1
|
Wu PY, Chou WC, Wu X, Kamineni VN, Kuchimanchi Y, Tell LA, Maunsell FP, Lin Z. Development of machine learning-based quantitative structure-activity relationship models for predicting plasma half-lives of drugs in six common food animal species. Toxicol Sci 2025; 203:52-66. [PMID: 39302735 DOI: 10.1093/toxsci/kfae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Plasma half-life is a crucial pharmacokinetic parameter for estimating extralabel withdrawal intervals of drugs to ensure the safety of food products derived from animals. This study focuses on developing a quantitative structure-activity relationship (QSAR) model incorporating multiple machine learning and artificial intelligence algorithms, and aims to predict the plasma half-lives of drugs in 6 food animals, including cattle, chickens, goats, sheep, swine, and turkeys. By integrating 4 machine learning algorithms with 5 molecular descriptor types, 20 QSAR models were developed using data from the Food Animal Residue Avoidance Databank (FARAD) Comparative Pharmacokinetic Database. The deep neural network (DNN) algorithm demonstrated the best prediction ability of plasma half-lives. The DNN model with all descriptors achieved superior performance with a high coefficient of determination (R2) of 0.82 ± 0.19 in 5-fold cross-validation on the training sets and an R2 of 0.67 on the independent test set, indicating accurate predictions and good generalizability. The final model was converted to a user-friendly web dashboard to facilitate its wide application by the scientific community. This machine learning-based QSAR model serves as a valuable tool for predicting drug plasma half-lives and extralabel withdrawal intervals in 6 common food animals based on physicochemical properties. It also provides a foundation to develop more advanced models to predict the tissue half-life of drugs in food animals.
Collapse
Affiliation(s)
- Pei-Yu Wu
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Xue Wu
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Venkata N Kamineni
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Yashas Kuchimanchi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, United States
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
2
|
He Y, Liu F, Min W, Liu G, Wu Y, Wang Y, Yan X, Yan B. De novo Design of Biocompatible Nanomaterials Using Quasi-SMILES and Recurrent Neural Networks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39567202 DOI: 10.1021/acsami.4c15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Screening nanomaterials (NMs) with desired properties from the extensive chemical space presents significant challenges. The potential toxicity of NMs further limits their applications in biological systems. Traditional methods struggle with these complexities, but generative models offer a possible solution to producing new molecules without prior knowledge. However, converting complex 3D nanostructures into computer-readable formats remains a critical prerequisite. To overcome these challenges, we proposed an innovative deep-learning framework for the de novo design of biocompatible NMs. This framework comprises two predictive models and a generative model, utilizing a Quasi-SMILES representation to encode three-dimensional structural information on NMs. Our generative model successfully created 289 new NMs not previously seen in the training set. The predictive models identified a particularly promising NM characterized by high cellular uptake and low toxicity. This NM was successfully synthesized, and its predicted properties were experimentally validated. Our approach advances the application of artificial intelligence in NM design and provides a practical solution for balancing functionality and toxicity in NMs.
Collapse
Affiliation(s)
- Ying He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fang Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan Shandong 250014, PR China
| | - Weicui Min
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guohong Liu
- School of Health, Guangzhou Vocational University of Science and Technology, Guangzhou 510555, China
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang T, Russo DP, Demokritou P, Jia X, Huang H, Yang X, Zhu H. An Online Nanoinformatics Platform Empowering Computational Modeling of Nanomaterials by Nanostructure Annotations and Machine Learning Toolkits. NANO LETTERS 2024; 24:10228-10236. [PMID: 39120132 PMCID: PMC11342361 DOI: 10.1021/acs.nanolett.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Modern nanotechnology has generated numerous datasets from in vitro and in vivo studies on nanomaterials, with some available on nanoinformatics portals. However, these existing databases lack the digital data and tools suitable for machine learning studies. Here, we report a nanoinformatics platform that accurately annotates nanostructures into machine-readable data files and provides modeling toolkits. This platform, accessible to the public at https://vinas-toolbox.com/, has annotated nanostructures of 14 material types. The associated nanodescriptor data and assay test results are appropriate for modeling purposes. The modeling toolkits enable data standardization, data visualization, and machine learning model development to predict properties and bioactivities of new nanomaterials. Moreover, a library of virtual nanostructures with their predicted properties and bioactivities is available, directing the synthesis of new nanomaterials. This platform provides a data-driven computational modeling platform for the nanoscience community, significantly aiding in the development of safe and effective nanomaterials.
Collapse
Affiliation(s)
- Tong Wang
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Philip Demokritou
- Center
for Nanotechnology and Nanotoxicology, Department of Environmental
Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, Massachusetts 02115, United States
- Nanoscience
and Advanced Materials Center, Environmental Occupational Health Sciences
Institute, School of Public Health, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Xuelian Jia
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Heng Huang
- Department
of Computer Science, University of Maryland
College Park, College
Park, Maryland 20742, United States
| | - Xinyu Yang
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hao Zhu
- Tulane
Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, Louisiana 70112, United States
- Division
of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Daood NJ, Russo DP, Chung E, Qin X, Zhu H. Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:474-485. [PMID: 39049897 PMCID: PMC11264268 DOI: 10.1021/envhealth.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure-activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.
Collapse
Affiliation(s)
- Nada J. Daood
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Elena Chung
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Xuebin Qin
- Tulane
National Primate Research Center, Tulane
University School of Medicine, Covington, Louisiana 70433, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
5
|
Chung E, Wen X, Jia X, Ciallella HL, Aleksunes LM, Zhu H. Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134297. [PMID: 38677119 PMCID: PMC11519847 DOI: 10.1016/j.jhazmat.2024.134297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.
Collapse
Affiliation(s)
- Elena Chung
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Heather L Ciallella
- Department of Toxicology, Cuyahoga County Medical Examiner's Office, Cleveland, OH, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, NJ, USA; Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
He ZC, Zhang T, Peng W, Mei Q, Wang QZ, Ding F. Exploring the neurotoxicity of chiral dinotefuran towards nicotinic acetylcholine receptors: Enantioselective insights into species selectivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134020. [PMID: 38521037 DOI: 10.1016/j.jhazmat.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiong Mei
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; School of Land Engineering, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
7
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Jia X, Wang T, Zhu H. Advancing Computational Toxicology by Interpretable Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17690-17706. [PMID: 37224004 PMCID: PMC10666545 DOI: 10.1021/acs.est.3c00653] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Chemical toxicity evaluations for drugs, consumer products, and environmental chemicals have a critical impact on human health. Traditional animal models to evaluate chemical toxicity are expensive, time-consuming, and often fail to detect toxicants in humans. Computational toxicology is a promising alternative approach that utilizes machine learning (ML) and deep learning (DL) techniques to predict the toxicity potentials of chemicals. Although the applications of ML- and DL-based computational models in chemical toxicity predictions are attractive, many toxicity models are "black boxes" in nature and difficult to interpret by toxicologists, which hampers the chemical risk assessments using these models. The recent progress of interpretable ML (IML) in the computer science field meets this urgent need to unveil the underlying toxicity mechanisms and elucidate the domain knowledge of toxicity models. In this review, we focused on the applications of IML in computational toxicology, including toxicity feature data, model interpretation methods, use of knowledge base frameworks in IML development, and recent applications. The challenges and future directions of IML modeling in toxicology are also discussed. We hope this review can encourage efforts in developing interpretable models with new IML algorithms that can assist new chemical assessments by illustrating toxicity mechanisms in humans.
Collapse
Affiliation(s)
- Xuelian Jia
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Tong Wang
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
9
|
Wu W, Qian J, Liang C, Yang J, Ge G, Zhou Q, Guan X. GeoDILI: A Robust and Interpretable Model for Drug-Induced Liver Injury Prediction Using Graph Neural Network-Based Molecular Geometric Representation. Chem Res Toxicol 2023; 36:1717-1730. [PMID: 37839069 DOI: 10.1021/acs.chemrestox.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Drug-induced liver injury (DILI) is a significant cause of drug failure and withdrawal due to liver damage. Accurate prediction of hepatotoxic compounds is crucial for safe drug development. Several DILI prediction models have been published, but they are built on different data sets, making it difficult to compare model performance. Moreover, most existing models are based on molecular fingerprints or descriptors, neglecting molecular geometric properties and lacking interpretability. To address these limitations, we developed GeoDILI, an interpretable graph neural network that uses a molecular geometric representation. First, we utilized a geometry-based pretrained molecular representation and optimized it on the DILI data set to improve predictive performance. Second, we leveraged gradient information to obtain high-precision atomic-level weights and deduce the dominant substructure. We benchmarked GeoDILI against recently published DILI prediction models, as well as popular GNN models and fingerprint-based machine learning models using the same data set, showing superior predictive performance of our proposed model. We applied the interpretable method in the DILI data set and derived seven precise and mechanistically elucidated structural alerts. Overall, GeoDILI provides a promising approach for accurate and interpretable DILI prediction with potential applications in drug discovery and safety assessment. The data and source code are available at GitHub repository (https://github.com/CSU-QJY/GeoDILI).
Collapse
Affiliation(s)
- Wenxuan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayu Qian
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Changjie Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingya Yang
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingping Zhou
- School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
10
|
Tan H, Gao P, Luo Y, Gou X, Xia P, Wang P, Yan L, Zhang S, Guo J, Zhang X, Yu H, Shi W. Are New Phthalate Ester Substitutes Safer than Traditional DBP and DiBP? Comparative Endocrine-Disrupting Analyses on Zebrafish Using In Vivo, Transcriptome, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13744-13756. [PMID: 37677100 DOI: 10.1021/acs.est.3c03282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Although previous studies have confirmed the association between phthalate esters (PAEs) exposure and endocrine disorders in humans, few studies to date have systematically assessed the threats of new PAE alternatives to endocrine disruptions. Herein, zebrafish embryos were continuously exposed to two PAEs [di-n-butyl phthalate (DBP) and diisobutyl phthalate (DiBP)], two structurally related alternatives [diiononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH)], and two non-PAE substitutes [dipropylene glycol dibenzoate (DGD) and glyceryl triacetate (GTA)], and the endocrine-disrupting effects were investigated during the early stages (8-48 hpf). For five endogenous hormones, including progesterone, testosterone, 17β-estradiol, triiodothyronine (T3), and cortisol, the tested chemicals disturbed the contents of at least one hormone at environmentally relevant concentrations (≤3.9 μM), except DINCH and GTA. Then, the concentration-dependent reduced zebrafish transcriptome analysis was performed. Thyroid hormone (TH)- and androgen/estrogen-regulated adverse outcome pathways (AOPs) were the two types of biological pathways most sensitive to PAE exposure. Notably, six compounds disrupted four TH-mediated AOPs, from the inhibition of deiodinases (molecular initiating event, MIE), a decrease in T3 levels (key event, KE), to mortality (adverse outcome, AO) with the quantitatively linear relationships between MIE-KE (|r| = 0.96, p = 0.002), KE-AO (|r| = 0.88, p = 0.02), and MIE-AO (|r| = 0.89, p = 0.02). Multiple structural analyses showed that benzoic acid is the critical toxicogenic fragment. Our data will facilitate the screening and development of green alternatives.
Collapse
Affiliation(s)
- Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Pan Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiwen Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiao Gou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lu Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| |
Collapse
|
11
|
Shin HK, Huang R, Chen M. In silico modeling-based new alternative methods to predict drug and herb-induced liver injury: A review. Food Chem Toxicol 2023; 179:113948. [PMID: 37460037 PMCID: PMC10640386 DOI: 10.1016/j.fct.2023.113948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
New approach methods (NAMs) have been developed to predict a wide range of toxicities through innovative technologies. Liver injury is one of the most extensively studied endpoints due to its severity and frequency, occurring among populations that consume drugs or dietary supplements. In this review, we focus on recent developments of in silico modeling for liver injury prediction using deep learning and in vitro data based on adverse outcome pathways (AOPs). Despite these models being mainly developed using datasets generated from drug-like molecules, they were also applied to the prediction of hepatotoxicity caused by herbal products. As deep learning has achieved great success in many different fields, advanced machine learning algorithms have been actively applied to improve the accuracy of in silico models. Additionally, the development of liver AOPs, combined with big data in toxicology, has been valuable in developing in silico models with enhanced predictive performance and interpretability. Specifically, one approach involves developing structure-based models for predicting molecular initiating events of liver AOPs, while others use in vitro data with structure information as model inputs for making predictions. Even though liver injury remains a difficult endpoint to predict, advancements in machine learning algorithms and the expansion of in vitro databases with relevant biological knowledge have made a huge impact on improving in silico modeling for drug-induced liver injury prediction.
Collapse
Affiliation(s)
- Hyun Kil Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 34114, Daejeon, Republic of Korea
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD, 20850, USA.
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR, 72079, USA.
| |
Collapse
|
12
|
Russo D, Aleksunes LM, Goyak K, Qian H, Zhu H. Integrating Concentration-Dependent Toxicity Data and Toxicokinetics To Inform Hepatotoxicity Response Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12291-12301. [PMID: 37566783 PMCID: PMC10448720 DOI: 10.1021/acs.est.3c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Failure of animal models to predict hepatotoxicity in humans has created a push to develop biological pathway-based alternatives, such as those that use in vitro assays. Public screening programs (e.g., ToxCast/Tox21 programs) have tested thousands of chemicals using in vitro high-throughput screening (HTS) assays. Developing pathway-based models for simple biological pathways, such as endocrine disruption, has proven successful, but development remains a challenge for complex toxicities like hepatotoxicity, due to the many biological events involved. To this goal, we aimed to develop a computational strategy for developing pathway-based models for complex toxicities. Using a database of 2171 chemicals with human hepatotoxicity classifications, we identified 157 out of 1600+ ToxCast/Tox21 HTS assays to be associated with human hepatotoxicity. Then, a computational framework was used to group these assays by biological target or mechanisms into 52 key event (KE) models of hepatotoxicity. KE model output is a KE score summarizing chemical potency against a hepatotoxicity-relevant biological target or mechanism. Grouping hepatotoxic chemicals based on the chemical structure revealed chemical classes with high KE scores plausibly informing their hepatotoxicity mechanisms. Using KE scores and supervised learning to predict in vivo hepatotoxicity, including toxicokinetic information, improved the predictive performance. This new approach can be a universal computational toxicology strategy for various chemical toxicity evaluations.
Collapse
Affiliation(s)
- Daniel
P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Lauren M. Aleksunes
- Department
of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Katy Goyak
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Hua Qian
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
13
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Chung E, Russo DP, Ciallella HL, Wang YT, Wu M, Aleksunes LM, Zhu H. Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6573-6588. [PMID: 37040559 PMCID: PMC10134506 DOI: 10.1021/acs.est.3c00648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.
Collapse
Affiliation(s)
- Elena Chung
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Heather L. Ciallella
- Department
of Toxicology, Cuyahoga County Medical Examiner’s
Office, 11001 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Yu-Tang Wang
- Institute
of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products
Processing, Ministry of Agriculture, Beijing 100193, China
| | - Min Wu
- School
of Life Science and Technology, China Pharmaceutical
University, No. 24, Tong Jia Xiang, Nanjing 210009, China
| | - Lauren M. Aleksunes
- Department
of Pharmacology and Toxicology, Rutgers
University, Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
15
|
Wang T, Russo DP, Bitounis D, Demokritou P, Jia X, Huang H, Zhu H. Integrating structure annotation and machine learning approaches to develop graphene toxicity models. CARBON 2023; 204:484-494. [PMID: 36845527 PMCID: PMC9957041 DOI: 10.1016/j.carbon.2022.12.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The increasing usage of NMs arises great concerns regarding nanotoxicity in humans. Traditional animal testing of nanotoxicity is expensive and time-consuming. Modeling studies using machine learning (ML) approaches are promising alternatives to direct evaluation of nanotoxicity based on nanostructure features. However, NMs, including two-dimensional nanomaterials (2DNMs) such as graphenes, have complex structures making them difficult to annotate and quantify the nanostructures for modeling purposes. To address this issue, we constructed a virtual graphenes library using nanostructure annotation techniques. The irregular graphene structures were generated by modifying virtual nanosheets. The nanostructures were digitalized from the annotated graphenes. Based on the annotated nanostructures, geometrical nanodescriptors were computed using Delaunay tessellation approach for ML modeling. The partial least square regression (PLSR) models for the graphenes were built and validated using a leave-one-out cross-validation (LOOCV) procedure. The resulted models showed good predictivity in four toxicity-related endpoints with the coefficient of determination (R2) ranging from 0.558 to 0.822. This study provides a novel nanostructure annotation strategy that can be applied to generate high-quality nanodescriptors for ML model developments, which can be widely applied to nanoinformatics studies of graphenes and other NMs.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Daniel P. Russo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
- Nanoscience and Advanced Materials Center, Environmental Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
- Nanoscience and Advanced Materials Center, Environmental Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Xuelian Jia
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Heng Huang
- Department of Electrical and Computer Engineering, Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, Pennsylvania, USA
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
16
|
Ye L, Ngan DK, Xu T, Liu Z, Zhao J, Sakamuru S, Zhang L, Zhao T, Xia M, Simeonov A, Huang R. Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data. Toxicol Appl Pharmacol 2022; 454:116250. [PMID: 36150479 PMCID: PMC9561045 DOI: 10.1016/j.taap.2022.116250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Drug-induced liver injury (DILI) and cardiotoxicity (DICT) are major adverse effects triggered by many clinically important drugs. To provide an alternative to in vivo toxicity testing, the U.S. Tox21 consortium has screened a collection of ∼10K compounds, including drugs in clinical use, against >70 cell-based assays in a quantitative high-throughput screening (qHTS) format. In this study, we compiled reference compound lists for DILI and DICT and compared the potential of Tox21 assay data with chemical structure information in building prediction models for human in vivo hepatotoxicity and cardiotoxicity. Models were built with four different machine learning algorithms (e.g., Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine) and model performance was evaluated by calculating the area under the receiver operating characteristic curve (AUC-ROC). Chemical structure-based models showed reasonable predictive power for DILI (best AUC-ROC = 0.75 ± 0.03) and DICT (best AUC-ROC = 0.83 ± 0.03), while Tox21 assay data alone only showed better than random performance. DILI and DICT prediction models built using a combination of assay data and chemical structure information did not have a positive impact on model performance. The suboptimal predictive performance of the assay data is likely due to insufficient coverage of an adequately predictive number of toxicity mechanisms. The Tox21 consortium is currently expanding coverage of biological response space with additional assays that probe toxicologically important targets and under-represented pathways that may improve the prediction of in vivo toxicity such as DILI and DICT.
Collapse
Affiliation(s)
- Lin Ye
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Deborah K Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Li Zhang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tongan Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
17
|
Guo H, Zhang P, Zhang R, Hua Y, Zhang P, Cui X, Huang X, Li X. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Front Immunol 2022; 13:1015409. [PMID: 36353637 PMCID: PMC9637949 DOI: 10.3389/fimmu.2022.1015409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2023] Open
Abstract
The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified. In this study, we developed the in silico models for chemical DIAD prediction and investigated the structural characteristics of DIAD chemicals based on the reliable drug data on human autoimmune diseases. We collected 148 medications which were reported can cause DIAD clinically and 450 medications that clearly do not cause DIAD. Several different machine learning algorithms and molecular fingerprints were combined to develop the in silico models. The best performed model provided the good overall accuracy on validation set with 76.26%. The model was made freely available on the website http://diad.sapredictor.cn/. To further investigate the differences in structural characteristics between DIAD chemicals and non-DIAD chemicals, several key physicochemical properties were analyzed. The results showed that AlogP, molecular polar surface area (MPSA), and the number of hydrogen bond donors (nHDon) were significantly different between the DIAD and non-DIAD structures. They may be related to the DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD toxicity were detected from predefined substructures. The SAs may be helpful to explain the mechanism of action of drug induced autoimmune disease, and can used to identify the chemicals with potential DIAD toxicity. The structural alerts have been integrated in a structural alert-based web server SApredictor (http://www.sapredictor.cn). We hope the results could provide useful information for the recognition of DIAD chemicals and the insights of structural characteristics for chemical DIAD toxicity.
Collapse
Affiliation(s)
- Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Peitao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
18
|
Wu X, Zhou Q, Mu L, Hu X. Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129487. [PMID: 35816807 DOI: 10.1016/j.jhazmat.2022.129487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, data-driven machine learning (ML) has distinguished itself from hypothesis-driven studies and has recently received much attention in environmental toxicology. However, the use of ML in environmental toxicology remains in the early stages, with knowledge gaps, technical bottlenecks in data quality, high-dimensional/heterogeneous/small-sample data analysis and model interpretability, and a lack of an in-depth understanding of environmental toxicology. Given the above problems, we review the recent progress in the literature and highlight state-of-the-art toxicological studies using ML (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution). Beyond predicting simple biological endpoints by integrating untargeted omics and adverse outcome pathways, ML development should focus on revealing toxicological mechanisms. The integration of data-driven ML with other methods (e.g., omics analysis and adverse outcome pathway frameworks) endows ML with widely promising application in revealing toxicological mechanisms. High-quality databases and interpretable algorithms are urgently needed for toxicology and environmental science. Addressing the core issues and future challenges for ML in this review may narrow the knowledge gap between environmental toxicity and computational science and facilitate the control of environmental risk in the future.
Collapse
Affiliation(s)
- Xiaotong Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|