. PPE pollution in PAs consisted mainly of single-use and reusable face masks, as well as plastics associated with PAs, such as KN95 respirator wrappings. The mean PPE density was estimated as 1.32 × 10-3 PPE/m2. FTIR spectroscopy confirmed that face masks and wrappers mainly consisted of polypropylene and polyethylene, two of the most commonly available synthetic polymers. The material was poorly degraded according to their FTIR spectra, possibly suggesting that they were discarded recently. The recent ban on single-use plastic in Peruvian PAs is regarded as a great step forward toward the efforts made to preserve these invaluable places. However, these measures seemed insufficient to prevent PPE and other types of litter from contaminating areas of ecological importance. Considering the current scenario, several recommendations were proposed to be implemented in PAs in order to prevent PPE from becoming a new plastic issue to tackle. These recommendations are expected to also serve for future events where the use of single-use plastics becomes inevitable, like global pandemics.
Collapse
Affiliation(s)
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Morocco
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
44
|
Forero-López AD, Brugnoni LI, Abasto B, Rimondino GN, Lassalle VL, Ardusso MG, Nazzarro MS, Martinez AM, Spetter CV, Biancalana F. Plastisphere on microplastics: In situ assays in an estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129737. [PMID: 35988489 DOI: 10.1016/j.jhazmat.2022.129737] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, the influence of the plastisphere on metals accumulation and weathering processes of polystyrene (PSMPs) and nylon microplastics (NyMPs) in polluted waters during a 129 day-assay were studied. MPs were characterized through scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), X-ray diffraction (XRD), attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy, contact angle, and thermogravimetric analysis (TGA). Also Cr, Mn, Zn, Cd, Pb, and Cu in the plastisphere on MPs were analyzed during the assay. Potentially pathogenic Vibrio, Escherichia coli, and Pseudomonas spp. were abundant in both MPs. Ascomycota fungi (Phona s.l., Alternaria sp., Penicillium sp., and Cladosporium sp.), and yeast, were also identified. NyMPs and PSMPs exhibited a decrease in the contact angle and increased their weights. SEM/EDX showed weathering signs, like surface cracks and pits, and leaching TiO2 pigments from NyMPs after 42 days. XRD displayed a notorious decrease in NyMPs crystallinity, which could alter its interaction with external contaminants. Heavy metal accumulation on the plastisphere formed on each type of MPs increased over the exposure time. After 129 days of immersion, metals concentrations in the plastisphere on MPs were in the following order Cr ˃ Mn ˃ Zn ˃ Cu ˃ Pb ˃ Cd, demonstrating how the biofilm facilitates metal mobilization. The results of this study lead to a better understanding of the impact of marine plastic debris as vectors of pathogens and heavy metals in coastal environments.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - L I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), San Juan, 670 8000 Bahía Blanca, Argentina
| | - B Abasto
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - V L Lassalle
- Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Instituto Nacional de Química del Sur (INQUISUR), CONICET/UNS, CCT-Bahía Blanca, Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - M S Nazzarro
- Instituto de Física Aplicada "Dr. Jorge Andres Zgrablich" (INFAP),CCT-CONICET, San Luis, Almte. Brown 869, D5700ANU San Luis, Argentina
| | - A M Martinez
- Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - F Biancalana
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
45
|
Copper-thiosemicarbazone complexes conjugated-cellulose fibers: Biodegradable materials with antibacterial capacity. Carbohydr Polym 2022; 294:119839. [PMID: 35868782 DOI: 10.1016/j.carbpol.2022.119839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Personal protective equipment (PPE) is vital in battling bacteria crisis, but conventional PPE materials lack antimicrobial activities and environmental friendliness. Our work focused on developing biodegradable and antibacterial fibers as promising bioprotective materials. Here, we grafted highly effective antibacterial copper-thiosemicarbazone complexes (CT1-4) on cellulose fibers via covalent linkages. Multiple methods were used to characterize the chemical composition or morphology of CT1-4 conjugated-fibers. Conjugation of CT1-4 maintains the mechanical properties (Breaking strength: 2.35-2.45 cN/dtex, Breaking elongation: 7.19 %-7.42 %) and thermal stability of fibers. CT1 can endow cellulose fibers with the excellent growth inhibition towards Escherichia coli (E. coli) (GIR: 61.5 % ± 1.28 %), Staphylococcus aureus (S. aureus) (GIR: 85.7 % ± 1.93 %), and Bacillus subtilis (B. subtilis) (GIR: 87.6 % ± 1.44 %). We believe that the application of CT1 conjugated-cellulose fibers is not limited to the high-performance PPE, and also can be extended to various types of protective equipment for food and medicine safety.
Collapse
|
46
|
Ayala‐Peña VB, Martin MJ, Favatela F, Otarola J, Morán P, Ventura M, Gentili C, Salcedo MF, Mansilla A, Pérez S, Dolcini G, Alvarez V, Lassalle V. Chitosan-Based Formulations Intended as Protective Spray for Mask Surfaces in Prevention of Coronavirus Dissemination. ChemistrySelect 2022; 7:e202202410. [PMID: 36711229 PMCID: PMC9874787 DOI: 10.1002/slct.202202410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
The extraordinary occurrence of COVID-19 by the fast expansion of viral infections has propelled particular interest in developing novel antiviral and virucidal agents to guarantee personal security. The main objective of this work is to propose novel formulations able to optimize the use of personal protection elements. In recent years, chitosan (CH) has attracted attention for being an interesting multifunctional, biodegradable, non-antigenic, non-toxic, and biocompatible natural polymer with antimicrobial properties. In this work, formulations based on a CH matrix containing silver, and Copper based nanoparticles have been developed. The novelty of this proposal is that almost liquid formulations have been reached, possessing verified properties to inhibit evolved virus such as herpes simplex type 1 (HSV-1) and bovine betacoronavirus (BCoV), the latter belonging to the same family of the well-known the well-known SARS-CoV-2. Besides antibacterial bioactivity; as well as the ability of these formulations to be easily sprayed on various surfaces, including conventional face masks, have been verified and discussed. The results presented in this contribution provide strong evidence on CH films as an ideal biosafe surface-protective for several daily used materials including the conventional face masks.
Collapse
Affiliation(s)
- Victoria Belen Ayala‐Peña
- INIBIBBDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICET.Camino La Carrindanga km 7B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - María Julia Martin
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
- INBIOSURDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETSan Juan 671B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Florencia Favatela
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Jessica Otarola
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - Pedro Morán
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - María Ventura
- IAE-Instituto Analítico EspecializadoCórdoba3935, B1653BJKVilla Ballester - Pcia.deBuenos AiresArgentina
| | - Claudia Gentili
- INBIOSURDepartamento de BiologíaBioquímica y FarmaciaUniversidad Nacional del Sur (UNS)-CONICETSan Juan 671B8000Bahía BlancaProvincia de Buenos AiresArgentina
| | - María Florencia Salcedo
- Instituto de Investigaciones BiológicasUE-CONICET-UNMdPFacultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata. DéanFunes 3240B7600Mar del PlataArgentina
| | - Andrea Mansilla
- Instituto de Investigaciones BiológicasUE-CONICET-UNMdPFacultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata. DéanFunes 3240B7600Mar del PlataArgentina
| | - Sandra Pérez
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - Guillermina Dolcini
- CIVETAN - CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Pje ArroyoSeco s/n campus universitarioB7000TandilArgentina
| | - Vera Alvarez
- INTEMAFacultad de IngenieríaUniversidad Nacional de Mar del Plata (UNMdP)-CONICET.Av. Cristóbal Colón 10850B7600Mar del PlataArgentina
| | - Verónica Lassalle
- INQUISURDepartamento de QuímicaUniversidad Nacional del Sur (UNS)-CONICET.Av. Leandro Niceforo Alem 1253B8000Bahía BlancaProvincia de Buenos AiresArgentina
| |
Collapse
|
47
|
Luo Y, Naidu R, Zhang X, Fang C. Microplastics and nanoplastics released from a PPE mask under a simulated bushfire condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129621. [PMID: 35878497 DOI: 10.1016/j.jhazmat.2022.129621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Due to COVID-19, large amounts of personal protective equipment (PPE) have been used, and many PPE units are made of plastics, such as face masks. The masks can be burned naturally in a bushfire or artificially at the incineration plants, and release microplastics and nanoplastics from the mask plastic fibres. A fire can cause the plastic, such as polypropylene (PP) fibres, to be molten and stick to the solid surface, such as glass, soil, concrete or plant, as films or islands, due to the binding property of the molten plastic material. Once the films or islands are peeled off in the processes such as weathering, ageing, or treatment and clean-up, there are residuals leftover, which are identified as nanoplastics and microplastics via Raman imaging, with the significant release amount of ~1100 nanoplastics / 10 µm2 or ~11 billion / cm2, and ~50 microplastics / 420 µm2 or ~12 million / cm2. Moreover, surface group is deviated on the plastic surface, which can also be distinguished and visualised as well via Raman imaging, down to nano size. This test validates the Raman imaging approach to capture microplastics and nanoplastics, and also provides important information about the fate and transportation of PPE mask in the environment, particularly when subjected to a fire. Overall, Raman imaging can be an effective option to characterise the microplastics and nanoplastics, along with the deviated surface group.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
48
|
Wang Q, Zhang M, Li R, Jiang XT. Does marine environmental research meet the challenges of marine pollution induced by the COVID-19 pandemic? Comparison analysis before and during the pandemic based on bibliometrics. MARINE POLLUTION BULLETIN 2022; 183:114046. [PMID: 36057155 PMCID: PMC9376348 DOI: 10.1016/j.marpolbul.2022.114046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The outbreak of the COVID-19 pandemic has brought enormous challenges to the global marine environment. Various responses to the COVID-19 pandemic have led to increased marine pollution. Has the COVID-19 pandemic affected marine pollution research? This work comprehensively reviewed marine pollution publications in the Web of Science database before and during the COVID-19 pandemic. Results show that the COVID-19 outbreak has influenced the marine pollution research by: (i) increasing the number of publications; (ii) reshaping different countries' roles in marine pollution research; (iii) altering the hotspots of marine pollution research. The ranking of countries with high productivity in the marine pollution research field changed, and developed economies are the dominant players both before and after the outbreak of the COVID-19 pandemic in this field. Other high-productivity countries, with the exception of China, have higher international cooperation rates in marine pollution research than those before the pandemic. Microplastic pollution has been the biggest challenge of marine pollution and has been aexplored in greater depth during the COVID-19 pandemic. Furthermore, the mining results of marine pollution publications show the mitigation of plastic pollution in the marine environment remains the main content requires future research. Finally, this paper puts forward corresponding suggestions for the reference of researchers and practitioners to improve the global ability to respond to the challenges posed by the pandemic to the marine environment.
Collapse
Affiliation(s)
- Qiang Wang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China; Institute of Carbon Neutrality Economics and Energy Management, School of Economics and Management, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China.
| | - Min Zhang
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Rongrong Li
- School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, People's Republic of China; Institute of Carbon Neutrality Economics and Energy Management, School of Economics and Management, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China; Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, People's Republic of China.
| | - Xue-Ting Jiang
- Crawford School of Public Policy, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
49
|
Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S. Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119707. [PMID: 35803441 DOI: 10.1016/j.envpol.2022.119707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Airborne microplastics (MPs) have recently drawn the attention of the scientific community due to their possible human inhalation risk. Indoor environments are of relevance as people spend about 90% of their time indoors. This study evaluated MPs concentrations in three indoor environments: houses, public transport and working places, which are representative of urban life. Sampling involved the collection of airborne particulate matter on nylon 20 μm pore size filters. Samples were first visually inspected, and particles were characterized (colour, length or area). Polymer identification was performed through μFTIR analysis. Working conditions were controlled to guarantee quality assurance and avoid background contamination. Limits of detection, recovery tests and repeatability were performed with home-made polyethylene (PE), polypropylene (PP), and polystyrene (PS) standards. The highest average MP concentrations were found in buses (17.3 ± 2.4 MPs/m3) followed by 5.8 ± 1.9 MPs/m3 in subways, 4.8 ± 1.6 MPs/m3 in houses, and 4.2 ± 1.6 MPs/m3 in the workplaces. Polyamide, PA (51%), polyester PES (48%) and PP (1%) were the polymers identified and most common in personal care products and synthetic textiles. Most of these polymers were below 100 μm in size for both fibres (64 ± 8%) and fragments (78 ± 11%). The frequency of MP particles in our study decreased with increasing size, which points to their potential as an inhalation hazard.
Collapse
Affiliation(s)
- A Torres-Agullo
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - T Moreno
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Lacorte
- Institute of Environmental Assessment and Water Research of the Spanish Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
50
|
Truchet DM, Ardusso MG, Forero-López AD, Rimondino GN, Buzzi NS, Malanca F, Spetter CV, Fernández-Severini MD. Tracking synthetic microdebris contamination in a highly urbanized estuary through crabs as sentinel species: An ecological trait-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155631. [PMID: 35508238 DOI: 10.1016/j.scitotenv.2022.155631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microdebris (particles of <5 mm) are a worldwide concern because they can affect the community structure of the aquatic ecosystems, organisms, and even food webs. For the biomonitoring of synthetic microdebris (especially microplastics, MPs), mainly benthic invertebrates are used, but crabs have been less studied in the literature. We studied the synthetic microdebris contamination in water, sediments, and three representative intertidal crabs (Neohelice granulata, Cyrtograpsus angulatus and Leptuca uruguayensis) with different lifestyles from the Bahía Blanca estuary, Argentina. The results obtained show the presence of cotton-polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) in surface waters. In sediments, we identified cellulose modified (CE), polyester (PES), polyethylene (PE), and alkyd resin, while in crabs, cotton-PA and CE were the predominant ones. The MPs abundance ranged from 8 to 68 items L-1 in surface water, from 971 to 2840 items Kg-1 in sediments, and from 0 to 2.58 items g-1 ww for the three species of crabs. Besides, paint sheets ranged from 0 to 17 in the total samples, with Cr, Mo, Ti, Pb, Cu, Al, S, Ba and Fe on their surface. There were significant differences between the microdebris abundances in the abiotic matrices but not among crabs species. The ecological traits of the different crabs helped to understand the accumulation of synthetic microdebris, an important characteristic when determining the choice of a good biomonitor.
Collapse
Affiliation(s)
- D M Truchet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - N S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | - F Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|