1
|
Kumar N, Shukla P. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. ENVIRONMENTAL RESEARCH 2024; 247:118135. [PMID: 38218523 DOI: 10.1016/j.envres.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The enhanced industrial growth and higher living standards owing to the incessant population growth have caused heightened production of various chemicals in different manufacturing sectors globally, resulting in pollution of aquatic systems and soil with hazardous chemical contaminants. The bioremediation of such hazardous pollutants through microalgal processes is a viable and sustainable approach. Accomplishing microalgal-based bioremediation of polluted wastewater requires a comprehensive understanding of microalgal metabolic and physiological dynamics. Microalgae-bacterial consortia have emerged as a sustainable agent for synergistic bioremediation and metabolite production. Effective bioremediation involves proper consortium functioning and dynamics. The present review highlights the mechanistic processes employed through microalgae in reducing contaminants present in wastewater. It discusses the multi-omics approaches and their advantages in understanding the biological processes, monitoring, and dynamics among the partners in consortium through metagenomics. Transcriptomics, proteomics, and metabolomics enable an understanding of microalgal cell response toward the contaminants in the wastewater. Finally, the challenges and future research endeavors are summarised to provide an outlook on microalgae-based bioremediation.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Kimbi Yaah VB, Ahmadi S, Quimbayo M J, Morales-Torres S, Ojala S. Recent technologies for glyphosate removal from aqueous environment: A critical review. ENVIRONMENTAL RESEARCH 2024; 240:117477. [PMID: 37918766 DOI: 10.1016/j.envres.2023.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
The growing demand for food has led to an increase in the use of herbicides and pesticides over the years. One of the most widely used herbicides is glyphosate (GLY). It has been used extensively since 1974 for weed control and is currently classified by the World Health Organization (WHO) as a Group 2A substance, probably carcinogenic to humans. The industry and academia have some disagreements regarding GLY toxicity in humans and its effects on the environment. Even though this herbicide is not mentioned in the WHO water guidelines, some countries have decided to set maximum acceptable concentrations in tap water, while others have decided to ban its use in crop production completely. Researchers around the world have employed different technologies to remove or degrade GLY, mostly at the laboratory scale. Water treatment plants combine different technologies to remove it alongside other water pollutants, in some cases achieving acceptable removal efficiencies. Certainly, there are many challenges in upscaling purification technologies due to the costs and lack of factual information about their adverse effects. This review presents different technologies that have been used to remove GLY from water since 2012 to date, its detection and removal methods, challenges, and future perspectives.
Collapse
Affiliation(s)
- Velma Beri Kimbi Yaah
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland; NanoTech - Nanomaterials and Sustainable Chemical Technologies. Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, 18071, Granada, Spain
| | - Sajad Ahmadi
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland
| | - Jennyffer Quimbayo M
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland; Nano and Molecular Systems Research Unit (NANOMO), Faculty of Science, University of Oulu. Oulu, Finland
| | - Sergio Morales-Torres
- NanoTech - Nanomaterials and Sustainable Chemical Technologies. Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, 18071, Granada, Spain
| | - Satu Ojala
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu. Oulu, Finland
| |
Collapse
|
3
|
Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, Ahmad Zaini MA, Zakaria ZA. Health effects of herbicides and its current removal strategies. Bioengineered 2023; 14:2259526. [PMID: 37747278 PMCID: PMC10761135 DOI: 10.1080/21655979.2023.2259526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
Collapse
Affiliation(s)
- Rozidaini Mohd Ghazi
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | - Nik Raihan Nik Yusoff
- Faculty of Earth Science, Universiti Malaysia Kelantan - Jeli Campus, Jeli, Kelantan, Malaysia
| | | | | | - Nurzila Ab Latif
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Siti Halimah Hasmoni
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Zainul Akmar Zakaria
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
4
|
Hameed A, Nguyen DH, Lin SY, Stothard P, Neelakandan P, Young LS, Young CC. Hormesis of glyphosate on ferulic acid metabolism and antifungal volatile production in rice root biocontrol endophyte Burkholderia cepacia LS-044. CHEMOSPHERE 2023; 345:140511. [PMID: 37871874 DOI: 10.1016/j.chemosphere.2023.140511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Glyphosate (GP, N-phosphonomethyl glycine) is one of the most popular organophosphate herbicides widely used in agricultural practices worldwide. There have been extensive reports on the biohazard attributes and hormetic impacts of GP on plant and animal systems. However, the effects of GP on plant growth-promoting microbes and its ecological relevance remain unknown. Here, we show that GP does exert a hormetic impact on Burkholderia cepacia LS-044, a rice (Oryza sativa ssp. japonica cv. Tainung 71) root endophytic isolate. We used increasing doses of ferulic acid (FA, 1-25 mM) and GP (0.5-5 mM) to test the growth and antifungal volatile production in LS-044 by electrochemical, liquid chromatographic, gas chromatographic and spectrophotometric means. GP treatment at a low dose (0.5 mM) increased FA utilization and significantly (P < 0.0001) enhanced antifungal volatile activity in LS-044. Although FA (1 mM) was rapidly utilized by LS-044, no chromatographically detectable utilization of GP was observed at tested doses (0.5-5 mM). LS-044 emitted predominant amounts of tropone in addition to moderate-to-minor amounts of diverse ketones and/or their derivatives (acetone, acetophenone, 2-butanone, 1-propanone, 1-(2-furanyl-ethanone, 1-phenyl-1-propanone and 1-(3-pyridinyl)-1-propanone), d-menthol, 2-methoxy-3-(1-methylethyl)-pyrazine, dimethyl disulfide, pyridine and ammonium carbamate when grown under GP supplement. GP hormesis on LS-044 induced phenotypic variations in O. sativa ssp. japonica cv. Tainan 11 as evident through seed germination assay. Genes involved in the transformation of FA, and a key gene encoding 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) with Gly-94 and Tyr-95 residues localized at active site most likely rendering EPSPS sensitivity to GP, were detected in LS-044. This is the first report on the GP hormesis influencing morphological and metabolic aspects including volatile emission in a biocontrol bacterium that could modulate rice plant phenotype.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India; Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Duc Hai Nguyen
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Poovarasan Neelakandan
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Li-Sen Young
- Tetanti AgriBiotech Inc. No. 1, Gongyequ 10th Rd., Xitun Dist., Taichung, 40755, Taiwan
| | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
5
|
Karakurt-Fischer S, Johnson DR, Fenner K, Hafner J. Making waves: Enhancing pollutant biodegradation via rational engineering of microbial consortia. WATER RESEARCH 2023; 247:120756. [PMID: 37898004 DOI: 10.1016/j.watres.2023.120756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Biodegradation holds promise as an effective and sustainable process for the removal of synthetic chemical pollutants. Nevertheless, rational engineering of biodegradation for pollutant remediation remains an unfulfilled goal, while chemical pollution of waters and soils continues to advance. Efforts to (i) identify functional bacteria from aquatic and soil microbiomes, (ii) assemble them into biodegrading consortia, and (iii) identify maintenance and performance determinants, are challenged by large number of pollutants and the complexity in the enzymology and ecology of pollutant biodegradation. To overcome these challenges, approaches that leverage knowledge from environmental bio-chem-informatics and metabolic engineering are crucial. Here, we propose a novel high-throughput bio-chem-informatics pipeline, to link chemicals and their predicted biotransformation pathways with potential enzymes and bacterial strains. Our framework systematically selects the most promising candidates for the degradation of chemicals with unknown biotransformation pathways and associated enzymes from the vast array of aquatic and soil bacteria. We substantiated our perspective by validating the pipeline for two chemicals with known or predicted pathways and show that our predicted strains are consistent with strains known to biotransform those chemicals. Such pipelines can be integrated with metabolic network analysis built upon genome-scale models and ecological principles to rationally design fit-for-purpose bacterial communities for augmenting deficient biotransformation functions and study operational and design parameters that influence their structure and function. We believe that research in this direction can pave the way for achieving our long-term goal of enhancing pollutant biodegradation.
Collapse
Affiliation(s)
- Sema Karakurt-Fischer
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Mohy-Ud-Din W, Bashir S, Akhtar MJ, Asghar HMN, Ghafoor U, Hussain MM, Niazi NK, Chen F, Ali Q. Glyphosate in the environment: interactions and fate in complex soil and water settings, and (phyto) remediation strategies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:816-837. [PMID: 37994831 DOI: 10.1080/15226514.2023.2282720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Glyphosate (Gly) and its formulations are broad-spectrum herbicides globally used for pre- and post-emergent weed control. Glyphosate has been applied to terrestrial and aquatic ecosystems. Critics have claimed that Gly-treated plants have altered mineral nutrition and increased susceptibility to plant pathogens because of Gly ability to chelate divalent metal cations. Still, the complete resistance of Gly indicates that chelation of metal cations does not play a role in herbicidal efficacy or have a substantial impact on mineral nutrition. Due to its extensive and inadequate use, this herbicide has been frequently detected in soil (2 mg kg-1, European Union) and in stream water (328 µg L-1, USA), mostly in surface (7.6 µg L-1, USA) and groundwater (2.5 µg L-1, Denmark). International Agency for Research on Cancer (IARC) already classified Gly as a category 2 A carcinogen in 2016. Therefore, it is necessary to find the best degradation techniques to remediate soil and aquatic environments polluted with Gly. This review elucidates the effects of Gly on humans, soil microbiota, plants, algae, and water. This review develops deeper insight toward the advances in Gly biodegradation using microbial communities. This review provides a thorough understanding of Gly interaction with mineral elements and its limitations by interfering with the plants biochemical and morphological attributes.
Collapse
Affiliation(s)
- Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan Pakistan
- Institute of Marine and Environmental Technology, University of MD Center for Environmental Science, Baltimore, MD, USA
| | - Safdar Bashir
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan Pakistan
| | - Muhammad Javed Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
| | | | - Umber Ghafoor
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | | | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of MD Center for Environmental Science, Baltimore, MD, USA
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
7
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
8
|
Zhang W, Chen WJ, Chen SF, Lei Q, Li J, Bhatt P, Mishra S, Chen S. Cellular Response and Molecular Mechanism of Glyphosate Degradation by Chryseobacterium sp. Y16C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6650-6661. [PMID: 37084257 DOI: 10.1021/acs.jafc.2c07301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glyphosate is one of the most widely used herbicides worldwide. Unfortunately, the continuous use of glyphosate has resulted in serious environmental contamination and raised public concern about its impact on human health. In our previous study, Chryseobacterium sp. Y16C was isolated and characterized as an efficient degrader that can completely degrade glyphosate. However, the biochemical and molecular mechanisms underlying its glyphosate biodegradation ability remain unclear. In this study, the physiological response of Y16C to glyphosate stimulation was characterized at the cellular level. The results indicated that, in the process of glyphosate degradation, Y16C induced a series of physiological responses in the membrane potential, reactive oxygen species levels, and apoptosis. The antioxidant system of Y16C was activated to alleviate the oxidative damage caused by glyphosate. Furthermore, a novel gene, goW, was expressed in response to glyphosate. The gene product, GOW, is an enzyme that catalyzes glyphosate degradation, with putative structural similarities to glycine oxidase. GOW encodes 508 amino acids, with an isoelectric point of 5.33 and a molecular weight of 57.2 kDa, which indicates that it is a glycine oxidase. GOW displays maximum enzyme activity at 30 °C and pH 7.0. Additionally, most of the metal ions exhibited little influence on the enzyme activity except for Cu2+. Finally, with glyphosate as the substrate, the catalytic efficiency of GOW was higher than that of glycine, although opposite results were observed for the affinity. Taken together, the current study provides new insights to deeply understand and reveal the mechanisms of glyphosate degradation in bacteria.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, United States
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Muter O. Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms 2023; 11:710. [PMID: 36985282 PMCID: PMC10056695 DOI: 10.3390/microorganisms11030710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Bioaugmentation is widely used in soil bioremediation, wastewater treatment, and air biofiltration. The addition of microbial biomass to contaminated areas can considerably improve their biodegradation performance. Nevertheless, analyses of large data sets on the topic available in literature do not provide a comprehensive view of the mechanisms responsible for inoculum-assisted stimulation. On the one hand, there is no universal mechanism of bioaugmentation for a broad spectrum of environmental conditions, contaminants, and technology operation concepts. On the other hand, further analyses of bioaugmentation outcomes under laboratory conditions and in the field will strengthen the theoretical basis for a better prediction of bioremediation processes under certain conditions. This review focuses on the following aspects: (i) choosing the source of microorganisms and the isolation procedure; (ii) preparation of the inoculum, e.g., cultivation of single strains or consortia, adaptation; (iii) application of immobilised cells; (iv) application schemes for soil, water bodies, bioreactors, and hydroponics; and (v) microbial succession and biodiversity. Reviews of recent scientific papers dating mostly from 2022-2023, as well as our own long-term studies, are provided here.
Collapse
Affiliation(s)
- Olga Muter
- Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
10
|
Ruomeng B, Meihao O, Siru Z, Shichen G, Yixian Z, Junhong C, Ruijie M, Yuan L, Gezhi X, Xingyu C, Shiyi Z, Aihui Z, Fang B. Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synth Syst Biotechnol 2023; 8:302-313. [PMID: 37122957 PMCID: PMC10130697 DOI: 10.1016/j.synbio.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The past 50 years have witnessed a massive expansion in the demand and application of pesticides. However, pesticides are difficult to be completely degraded without intervention hence the pesticide residue could pose a persistent threat to non-target organisms in many aspects. To aim at the problem of the abuse of pesticide products and excessive pesticide residues in the environment, chemical and biological degradation methods are widely developed but are scaled and insufficient to solve such a pollution. In recent years, bio-degradative tools instructed by synthetic biological principles have been further studied and have paved a way for pesticide degradation. Combining the customized design strategy and standardized assembly mode, the engineering bacteria for multi-dimensional degradation has become an effective tool for pesticide residue degradation. This review introduces the mechanisms and hazards of different pesticides, summarizes the methods applied in the degradation of pesticide residues, and discusses the advantages, applications, and prospects of synthetic biology in degrading pesticide residues.
Collapse
|
11
|
Malla MA, Dubey A, Kumar A, Patil A, Ahmad S, Kothari R, Yadav S. Optimization and elucidation of organophosphorus and pyrethroid degradation pathways by a novel bacterial consortium C3 using RSM and GC-MS-based metabolomics. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Li J, Chen WJ, Zhang W, Zhang Y, Lei Q, Wu S, Huang Y, Mishra S, Bhatt P, Chen S. Effects of Free or Immobilized Bacterium Stenotrophomonas acidaminiphila Y4B on Glyphosate Degradation Performance and Indigenous Microbial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13945-13958. [PMID: 36278819 DOI: 10.1021/acs.jafc.2c05612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The overuse of glyphosate has resulted in serious environmental contamination. Thus, effective techniques to remove glyphosate from the environment are required. Herein, we isolated a novel strain Stenotrophomonas acidaminiphila Y4B, which completely degraded glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). Y4B degraded glyphosate over a broad concentration range (50-800 mg L-1), with a degradation efficiency of over 98% within 72 h (50 mg L-1). Y4B degraded glyphosate via the AMPA pathway by cleaving the C-N bond, followed by degradation of AMPA and subsequent metabolism. Y4B demonstrated strong competitiveness and substantially accelerated the degradation of glyphosate in different soils, degrading 71.93 and 89.81% of glyphosate (400 mg kg-1) within 5 days in sterile and nonsterile soils, respectively. The immobilized cells of Y4B were more efficient than their free cells and they displayed excellent biodegradation efficiency in a sediment-water system. Taken together, Y4B is an ideal degrader for the bioremediation of glyphosate-contaminated sites.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette47906, United States
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| |
Collapse
|