1
|
Li J, Yu M, Liu W, Zheng Z, Liu J, Shi R, Zeb A, Wang Q, Wang J. Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136941. [PMID: 39709818 DOI: 10.1016/j.jhazmat.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl2 as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method. The CoIMB preparation was optimized using response surface methodology and applied to PAH-contaminated soil remediation. Results indicated that CoIMB exhibited improved mechanical strength and microbial activity, achieving degradation rates of 2-5 rings PAHs up to 82.41 %, averaging 1.5 times higher than CK. High dose CoIMB treatment enhanced soil microbial community diversity, enriching Acinetobacter, and increased the abundance of functional genes related to fatty acid metabolism and energy metabolism (K00249, K01897, K00059). This composite immobilized bacterial particle provides a novel, broad-spectrum, and cost-effective solution for remediating organic pollutants in soil environments.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
3
|
Wang L, Chen G, Du X, Li M, Zhang Z, Liang H, Gao D. Bioremediation of PAHs-contaminated site in a full-scale biopiling system with immobilized enzymes: Removal efficiency and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119763. [PMID: 39122164 DOI: 10.1016/j.envres.2024.119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Bioremediation of PAHs-contaminated soil by immobilized enzymes is a promising technology. Nevertheless, the practical implementation of highly efficient enzymatic remediation remains confined to laboratory settings, with limited experience in full-scale applications. In this study, the extracellular enzymes from white rot fungi are fully applied to treat sites contaminated with PAHs by combining a new hydrogel microenvironment and a biopiling system. The full-scale project was conducted on silty loam soil contaminated with PAHs. In line with China's guidelines for construction land, 7 out of the 12 PAHs identified are considered to be a threat to the soil quality of construction sites, with benzo[a]pyrene levels reaching 1.50 mg kg-1, surpassing the acceptable limit of 0.55 mg kg-1 for the first type of land. After 7 days of remediation, the benzo[a]pyrene level decreased from 1.50 mg kg-1 to 0.51 mg kg-1, reaching the remediation standard of Class I screening values, with a removal rate of 66%. Microbiomes were utilized to assess the microbial biodiversity and structure analyses for PAHs biodegradation. The remediation enhanced the abundance of dominant bacterium (Marinobacter, Pseudomonas, and Truepera) and fugin (Thielavia, Neocosmospora, and Scedosporium). The research offers further insights into the exploration of soil remediation on the full-scale of the immobilized enzyme and biopiling technology.
Collapse
Affiliation(s)
- Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Guanyu Chen
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Meng Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
4
|
Yang Y, Zhang S, Dong W, Hu X. Laccase immobilized on amino modified magnetic biochar as a recyclable biocatalyst for efficient degradation of trichloroethylene. Int J Biol Macromol 2024; 282:136709. [PMID: 39437952 DOI: 10.1016/j.ijbiomac.2024.136709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Bioremediation of trichloroethylene (TCE) contaminated groundwater has recently attracted considerable attention. In this study, laccase was immobilized on amino modified magnetic pine biochar (MBC-NH2) by adsorption-crosslinking-covalent binding method, and its application in the degradation of TCE was evaluated. MBC-NH2 was obtained from pine sawdust by calcination, magnetic modification and amino modification. MBC-NH2 had high specific surface area (71.3 m2/g), rich surface functional groups and good magnetism. Under the conditions of 25 °C, pH = 4, glutaraldehyde (GA) concentration of 7 %, crosslinking time of 1 h, laccase concentration of 0.75 mg/mL, and immobilization time of 7 h, the loading capacity of laccase on MBC-NH2 carrier was as high as 782 mg/g. Compared with free laccase, immobilized laccase showed higher pH stability and thermal stability, and its activity remained 48.5 % after being reused for 10 times, and 80.8 % after being stored at 4 °C for 30 days. The immobilized laccase exhibited a good degradation effect on TCE. At 25 °C, pH = 4, immobilized laccase concentration of 0.35 g/L, and initial TCE concentration of 10 mg/L, the degradation efficiency of TCE by immobilized laccase was as high as 92.1 % within 48 h. In addition, the degradation products of TCE were analyzed, and the results showed that immobilized laccase could degrade TCE into non-toxic products through epoxidation, hydroxylation, and dechlorination. The immobilized laccase biocatalyst prepared in this study can achieve efficient degradation of TCE, which provides a feasible solution for chlorinated pollution of water resources. These research results are of great significance for the synthesis of biocatalysts for the efficient degradation of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Shaobin Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
5
|
Rasheed U, Ain QU, Liu B. Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil. CHEMOSPHERE 2024; 367:143424. [PMID: 39368492 DOI: 10.1016/j.chemosphere.2024.143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Enzymatic degradation of aflatoxins in food commodities has gained significant attention. However, enzyme denaturation in organic media discourages their direct use in oils to remove aflatoxins. For that, enzymes are immobilized or encapsulated for improved stability and reusability under unfavorable conditions. We sandwiched the laccase between a carrier and an outer protective layer. We used spent-mushroom-substrate (SMS) derived porous magnetic biochar as the laccase carrier and coated it with an iron MOF to create a biocomposite, Fe-BTC@Lac@FB. The immobilized laccase demonstrated enhanced chemical, thermal, and storage stability and proficient reusability. Fe-BTC@Lac@FB exhibited 11 times enhanced aflatoxin B1 (AFB1) degradation compared to free laccase (FL). In addition, thermally inactivated Fe-BTC@Lac@FB could adsorb 11.2 mg/g of AFB1 from peanut oil. Multi-aflatoxin removal also proved promising, while Fe-BTC@Lac@FB could retain >85 % of AFB1 removal efficacy after five reusability cycles. Fe-BTC@Lac@FB treatment did not affect peanut oil quality as indicated by different oil quality parameters and proved essentially non-cytotoxic. All these aspects helped recognize Fe-BTC@Lac@FB as an excellent laccase-carrying material with exceptionally higher stability, activity, and reusability.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China, Nanning, 530005, China.
| |
Collapse
|
6
|
Zhao F, Tang L, Song W, Jiang H, Liu Y, Chen H. Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174584. [PMID: 38977098 DOI: 10.1016/j.scitotenv.2024.174584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
Collapse
Affiliation(s)
- Fangzhou Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingyi Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hanfeng Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yiping Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
7
|
Li R, Luo Y, Zhu X, Zhang J, Wang Z, Yang W, Li Y, Li H. Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown. WATER RESEARCH 2024; 262:122143. [PMID: 39067275 DOI: 10.1016/j.watres.2024.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 μg·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10-4 in 2015 to 1.27 × 10-4 in 2019, and rebounded to 1.40 × 10-4 in 2020-2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.
Collapse
Affiliation(s)
- Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhenyu Wang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Wenyu Yang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Ain QU, Rasheed U, Chen Z, Tong Z. Novel Schiff's base-assisted synthesis of metal-ligand nanostructures for multi-functional applications: Detection of catecholamines/antibiotics, removal of tetracycline, and antifungal treatment against plant pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135009. [PMID: 38964037 DOI: 10.1016/j.jhazmat.2024.135009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
The development of nanozymes (NZ) for the simultaneous detection of multiple target chemicals is gaining paramount attention in the field of food and health sciences, and waste management industries. Nanozymes (NZ) effectively compensate for the environmental vulnerability of natural enzymes. Considering the development gap of NZ with diverse applications, we synthesized versatile Schiff's base ligands following a facile route and readily available starting reagents (glutaraldehyde, aminopyridines). DPDI, one of the synthesized ligands, readily reacted with transition metal ions (Cu+2, Ag+1, Zn+2 in specific) under ambient conditions, yielding the corresponding nanoparticles/MOF. The structures of ligands and their products were confirmed using various analytical techniques. The enzymatic efficacy of DPDI-Cu (km 0.25 mM=, Vmax = 10.75 µM/sec) surpassed Tremetese versicolor laccase efficacy (km 0. 5 mM=, Vmax = 2.15 µM/sec). Additionally, DPDI-Cu proved resilient to changing pH, temperature, ionic strength, organic solvent, and storage time compared to laccase and provided reusability. DPDI-Cu proved promising for colorimetric detection of dopamine, epinephrine, catechol, tetracycline, and quercetin. The mechanism of oxidative detection of TC was studied through LC/MS analysis. DPDI-Cu-bentonite composite efficiently adsorbed tetracycline with maximum Langmuir adsorption of 208 mg/g. Moreover, DPDI/Cu and DPDI-Ag nanoparticles possessed antifungal activity exhibiting a minimum inhibitory concentration of 400 µg/mL and 3.12 µg/mL against Aspergillus flavus. Florescent dye tracking and SEM/TEM analysis confirmed that DPDI-Ag caused disruption of the plasma membrane and triggered ROS generation and apoptosis-like death in fungal cells. The DPDI-Ag coating treatment of wheat seeds confirmed the non-phytotoxicity of Ag-NPs.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Zheng Chen
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
9
|
Han H, Song P, Jiang Y, Fan J, Khan A, Liu P, Mašek O, Li X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134838. [PMID: 38850944 DOI: 10.1016/j.jhazmat.2024.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.
Collapse
Affiliation(s)
- Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building, King's Buildings, Edinburgh EH9 3FF, United Kingdom.
| | - Xiangkai Li
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
10
|
Hainan L, Peng L, Qingqing L, Fang L, Dong Z, Shenfa H, Jie Y, Zhiheng L. Responses of nitrobenzene removal performance and microbial community by modified biochar supported zerovalent iron in anaerobic soil. Sci Rep 2024; 14:17078. [PMID: 39048602 PMCID: PMC11269609 DOI: 10.1038/s41598-024-67301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Biochar-supported ZVI have received increasing attention for their potential to remove nitrobenzene in groundwater and soil. However, the capacity of this material to enhance the biological reduction of nitrobenzene and alter microbial communities in anaerobic groundwater have not been explored. In this study, the nitrobenzene removal performance and mechanism of modified biochar-supported zerovalent iron (ZVI) composites were explored in anaerobic soil. The results showed that the 700 °C biochar composite enhanced the removal of nitrobenzene and inhibited its release from soil to the aqueous phase. NaOH-700-Fe50 had the highest removal rate of nitrobenzene, reaching 64.4%. However, the 300 °C biochar composite inhibited the removal of nitrobenzene. Microbial degradation rather than ZVI-mediated reduction was the main nitrobenzene removal pathway. The biochar composites changed the richness and diversity of microbial communities. ZVI enhanced the symbiotic relationship between microbial genera and weakened competition between soil microbial genera. In summary, the 700 °C modified biochar composite enhanced the removal of nitrobenzene by increasing microbial community richness and diversity, by upregulating functional genes, and by promoting electron transfer. Overall, the modified biochar-supported ZVI composites could be used for soil remediation, and NaOH-700-Fe50 is a promising composite material for the on-site remediation of nitrobenzene-contaminated groundwater.
Collapse
Affiliation(s)
- Lu Hainan
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Li Peng
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Qingqing
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Liu Fang
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhou Dong
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Huang Shenfa
- Shanghai Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai, 200235, China
| | - Yang Jie
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Li Zhiheng
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| |
Collapse
|
11
|
Wu J, Gao D, Wang L, Du X, Zhang Z, Liang H. Bioremediation of 2,4,6-trichlorophenol by extracellular enzymes of white rot fungi immobilized with sodium alginate/hydroxyapatite/chitosan microspheres. ENVIRONMENTAL RESEARCH 2024; 252:118937. [PMID: 38621627 DOI: 10.1016/j.envres.2024.118937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Hydroxyapatite, a calcium phosphate biomass material known for its excellent biocompatibility, holds promising applications in water, soil, and air treatment. Sodium alginate/hydroxyapatite/chitosan (SA-HA-CS) microspheres were synthesized by cross-linking sodium alginate with calcium chloride. These microspheres were carriers for immobilizing extracellular crude enzymes from white rot fungi through adsorption, facilitating the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil. At 50 °C, the immobilized enzyme retained 87.2% of its maximum activity, while the free enzyme activity dropped to 68.86%. Furthermore, the immobilized enzyme maintained 68.09% of its maximum activity at pH 7, surpassing the 51.16% observed for the free enzyme. Under optimal conditions (pH 5, 24 h), the immobilized enzymes demonstrated a remarkable 94.7% removal rate for 160 mg/L 2,4,6-TCP, outperforming the 62.1% achieved by free crude enzymes. The degradation of 2,4,6-TCP by immobilized and free enzymes adhered to quasi-first-order degradation kinetics. Based on LC-MS, the plausible biodegradation mechanism and reaction pathway of 2,4,6-TCP were proposed, with the primary degradation product identified as 1,2,4-trihydroxybenzene. The immobilized enzyme effectively removed 72.9% of 2,4,6-TCP from the soil within 24 h. The degradation efficiency of the immobilized enzyme varied among different soil types, exhibiting a negative correlation with soil organic matter content. These findings offer valuable insights for advancing the application of immobilized extracellular crude enzymes in 2,4,6-TCP remediation.
Collapse
Affiliation(s)
- Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
12
|
Zhou X, Sun Y, Wang T, Tang L, Ling W, Mosa A, Wang J, Gao Y. Remediation potential of an immobilized microbial consortium with corn straw as a carrier in polycyclic aromatic hydrocarbons contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134091. [PMID: 38513440 DOI: 10.1016/j.jhazmat.2024.134091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in soils and threaten human health seriously. The immobilized microorganisms (IM) technique is an effective and environmentally sound approach for remediating PAH-contaminated soil. However, the knowledge of the remedial efficiency and the way IM operates using natural organic materials as carriers in complex soil environments is limited. In this study, we loaded a functional microbial consortium on corn straw to analyze the effect of IM on PAH concentration and explore the potential remediation mechanisms of IM in PAH-contaminated soil. The findings revealed that the removal rate of total PAHs in the soil was 88.25% with the application of IM after 20 days, which was 39.25% higher than the control treatment, suggesting that IM could more easily degrade PAHs in soil. The findings from high-throughput sequencing and quantitative PCR revealed that the addition of IM altered the bacterial community structure and key components of the bacterial network, enhanced cooperative relationships among bacteria, and increased the abundance of bacteria and functional gene copies such as nidA and nahAc in the soil, ultimately facilitating the degradation of PAHs in the soil. This study enhances our understanding of the potential applications of IM for the treatment of PAH-contaminated soil.
Collapse
Affiliation(s)
- Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuhao Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
13
|
Wang H, Tang LX, Ye YF, Ma JX, Li X, Si J, Cui BK. Laccase immobilization and its degradation of emerging pollutants: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120984. [PMID: 38678905 DOI: 10.1016/j.jenvman.2024.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The chronic lack of effective disposal of pollutants has resulted in the detection of a wide variety of EPs in the environment, with concentrations high enough to affect ecological health. Laccase, as a versatile oxidase capable of catalyzing a wide range of substrates and without producing toxic by-products, is a potential candidate for the biodegradation of pollutants. Immobilization can provide favorable protection for free laccase, improve the stability of laccase in complex environments, and greatly enhance the reusability of laccase, which is significant in reducing the cost of industrial applications. This study introduces the properties of laccase and subsequently elaborate on the different support materials for laccase immobilization. The research advances in the degradation of EDs, PPCPs, and PAHs by immobilized laccase are then reviewed. This review provides a comprehensive understanding of laccase immobilization, as well as the advantages of various support materials, facilitating the development of more economical and efficient immobilization systems that can be put into practice to achieve the green degradation of EPs.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Lu-Xin Tang
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Fan Ye
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xin Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Ashkanani Z, Mohtar R, Al-Enezi S, Smith PK, Calabrese S, Ma X, Abdullah M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133813. [PMID: 38402679 DOI: 10.1016/j.jhazmat.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.
Collapse
Affiliation(s)
- Zainab Ashkanani
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rabi Mohtar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salah Al-Enezi
- Petroleum Research Center, Kuwait Institute for Scientific Research, Al-Ahmadi, Kuwait
| | - Patricia K Smith
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Meshal Abdullah
- Sultan Qaboos University, College of Arts & Social Sciences. Al-Khoud, Sultanate of Oman
| |
Collapse
|
15
|
Wang X, Wang Q, Zhang D, Liu J, Fang W, Li Y, Cao A, Wang Q, Yan D. Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170882. [PMID: 38342465 DOI: 10.1016/j.scitotenv.2024.170882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Manganese is one of the essential trace elements for plants to maintain normal life activities. Soil fumigation, while effectively controlling soil-borne diseases, can also improve the cycling of soil nutrient elements. MiSeq amplicon sequencing is used to determine the composition of soil microbial communities, and structural equation modeling and the random forest algorithm are employed to conduct a correlation analysis between key manganese-oxidizing microorganisms and soil manganese availability. This experiment investigated the microbial mechanisms behind the observed increase in available manganese in soil after fumigation. The key findings revealed that Bacillus, GeoBacillus, GraciliBacillus, Chungangia, and Pseudoxanthomonas play crucial roles in influencing the variation in soil available manganese content. Fumigation was found to elevate the abundance of Bacillus. Moreover, laccase activity emerged as another significant factor impacting soil manganese availability, showing an indirect correlation with available manganese content and contributing to 58 % of the observed variation in available manganese content. In summary, alterations in the communities of manganese-oxidizing microorganisms following soil fumigation are pivotal for enhancing soil manganese availability.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Yin B, Li J, Guo W, Dong H, Zhang G, Xin Y, Zhang G, Chen Q. Photocatalytic degradation of fluoranthene in soil suspension by TiO 2/α-FeOOH with enhanced charge transfer capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20621-20636. [PMID: 38381294 DOI: 10.1007/s11356-024-32501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil are potentially harmful to human health. However, the use of photocatalysis technology to treat soil contaminated with PAHs remains challenging. Therefore, TiO2/α-FeOOH composite photocatalyst has been synthesized by hydrothermal method and sol-gel method and applied to photocatalytic degradation of fluoranthene in soil. The morphology, elements, crystal structure, optical properties, electrochemical characteristics, and photocatalytic activity of TiO2/α-FeOOH have been characterized. Results showed that TiO2 is tightly fixed on the surface of α-FeOOH, and TiO2/α-FeOOH had higher photocatalytic activity on photocatalytic degradation of fluoranthene in soil under simulated sunlight. The degradation efficiency of TiO2/α-FeOOH is 3.0 and 4.8 times higher than that of TiO2 and α-FeOOH, respectively. This is attributed to enhanced photocatalytic ability by enhancing the transfer capacity of electrons and holes and broadening the spectrum absorption range. The highest degradation efficiency was achieved when the pH of the soil is neutral, the ratio of water/soil is 10:1, and the dosage of catalyst is 50 mg/g. In addition, it was proved that •O2-, h+, and 1O2 are the main active substances in the photocatalysis of TiO2/α-FeOOH. The possible mechanism of a Z-type electron transfer structure was also proposed. The degradation products of fluoranthene were detected, and the degradation pathway was deduced.
Collapse
Affiliation(s)
- Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Jingying Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Wei Guo
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Haoqing Dong
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With, Qingdao Agricultural University, Dongying, 257029, P. R. China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China.
| |
Collapse
|
17
|
Xu J, Zhang X, Zhou Z, Ye G, Wu D. Covalent organic framework in-situ immobilized laccase for the covalent polymerization removal of sulfamethoxazole in the presence of natural phenols: Prominent enzyme stability and activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132714. [PMID: 37827099 DOI: 10.1016/j.jhazmat.2023.132714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In current water treatment processes, pollutants are typically degraded into small molecules and CO2 for detoxification. This study employed laccase-mediated aggregation of new pollutants with natural phenolic compounds to remove pollutants by forming large molecular substances, effectively sequestering carbon. Free laccase is susceptible to environmental influences, causing deactivation. However, immobilizing laccase onto a carrier enhances enzyme stability. In the experiment, laccase was immobilized onto the covalent organic framework TpPa-1 through an in-situ loading process, resulting in immobilized laccase Lac@TpPa-1. Stability studies revealed that immobilized laccase outperformed free laccase in terms of pH, temperature, and recyclability. Moreover, immobilized laccase was employed for catalyzing the removal of emerging pollutants containing natural phenolic compounds, achieving an 80.53% removal rate with the addition of 0.02 g of laccase within 5 h. Analytical techniques like Fourier-transform ion cyclotron resonance mass spectrometry were used to uncover reaction pathways, demonstrating the presence of radical polymerization and 1, 4 nucleophilic addition. This research utilized TpPa-1 as a carrier for laccase immobilization, promoting oxidation-induced polymerization for efficient pollutant removal. It provides a theoretical foundation for understanding the interplay between emerging pollutants and phenolic compounds in natural environments and enhances the practical application of laccase through immobilization.
Collapse
Affiliation(s)
- Jiahui Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Zhang S, Zhao J, Zhu L. New insights into thermal desorption remediation of pyrene-contaminated soil based on an optimized numerical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132687. [PMID: 37804758 DOI: 10.1016/j.jhazmat.2023.132687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Thermal desorption (TD) is known as an effective technique to remediate PAHs-contaminated sites. However, effectively removing PAHs using TD while saving time, and energy, and minimizing soil damage remains a challenge. In this study, we examined the combined effects of various factors on the removal efficiency of pyrene (PYR) by TD and developed an optimal numerical model based on conducting a series of soil experiments. The results showed that temperature (T) and time (t) promoted the desorption of PYR, while water (Sw) and organic matter (fom) were just the opposite. Besides, water and organic matter had a synergistic effect proportionally. It was found that adjusting the soil-water ratio (which can be controlled by organic matter) maximized the desorption rate of PYR. An ideal Sw/fom 1.56 and a minimized recommended temperature (173 °C) were proposed based on the model. Finally, the efficacy of the optimized scheme was validated in real-world site soil. These findings not only mechanistically revealed the desorption behavior of PYR under the influence of various factors, but also provided an optimized scheme for efficiently removing PAHs using TD, thereby accelerating the remediation process and reducing energy consumption. The modeling ideas and conclusions obtained may be applicable to other PAHs, guiding the effective remediation of PAHs-polluted sites.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jiating Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Chen X, Zhu Y, Chen F, Li Z, Zhang X, Wang G, Ji J, Guan C. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167305. [PMID: 37742959 DOI: 10.1016/j.scitotenv.2023.167305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
20
|
Li F, Li J, Tong M, Xi K, Guo S. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. CHEMOSPHERE 2023; 341:139845. [PMID: 37634583 DOI: 10.1016/j.chemosphere.2023.139845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Electro-bioremediation is a promising technology for remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the resulting electrokinetic effects and electrochemical reactions may inevitably cause changes in soil factors and microorganism, thereby reducing the remediation efficiency. To avoid negative effect of electric field on soil and microbes and maximize microbial degradability, it is necessary to select a suitable electric field. In this study, artificial benzo [a]pyrene (BaP)-contaminated soil was selected as the object of remediation. Changes in soil factors and microorganisms were investigated under the voltage of 1.0, 2.0, and 2.5 V cm-1 using chemical analysis, real-time PCR, and high-throughput sequencing. The results revealed noticeable changes in soil factors (pH, moisture, electrical conductivity [EC], and BaP concentration) and microbes (PAHs ring-hydroxylating dioxygenase [PAHs-RHDα] gene and bacterial community) after the application of electric field. The degree of change was related to the electric field strength, with a suitable strength being more conducive to BaP removal. At 70 d, the highest mean extent of BaP removal and PAHs-RHDα gene copies were observed in EK2.0 + BIO, reaching 3.37 and 109.62 times those in BIO, respectively, indicating that the voltage of 2.0 V cm-1 was the most suitable for soil microbial growth and metabolism. Changes in soil factors caused by electric fields can affect microbial activity and community composition. Redundancy analysis revealed that soil pH and moisture had the most significant effects on microbial community composition (P < 0.05). The purpose of this study was to determine the appropriate electric field that could be used for electro-bioremediation of PAH-contaminated soil by evaluating the effects of electric fields on soil factors and microbial communities. This study also provides a reference for efficiency enhancement and successful application of electro-bioremediation of soil contaminated with PAHs.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
21
|
Xie J, Ren D, Li Z, Zhang X, Zhang S, Chen W. Degradation of 2,4-DCP by immobilized laccase on modified biochar carrier. Bioprocess Biosyst Eng 2023; 46:1591-1611. [PMID: 37656258 DOI: 10.1007/s00449-023-02922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Rape straw was used as the raw material for the biochar in this study, which was then changed using acid, alkali, and magnetic techniques. The laccase was attached using the adsorptions-crosslinking process, and the three modified biochars served as the carriers. The ideal circumstances for laccase immobilization were explored, and both biochar and immobilized laccase's characteristics were examined. The removal of 2,4-dichlorophenol (2,4-DCP) by immobilized laccase from modified biochar and its degradation products were researched. The main conclusions are as follows: the optimal concentration of glutaraldehyde (GLU) was 4%, and the pH was four, and the enzyme dosage was 1.75 mg/mL for the immobilized laccase of acid-modified biochar (SBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 2 mg/mL for immobilized laccase from alkali-modified biochar (JBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 1.75 mg/mL for immobilized laccase from magnetically modified biochar (CBC@LAC). SEM images could show the changes in the surface morphology of biochar caused by three modification methods. The BET results demonstrated that acid and magnetic modification increased the specific surface area of biochar, and alkali modification mainly expanded the pore size of biochar. FT-IR and XRD showed that modification and laccase loading had little effect on the structure of biochar. The stability of immobilized laccase was better than that of free laccase in acid-base, heat, and storage. Among the three modified biochar immobilized laccases, JBC@LAC showed the best acid-base stability and thermal stability, and the relative enzyme activity changed the least when pH and temperature conditions changed. The storage stability of SBC@LAC is the best. After 30 days of storage, the relative enzyme activity is still 83%. The removal rates of 2,4-DCP were 57, 99, and 63%, respectively, by SBC@LAC, JBC@LAC, and CBC@LAC. After five reuses, the removal rates of 2,4-DCP by SBC@LAC, JBC@LAC and CBC@LAC were 26, 42, and 27%, respectively. The intermediate products of 2,4-DCP degradation by immobilized laccase were p-phenol, p-benzoquinone and maleic acid.
Collapse
Affiliation(s)
- Junfeng Xie
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Zihang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
22
|
Wang L, Li Y, Du X, Wu J, Zhang Z, Jin H, Liang H, Gao D. Performance enhancement of white rot fungi extracellular enzymes via new hydrogel microenvironments for remediation of benzo[a]pyrene contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131505. [PMID: 37121037 DOI: 10.1016/j.jhazmat.2023.131505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Organic pollutants with low solubility and high ecotoxicity, mutagenicity, and carcinogenicity, are rapidly entering and accumulating in soil, resulting in soil pollution. Several methods have been investigated for remediation of organic contaminated soil, including enzymatic remediation approach. However, free enzymes are easily deactivated, which hinders their practical application in soil remediation. Immobilization of enzyme improves its stability and catalytic performance, but the immobilized material itself becomes secondary pollutants in soil. In this study, Trametes versicolor extracellular enzyme was immobilized on the degradable calcium alginate hydrogel microspheres. The laccase maintained a high activity. In addition, the addition of cellulose improved the strength of the carrier. Hydrogel microspheres solved the problems of easy inactivation of free enzyme and secondary contamination of immobilized materials. By a novel combination of extracellular enzymes and hydrogel microenvironments, immobilized enzymes not only demonstrate outstanding performance in thermal stability and pH adaptability, but also achieves a significant improvement in biocatalytic activity for benzo[a]pyrene contaminated soil. The thermal stability of immobilized enzyme was much higher than that of free enzyme. When the temperature increased to 50 °C, the activity of immobilized enzyme remained at 93.15% of the maximum enzyme activity, while the activity of free enzyme decreased to 63.76%. At pH 8, the immobilized enzyme activity maintained 74.84% of the maximum enzyme activity, while the free enzyme activity was only 11.86%. Immobilized enzymes can effectively remove 91.40% of benzo[a]pyrene from soil within 96 h. Furthermore, the catalytic oxidation of benzo[a]pyrene by enzymes that have been immobilized ultimately results in the production of 6,12-benzo[a]pyrene-dione. Molecular dynamics simulation showed that the catalytic degradation of benzo[a]pyrene was mainly through the interaction of amino acid residues PRO-391 with the Pi-alkyl of benzo[a]pyrene. This study presents an innovative strategy for designing and developing immobilized enzymes for use in biocatalytic applications related to eco-remediation of soil.
Collapse
Affiliation(s)
- Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huixia Jin
- School of Civil Engineering &Architecture, Ningbotech University, Zhejiang University, Ningbo 315100, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
23
|
Zou M, Tian W, Chu M, Lu Z, Liu B, Xu D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163057. [PMID: 36966832 DOI: 10.1016/j.scitotenv.2023.163057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Bingkun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dongpo Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
24
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Yang G, Jiang Y, Yin B, Liu G, Ma D, Zhang G, Zhang G, Xin Y, Chen Q. Efficiency and mechanism on photocatalytic degradation of fluoranthene in soil by Z-scheme g-C 3N 4/α-Fe 2O 3 photocatalyst under simulated sunlight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27334-1. [PMID: 37147542 DOI: 10.1007/s11356-023-27334-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil have potential harm on human health. However, remediation of PAH-contaminated soils through photocatalytic technology remains a challenge. Therefore, the photocatalyst g-C3N4/α-Fe2O3 was synthesized and applied to photocatalytic degradation of fluoranthene in soil. The physicochemical properties of g-C3N4/α-Fe2O3 and various degradation parameters, such as catalyst dosage, the ratio of water/soil, and initial pH, were investigated in detail. In soil slurry reaction system (water/soil=10:1, w/w), the optimal degradation efficiency on fluoranthene was 88.7% after simulated sunlight irradiation for 12 h (contaminated soil=2 g, initial fluoranthene concentration=36 mg/kg, catalyst dosage=5%, and pH=6.8), and the photocatalytic degradation followed pseudo-first-order kinetics. The degradation efficiency of g-C3N4/α-Fe2O3 was higher compared with P25. Degradation mechanism analysis showed that •O2- and h+ are the main active species in photocatalytic degradation process of fluoranthene by g-C3N4/α-Fe2O3. Coupling g-C3N4 and α-Fe2O3 enhances the interfacial charge transport capacity via Z-scheme charge transfer route and inhibits the recombination of photogenerated electrons and holes of g-C3N4 and α-Fe2O3, then significantly improves the production of active species and photocatalytic activity. Results showed that photocatalytic treatment of soil by g-C3N4/α-Fe2O3 is an effective strategy for remediation of soils contaminated by PAHs.
Collapse
Affiliation(s)
- Guoliang Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yan Jiang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guocheng Liu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Dong Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, People's Republic of China.
| |
Collapse
|