1
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
2
|
Shen Y, Pan Y, Zhu C, Zhang H, Wang J, Liu R, Fang Q, Song S, Chen B. Synergistic Coordination in Cu Single-Atom Catalysts Enhances High-Valent Copper-Oxo Species for Efficient PMS Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406319. [PMID: 39221550 DOI: 10.1002/smll.202406319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.
Collapse
Affiliation(s)
- Yi Shen
- Key LaboraStory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
- Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, P. R. China
| | - Yongliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Haizhong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Jun Wang
- Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
3
|
Wang D, Yu Y, He J, Zhang J, Yang C, Ma J. Homogeneous to heterogeneous redox mediator enhancing ferrate(VI) oxidation of sulfamethoxazole: Role of ferrate(VI) activation and electron shuttle. CHEMOSPHERE 2024; 362:142752. [PMID: 38960048 DOI: 10.1016/j.chemosphere.2024.142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Ferrate (Fe(VI)) is a promising oxidant for water remediation, yet it has limited reactivity towards certain recalcitrant but important emerging contaminants, such as sulfamethoxazole. Here, this study demonstrates that nitroxide redox mediators, specifically 9-azabicyclo[3.3.1]nonasne N-oxyl (ABNO), can catalyze Fe(VI) reaction with sulfamethoxazole by functioning both as Fe(VI) activator and electron shuttle. The underlying mechanism is explained as: (i) Fe(VI) activation: a series of one-electron transfers between Fe(VI) and ABNO produces highly reactive Fe(V)/Fe(IV) and ABNO+; (ii) electron shuttle: the newly formed active ABNO+ reacts with the sulfamethoxazole, contributing to its removal. Concurrently, ABNOH is generated and subsequently converted back to ABNO by reactive species, thereby completing the redox cycle. The as-developed heterogeneous redox mediator, ABNO@SiO2, retained its catalytic properties and effectively catalyzed Fe(VI) to remove sulfamethoxazole at environmentally relevant pH levels.
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongqiang Yu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiahao He
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chun Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Sathiyan K, Wang J, Williams LM, Huang CH, Sharma VK. Revisiting the Electron Transfer Mechanisms in Ru(III)-Mediated Advanced Oxidation Processes with Peroxyacids and Ferrate(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11822-11832. [PMID: 38899941 PMCID: PMC11223481 DOI: 10.1021/acs.est.4c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.
Collapse
Affiliation(s)
- Krishnamoorthy Sathiyan
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lois M. Williams
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K. Sharma
- Program
for Environment and Sustainability, Department of Environmental and
Occupational Health, School of Public Health, Texas A&M University, College
Station, Texas 77843-8371, United States
| |
Collapse
|
5
|
Cui J, Tang Z, Lin Q, Yang L, Deng Y. Interactions of ferrate(VI) and aquatic humic substances in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170919. [PMID: 38354807 DOI: 10.1016/j.scitotenv.2024.170919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aquatic humic substances, encompassing humic acid (HA) and fulvic acid (FA), can influence the treatment of ferrate(VI), an emerging water treatment agent, by scavenging Fe(VI) to accelerate its decomposition and hinder the elimination of target micro-pollutants. Meanwhile, HA and FA degrade the water quality through the transformation to disinfection byproducts over disinfection, contribution to water color, and enhanced mobility of toxic metals. However, the interplay with ferrate(VI) and humic substances is not well understood. This study aims to elucidate the interactions of ferrate(VI) with HA and FA for harnessing ferrate(VI) in water treatment. Laboratory investigations revealed distinctive biphasic kinetic profiles of ferrate(VI) decomposition in the presence of HA or FA, involving a 2nd order kinetic reaction followed by a 1st-order kinetic reaction. Both self-decay and reactions with the humic substances governed the ferrate(VI) decomposition in the initial phase. With increasing dissolved organic carbon (DOC), the contribution of self-decomposition to ferrate(VI) decay declined, while humic substance-induced ferrate(VI) consumption increased. To assess relative contributions of the two factors, DOC50% was first introduced to represent the level at which the two factors equally contribute to the ferrate(VI) loss. Notably, DOC50% (11.90 mg/L for HA and 13.10 mg/L for FA) exceeded typical DOC in raw water, implying that self-decay predominantly governs ferrate(VI) consumption. Meanwhile, ferrate(VI) could degrade and remove HA and FA across different molecular weight (MW) ranges, exhibiting treatment capabilities that are either better or, at least, equivalent to ozone. The ferrate(VI) treatment attacked high MW, hydrophobic organic molecules, accompanied by the production of low MW, more hydrophilic compounds. Particularly, FA was more effectively removed due to its smaller molecular sizes, higher solubility, and lower carbon contents. This study provides valuable insights into the effective utilization of ferrate(VI) in water treatment in presence of humic substances.
Collapse
Affiliation(s)
- Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Zepei Tang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Lisitai Yang
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
6
|
Wang Z, Du Y, Liu T, Li J, He CS, Liu Y, Xiong Z, Lai B. How Should We Activate Ferrate(VI)? Fe(IV) and Fe(V) Tell Different Stories about Fluoroquinolone Transformation and Toxicity Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4812-4823. [PMID: 38428041 DOI: 10.1021/acs.est.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Many studies have investigated activation of ferrate (Fe(VI)) to produce reactive high-valent iron intermediates to enhance the oxidation of micropollutants. However, the differences in the risk of pollutant transformation caused by Fe(IV) and Fe(V) have not been taken seriously. In this study, Fe(VI)-alone, Fe3+/Fe(VI), and NaHCO3/Fe(VI) processes were used to oxidize fluoroquinolone antibiotics to explore the different effects of Fe(IV) and Fe(V) on product accumulation and toxicity changes. The contribution of Fe(IV) to levofloxacin degradation was 99.9% in the Fe3+/Fe(VI) process, and that of Fe(V) was 89.4% in the NaHCO3/Fe(VI) process. The cytotoxicity equivalents of levofloxacin decreased by 1.9 mg phenol/L in the Fe(IV)-dominant process while they significantly (p < 0.05) increased by 4.7 mg phenol/L in the Fe(V)-dominant process. The acute toxicity toward luminescent bacteria and the results for other fluoroquinolone antibiotics also showed that Fe(IV) reduced the toxicity and Fe(V) increased the toxicity. Density functional theory calculations showed that Fe(V) induced quinolone ring opening, which would increase the toxicity. Fe(IV) tended to oxidize the piperazine group, which reduced the toxicity. These results show the different-pollutant transformation caused by Fe(IV) and Fe(V). In future, the different risk outcomes during Fe(VI) activation should be taken seriously.
Collapse
Affiliation(s)
- Zhongjuan Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Tong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jie Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - ZhaoKun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Wang D, Yu Y, He J, Ma J, Zhang J, Strathmann TJ. Comprehending the practical implementation of permanganate and ferrate for water remediation in complex water matrices. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132659. [PMID: 37820527 DOI: 10.1016/j.jhazmat.2023.132659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Most previous studies examined permanganate or ferrate oxidation using various emerging pollutants (EPs) spiked in ultrapure water with concentrations of orders-of-magnitude higher than those in natural waters. In present study, we assessed the efficiency of permanganate and ferrate (with ozone as a comparison) at mg L-1 level to remove selected EPs at μg L-1 level in complex water matrices. The efficiency of permanganate and ferrate is more easily affected by the humic acid in synthetic water or dissolved organic matter (DOM) in natural river water compared to ozone. Experiment results revealed that humic acid or DOM were not mineralized by oxidants, but changed in compositional nature, including decreases in the aromaticity, electron-donating capacity, and average molecular weight. At molecular level, condensed aromatic, lignin-like, and tannin-like components in humic acid and DOM are the critical sites being attacked by permanganate or ferrate, the alkene groups and aromatic structures were oxidized predominantly to carboxylic acids. Overall, the present study provided insights into the performance of permanganate and ferrate used for EPs treatment under realistic conditions, as well as alternations of DOM that can be expected following exposure to these oxidants.
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongqiang Yu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiahao He
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401, United States
| |
Collapse
|
8
|
Chen XJ, Bai CW, Sun YJ, Huang XT, Zhang BB, Zhang YS, Yang Q, Wu JH, Chen F. pH-Driven Efficacy of the Ferrate(VI)-Peracetic Acid System in Swift Sulfonamide Antibiotic Degradation: A Deep Dive into Active Species Evolution and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20206-20218. [PMID: 37965750 DOI: 10.1021/acs.est.3c06370] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.
Collapse
Affiliation(s)
- Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
9
|
Wang D, Ma J, Zhang J, Strathmann TJ. Carbocatalysts for Enhancing Permanganate Oxidation of Sulfisoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18473-18482. [PMID: 36727553 DOI: 10.1021/acs.est.2c08141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permanganate (Mn(VII)) is extensively applied in water purification due to its stability and ease of handling, but it is a mild oxidant for trace organic contaminants (TrOCs). Hence, there is significant interest in strategies for enhancing reaction kinetics, especially in combination with efficient and economical carbocatalysts. This study compared the performance of four carbocatalysts (graphite, graphene oxide (GO), reduced-GO (rGO), and nitrogen-doped rGO (N-rGO)) in accelerating sulfisoxazole (SSX) oxidation by Mn(VII) and found that GO exhibited the greatest catalytic performance. Besides, the Mn(VII)/GO system shows desirable capacities to remove a broad spectrum of TrOCs. We proposed that the degradation of SSX in Mn(VII)-GO suspensions follows two routes: (i) direct oxidation of SSX by Mn species [both Mn(VII) and in situ formed MnO2(s)] and (ii) a carbocatalyst route, where GO acts as an electron mediator, accepting electrons from SSX and transferring them to Mn(VII). We developed a mathematical model to show the contribution of each parallel pathway and found one-electron transfer is primarily responsible for accelerating SSX removal in the Mn(VII)/GO system. Findings in this study showed that GO provides a simple and effective strategy for enhancing the reactivity of Mn(VII) and provided mechanistic insights into the GO-catalyzed redox reaction between SSX and Mn(VII).
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin150090, P.R. China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado80401, United States
| |
Collapse
|
10
|
Li G, Jiang J, He M, Rao D, Zhang J, Sun B. Enhancing Ferrate Oxidation of Micropollutants via Inducing Fe(V)/Fe(IV) Formation Needs Caution: Increased Conversion of Bromide to Bromate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18991-18999. [PMID: 37243626 DOI: 10.1021/acs.est.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 μg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.
Collapse
Affiliation(s)
- Guang Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dandan Rao
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Zhao J, Zhang H, Shi Y, Luo M, Zhou H, Xie Z, Du Y, Zhou P, He C, Yao G, Lai B. Efficient activation of ferrate by Ru(III): Insights into the major reactive species and the multiple roles of Ru(III). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131927. [PMID: 37379593 DOI: 10.1016/j.jhazmat.2023.131927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Ferrate (Fe(VI)) has aroused great research interest in recent years due to its environmental benignancy and lower potential in disinfection by-product generation. However, the inevitable self-decomposition and lower reactivity under alkaline conditions severely restrict the utilization and decontamination efficiency of Fe(VI). Here, we discovered that Ru(III), a representative transition metal, could effectively activate Fe(VI) to degrade organic micropollutants, and its performance on Fe(VI) activation exceeded that of previously reported metal activators. The high-valent metal species (i.e., Fe(IV)/Fe(V) and high-valent Ru species) made a major contribution to SMX removal by Fe(VI)-Ru(III). Density functional theory calculations indicated the function of Ru(III) as a two-electron reductant, leading to the production of Ru(V) and Fe(IV) as the predominant active species. The characterization analyses proved that Ru species was deposited on ferric (hydr)oxides as Ru(III), indicating the possibility of Ru(III) as an electron shuttle with the rapid valence circulation between Ru(V) and Ru(III). This study not only develops an efficient way to activate Fe(VI) but also offers a thorough understanding of Fe(VI) activation induced by transition metals.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhenjun Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Niu L, Lin J, Chen W, Zhang Q, Yu X, Feng M. Ferrate(VI)/Periodate System: Synergistic and Rapid Oxidation of Micropollutants via Periodate/Iodate-Modulated Fe(IV)/Fe(V) Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7051-7062. [PMID: 37074844 DOI: 10.1021/acs.est.2c08965] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Jiang Lin
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Wenzheng Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Qian Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| |
Collapse
|
13
|
He H, Zhao J. The efficient degradation of diclofenac by ferrate and peroxymonosulfate: performances, mechanisms, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11959-11977. [PMID: 36103067 DOI: 10.1007/s11356-022-22967-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, the degradation efficiency and reaction mechanisms of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, by the combination of ferrate (Fe(VI) and peroxymonosulfate (PMS) (Fe(VI)/PMS) were systematically investigated. The higher degradation efficiency of DCF in Fe(VI)/PMS system can be obtained than that in alone persulfate (PS), Fe(VI), PMS, or the Fe(VI)/PS process at pH 6.0. DCF was efficiently removed in Fe(VI)/PMS process within a wide range of pH values from 4.0 to 8.0, with higher degradation efficiency in acidic conditions. The increasing reaction temperature (10 to 30 ℃), Fe(VI) dose (6.25 to 100 µM), or PMS concentration (50 to 1000 µM) significantly enhanced the DCF degradation. The existences of HCO3¯, Cl¯, and humic acid (HA) obviously inhibited the DCF removal. Electron paramagnetic resonance (EPR), free radical quenching, and probing experiments confirmed the existence of sulfate radicals (SO4•¯), hydroxyl radicals (•OH), and Fe(V)/ Fe(IV), which are responsible for DCF degradation in Fe(VI)/PMS system. The variations of TOC removal ratio reveal that the adsorption of organics with ferric particles, formed in the reduction of Fe(VI), also were functioned in the removal process. Sixteen DCF transformation byproducts were identified by UPLC-QTOF/MS, and the toxicity variation was evaluated. Consequently, eight reaction pathways for DCF degradation were proposed. This study provides theoretical basis for the utilization of Fe(VI)/PMS process.
Collapse
Affiliation(s)
- Haonan He
- College of Chemistry and Materials Science, Sichuan Normal University, Jingan Road 5#, Jinjiang District, Chengdu, 610066, Sichuan, China
| | - Junfeng Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Jingan Road 5#, Jinjiang District, Chengdu, 610066, Sichuan, China.
- Key Laboratory of Special Waste Water Treatment, Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China.
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education of China, Chengdu, 610066, China.
| |
Collapse
|
14
|
Review of Advanced Oxidation Processes Based on Peracetic Acid for Organic Pollutants. WATER 2022. [DOI: 10.3390/w14152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In recent years, the removal of organic pollutants from water and wastewater has attracted more attention to different advanced oxidation processes (AOPs). There has been increasing interest in using peroxyacetic acid (PAA), an emerging oxidant with low or no toxic by-products, yet the promotion and application are limited by unclear activation mechanisms and complex preparation processes. This paper synthesized the related research results reported on the removal of organic pollutants by PAA-based AOPs. Based on the research of others, this paper not only introduced the preparation method and characteristics of PAA but also summarized the mechanism and reactivity of PAA activated by the free radical pathway and discussed the main influencing factors. Furthermore, the principle and application of the newly discovered methods of non-radical activation of PAA in recent years were also reviewed for the first time. Finally, the shortcomings and development of PAA-based AOPs were discussed and prospected. This review provides a reference for the development of activated PAA technology that can be practically applied to the treatment of organic pollutants in water.
Collapse
|
15
|
Wei Y, Miao J, Ge J, Lang J, Yu C, Zhang L, Alvarez PJJ, Long M. Ultrahigh Peroxymonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation and Preferential Electron Transfer during Degradation of Phenols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8984-8992. [PMID: 35638588 DOI: 10.1021/acs.est.2c01968] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In persulfate activation by copper-based catalysts, high-valent copper (Cu(III)) is an overlooked reactive intermediate that contributes to efficient persulfate utilization and organic pollutant removal. However, the mechanisms underlying heterogeneous activation and enhanced persulfate utilization are not fully understood. Here, copper oxide (CuO) nanosheets (synthesized with a facile precipitation method) exhibited high catalytic activity for peroxymonosulfate (PMS) activation with 100% 4-chlorophenol (4-CP) degradation within 3 min. Evidence for the critical role of surface-associated Cu(III) on PMS activation and 4-CP degradation over a wide pH range (pH 3-10) was obtained using in situ Raman spectroscopy, electron paramagnetic resonance, and quenching tests. Cu(III) directly oxidized 4-CP and other phenolic pollutants, with rate constants inversely proportional to their ionization potentials. Cu(III) preferentially oxidizes 4-CP rather than react with two PMS molecules to generate one molecule of 1O2, thus minimizing this less efficient PMS utilization pathway. Accordingly, a much higher PMS utilization efficiency (77% of electrons accepted by PMS ascribed to 4-CP mineralization) was obtained with CuO/PMS than with a radical pathway-dominated Co3O4/PMS system (27%) or with the 1O2 pathway-dominated α-MnO2/PMS system (26%). Overall, these results highlight the potential benefits of PMS activation via heterogeneous high-valent copper oxidation and offer mechanistic insight into ultrahigh PMS utilization efficiency for organic pollutant removal.
Collapse
Affiliation(s)
- Yan Wei
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Miao
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianxin Ge
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|