1
|
Cieśla M, Gruca-Rokosz R. Fate of heavy metals in ecosystems of dam reservoirs: Transport, distribution and significance of the origin of organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124811. [PMID: 39191318 DOI: 10.1016/j.envpol.2024.124811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
In this article, a multivariate analysis of the parameters determining the transport and fate of selected heavy metals in the water - bottom sediment interface was carried out. The studies were carried out in the summer season of 2019 at Nielisz Reservoir (southeastern Poland, Lublin Voivodeship). Finally, a previously unknown factor related to the quality of organic matter was identified. Autochthonous organic matter was shown to promote the accumulation of the studied heavy metals. To date, the significance of the origin of organic matter in the context of the transport and fate of heavy metals in retention reservoirs has rarely been reported in the scientific literature. More than that, this factor was not considered an important component in the process of heavy metal deposition in bottom sediments. However, it turns out that not only the quantity of organic matter, but also its quality plays an important role in the circulation of heavy metals in retention reservoir ecosystems. It was found that autochthonous organic matter promotes the accumulation of the studied heavy metals. It can be assumed that, in a sense, it plays the role of a catenary ("hub") controlling the fate of heavy metals in the water-sediment system. It has also been conjectured that, in a sense, OMS may reflect the potential for heavy metal assimilation by aquatic vascular plants (mainly of the C3 group). Plants with a photosynthetic pathway similar to the C3 group generally have a much lower enrichment in the 13C isotope (δ13C from -38‰ to -22‰). In our case, the lowest δ13C-TOCS value was -24.05‰, and the average for the whole reservoir was -21.53‰. In addition, it was observed that quantitative changes in the isotopic composition of total organic carbon δ13C-TOCS, corresponded with changes in the content of the heavy metals studied in entrapped sediments.
Collapse
Affiliation(s)
- Maksymilian Cieśla
- Department of Environmental and Chemistry Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959, Rzeszów, Poland.
| | - Renata Gruca-Rokosz
- Department of Environmental and Chemistry Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| |
Collapse
|
2
|
Tepanosyan G, Poghosyan Z, Sahakyan L. Geochemical characterization of changes in the chemical composition of river sediments under the continuous anthropogenic influence of Yerevan, Armenia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124553. [PMID: 39009300 DOI: 10.1016/j.envpol.2024.124553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The long-term study of the chemical composition of river sediments within urban areas and the establishment of baseline values of major and trace elements is an important task. Therefore, this study aims to provide a geochemical characterization of the sediments, establish a local geochemical baseline, unveil geochemical associations of elements, study the trend of changes in element pollution levels and the associated ecological risks. The results indicate that the change of the local physical characteristics across the river flow (canyon-flat relief surrounded by buildings-reservoir-flat relief under the influence of contamination sources) and locations of contamination sources conditioned the formation of positive extreme values detected for the majority of the studied elements. An analogous variation pattern of major and trace elements median values (2019-2023) was observed for Cr, V, Cu, Fe, Co, Zr Mn, Zn, K, Ba over 5 years representing the geochemical signature of the local geological composition (basalt, andesibasalts, andesite, tuff, K-feldspar). The pollution level and the ecological risk assessment showed that during the study period moderately and highly hazardous levels of multi-element pollution were detected in the southwestern part of the river located near the industrial enterprises. In the meantime, moderate (in 2020) and considerable (in 2021) ecological risk levels were observed at the site near the artificial reservoir. A hierarchical clustering combined with the geochemical ratio analysis reveals three groups of geochemical associations that have a natural (Fe, Mn, Co, V, Ti, Zr, K, Rb, Ba); anthropogenic (Cu, Zn, Pb, Mo) and mixed (Ca, Sr, Cr) origin. Moreover, the anthropogenic association shows affinity to Ca hence denominating the dominant role of carbonates in the fixation and coprecipitation of Cu2+, Pb2+, Mo2+, Zn2+ ions. The comparison of the baseline values of the studied elements with the upper continental crust values confirmed their applicability for differentiation of their origin.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan, 0025, Abovian-68, Armenia.
| | - Zhenya Poghosyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan, 0025, Abovian-68, Armenia
| | - Lilit Sahakyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan, 0025, Abovian-68, Armenia
| |
Collapse
|
3
|
Su Q, Cheng Y, Huang L, Zhao S, Ma J, Song S, Li N, Xu H, Wang C. Potentially toxic elements in surface sediments of the Beibu Gulf, South Sea, China: Occurrence, bioavailability and probabilistic risk assessment. MARINE POLLUTION BULLETIN 2024; 209:117091. [PMID: 39393240 DOI: 10.1016/j.marpolbul.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
At present, pollution of gulf sediments with potentially toxic elements (PTEs) has become a prominent marine environmental problem. This study thoroughly investigated the occurrence, bioavailability, and probabilistic risk of PTEs in the surface sediments of the Beibu Gulf. The average total concentrations (mg/kg) were 8.03 for As, 0.06 for Cd, 52.73 for Cr, 9.86 for Cu, 0.04 for Hg, 18.70 for Ni, 27.77 for Pb and 59.80 for Zn, respectively. The positive matrix factorization model revealed that the PTE enrichment was primarily due to composite sources from aquaculture and fisheries activities, industrial and agricultural sources. Risk assessment code and correlation analysis indicated that Cd had the highest bioavailability, influenced by TOC and TP. The probabilistic risk assessment model estimated a 60.83 % probability that the mixed PTEs in the Beibu Gulf's surface sediments could have toxic effects on aquatic life. These findings underscore the impact of intensive human activities on PTE pollution and highlight the need for further research on PTE ecotoxicology and pollution control strategies.
Collapse
Affiliation(s)
- Qiongyuan Su
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Yanan Cheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin 541004, China.
| | - Shuwen Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Ma
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shijie Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Caiguang Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
4
|
Li Y, Qin Y, Zhang L, Qi L, Wang S, Guo J, Tang A, Goulding K, Liu X. Bioavailability and ecological risk assessment of metal pollutants in ambient PM 2.5 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174129. [PMID: 38917907 DOI: 10.1016/j.scitotenv.2024.174129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Metal pollutants in fine particulate matter (PM2.5) are physiologically toxic, threatening ecosystems through atmospheric deposition. Biotoxicity and bioavailability are mainly determined by the active speciation of metal pollutants in PM2.5. As a megacity in China, Beijing has suffered severe particulate pollution over the past two decades, and the health effects of metal pollutants in PM2.5 have received significant attention. However, there is a limited understanding of the active forms of metals in PM2.5 and their ecological risks to plants, soil or water in Beijing. It is essential that the ecological risks of metal pollutants in PM2.5 are accurately evaluated based on their bioavailability, identifying the key pollutants and revealing historic trends to future risks control. A two-year project measured the chemical speciation of pollution elements (As, Cd, Cu, Cr, Ni, Mn, Pb, Sb, Sr, Ti, and Zn) in PM2.5 in Beijing, in particular their bioavailability, assessing ecological risks and identifying key pollutants. The mass concentrations of total and active species of pollution elements were 199.12 ng/m3 and 114.97 ng/m3, respectively. Active fractions accounted for 57.7 % of the total. Cd had the highest active proportion. Based on the risk assessment code (RAC), most pollution elements except Ti had moderate or high ecological risk, with RAC exceeding 30 %. Cd, with an RAC of 70 %, presented the strongest ecological risk. Comparing our data with previous research shows that concentrations of pollution elements in PM2.5 in Beijing have decreased over the past decade. However, although the total concentrations of Cd in PM2.5 have decreased by >50 % over the past decade, based on machine model simulation, its ecological risk has reduced by only 10 %. Our research shows that the ecological risks of pollution elements remain high despite their decreasing concentrations. Controlling the active species of metal pollutants in PM2.5 in Beijing in the future is vital.
Collapse
Affiliation(s)
- Yunzhe Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yanyi Qin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lisha Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Linxi Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shuifeng Wang
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Jinghua Guo
- Analysis and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Keith Goulding
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Xuejun Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Wang W, Huo Y, Lin C, Lian Z, Wang L, Liu Y, Sun X, Chen J, Lin H. Occurrence, accumulation, ecological risk, and source identification of potentially toxic elements in multimedia in a subtropical bay, Southeast China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135110. [PMID: 38970976 DOI: 10.1016/j.jhazmat.2024.135110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Potentially toxic elements (PTEs) in seawater and sediments may be amplified along the aquatic food chain, posing a health threat to humans. This study comprehensively analyzed the concentrations, distribution, potential sources, and health risk of 7 PTEs in multimedia (seawater, sediment and organism) in typical subtropical bays in southern China. The results indicated that Zn was the most abundant element in seawater, and the average concentration of Cd in sediment was 3.93 times higher than the background value. Except for As, the seasonal differences in surface seawater were not significant. The content of Zn in fishes, crustacea, and shellfish was the highest, while the contents of Hg and Cd were relatively low. Bioaccumulation factor indicated that Zn was a strongly bioaccumulated element in seawater, while Cd was more highly enriched by aquatic organisms in sediment. According to principal component analysis (PCA), and positive matrix factorization (PMF), the main sources of PTEs in Quanzhou Bay were of natural derivation, industrial sewage discharge, and agricultural inputs, each contributing 40.4 %, 24.2 %, and 35.4 %, respectively. This study provides fundamental and significant information for the prevention of PTEs contamination in subtropical bays, the promotion of ecological safety, and the assessment of human health risk from PTEs in seafood.
Collapse
Affiliation(s)
- Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Beihai 536000, China
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zhonglian Lian
- Zhanjiang Marine Center, Ministry of Natural Resources, Zhanjiang 524005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jinmin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
6
|
Jia Z, Liu Q, Hu J, Li S, Chen H. A microcosm evaluation of metal cycling in an urbanized contaminated estuary varying with oxic-hypoxic-anoxic-reoxic transition: Behavior, fluxes, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172769. [PMID: 38670363 DOI: 10.1016/j.scitotenv.2024.172769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/31/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Water hypoxia and metal pollution are commonly co-existed in urbanized estuaries. This study focuses on the effect of an extended dissolved oxygen (DO) full-life dynamics (86 days) on metal behavior across the sediment-water interface through laboratory microcosms from two typical zones in Pearl River Estuary. Combining our time-series results of concentrations and fluxes, it showed that Co, Ni, and Zn consistently presented a release-precipitation-release trajectory with an oxic-hypoxic-anoxic-reoxic transition, characterized with highly variable behavior in the hypoxic-anoxic hotmoments. In parallel, changing DO dynamics significantly activated a repartitioning process of Co, Ni, and Zn among several species and elevated their risk in sediments, promoting the formation of more labile species in the 0-10 mm hotspots, where metals sensitively responded. Over DO transition, metal cycling was tightly co-related with Fe, Mn, and S elements. It was found that Mn was dominated in low oxygen-hypoxic period, but switched to S and Fe in anoxic stage, limiting sustained metal liberation to overlying water. Enlarging this experiment to practice, released Zn fluxes from sediments in hypoxic summer could contribute about ∼2.0% to their stocks in water column, while increase to 20% (1 m bottom water) in highly-stratified zones. This study has certain significance in understanding the long-term metal behavior and fate in estuarine regions, even lakes and reservoirs.
Collapse
Affiliation(s)
- Zhenzhen Jia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qiuxin Liu
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shiyu Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hujunjie Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Wu W, Su S, Lin J, Owens G, Chen Z. Intensive ammonium fertilizer addition activates iron and carbon conversion coupled cadmium redistribution in a paddy soil under gradient redox conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172179. [PMID: 38582103 DOI: 10.1016/j.scitotenv.2024.172179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
While over-fertilization and nitrogen deposition can lead to the enrichment of nitrogen in soil, its effects on heavy metal fractions under gradient moisture conditions remains unclear. Here, the effect of intensive ammonium (NH4+) addition on the conversion and interaction of cadmium (Cd), iron (Fe) and carbon (C) was studied. At relatively low (30-80 %) water hold capacity (WHC) NH4+ application increased the carbonate bound Cd fraction (F2Cd), while at relatively high (80-100 %) WHC NH4+ application increased the organic matter bound Cd fraction (F4Cd). Iron‑manganese oxide bound Cd fractions (F3Cd) and oxalate-Fe decreased, but DCB-Fe increased in NH4+ treatments, indicating that amorphous Fe was the main carrier of F3Cd. The variations in F1Cd and F4Cd observed under the 100-30-100 % WHC treatment were similar to those observed under low moisture conditions (30-60 % WHC). The C=O/C-H ratio of organic matter in soil decreased under the 30-60 % WHC treatment, but increased under the 80-100 % WHC treatment, which was the dominant factor influencing F4Cd changes. The conversion of NH4+ declined with increasing soil moisture content, and the impact on oxalate-Fe was greater at 30-60 % WHC than at 80-100 % WHC. Correspondingly, genetic analysis showed the effect of NH4+ on Fe and C metabolism at 30-60 % WHC was greater than at 80-100 % WHC. Specifically, NH4+ treatment enhanced the expression of genes encoding extracellular Fe complexation (siderophore) at 30-80 % WHC, while inhibiting genes encoding Fe transmembrane transport at 30-60 % WHC, indicating that siderophores simultaneously facilitated Cd detoxification and Fe complexation. Furthermore, biosynthesis of sesquiterpenoid, steroid, butirosin and neomycin was significantly correlated with F4Cd, while glycosaminoglycan degradation metabolism and assimilatory nitrate reduction was significantly correlated with F2Cd. Overall, this study gives a more comprehensive insight into the effect of NH4+ on activated Fe and C conversion on soil Cd redistribution under gradient moisture conditions.
Collapse
Affiliation(s)
- Weiqin Wu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Shixun Su
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
8
|
Liu H, Wang H, Zhao H, Wang H, Xia R, Wang X, Li M, Zhou J. Speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in soil-earthworm (Eisenia fetida) system near a large copper smelter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171700. [PMID: 38490408 DOI: 10.1016/j.scitotenv.2024.171700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China.
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
9
|
Wang Y, Su N, Lian E, Wang R. Spatial heterogeneity of sedimentary organic matter sources in the Yangtze River estuary: Implications from fatty acid biomarkers. MARINE POLLUTION BULLETIN 2024; 201:116249. [PMID: 38484535 DOI: 10.1016/j.marpolbul.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
This study investigated the sources of sedimentary organic matter (OM) in the Yangtze River estuary (YRE), using multiple biomarkers. The results of stable carbon isotope (δ13C) and total organic carbon to nitrogen ratio (TOC/TN) suggests the contribution of marine-derived OM significantly increased seawards, while fatty acid (FA) composition provides more specific information on OM sources. In total, 30 components of FAs were identified at the studied 17 sites, which mainly composed of phytoplankton FA, followed by ubiquitous FA and bacterial FA, while terrestrial FA contributed less to the total FAs. Under the strong impacts of the large physicochemical gradients in the YRE, TOC, TN and FA components showed higher concentrations in the estuary mixing zone (especially within the turbidity maximum zone), attributing to their strong binding with OM-enriched fine particles. The spatial heterogeneity of sedimentary OM sources was highly impacted by salinity and Chl-a, as well as bacteria-mediated OM degradation.
Collapse
Affiliation(s)
- Yunhui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ni Su
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Ergang Lian
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China; Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200120, PR China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Cui L, Li X, Luo Y, Gao X, Wang Y, Lv X, Zhang H, Lei K. A comprehensive review of the effects of salinity, dissolved organic carbon, pH, and temperature on copper biotoxicity: Implications for setting the copper marine water quality criteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169587. [PMID: 38154639 DOI: 10.1016/j.scitotenv.2023.169587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
In recent years, there has been a growing concern about the ecological hazards associated with copper, which has sparked increased interest in copper water quality criteria (WQC). The crucial factors affecting the bioavailability of copper in seawater are now acknowledged to be salinity, dissolved organic carbon (DOC), pH, and temperature. Research on the influence of these four water quality parameters on copper toxicity is rapidly expanding. However, a comprehensive and clear understanding of the relevant mechanisms is currently lacking, hindering the development of a consistent international method to establish the seawater WQC value for copper. As a response to this knowledge gap, this study presents a comprehensive summary with two key focuses: (1) It meticulously analyzes the effects of salinity, DOC, pH, and temperature on copper toxicity to marine organisms. It takes into account the adaptability of different species to salinity, pH and temperature. (2) Additionally, the study delves into the impact of these four water parameters on the acute toxicity values of copper on marine organisms while also reviewing the methods used in establishing the marine WQC value of copper. The study proposed a two-step process: initially zoning based on the difference of salinity and DOC, followed by the establishment of Cu WQC values for different zones during various seasons, considering the impacts of water quality parameters on copper toxicity. By providing fundamental scientific insights, this research not only enhances our understanding and predictive capabilities concerning water quality parameter-dependent Cu toxicity in marine organisms but also contributes to the development of copper seawater WQC values. Ultimately, this valuable information facilitates more informed decision-making in marine water quality management efforts.
Collapse
Affiliation(s)
- Liang Cui
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Luo
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315012, China
| | - Xiangyun Gao
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yan Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xubo Lv
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Hua Zhang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Kun Lei
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Saha A, Das BK, Sarkar DJ, Samanta S, Vijaykumar ME, Khan MF, Kayal T, Jana C, Kumar V, Gogoi P, Chowdhury AR. Trace metals and pesticides in water-sediment and associated pollution load indicators of Netravathi-Gurupur estuary, India: Implications on coastal pollution. MARINE POLLUTION BULLETIN 2024; 199:115950. [PMID: 38183833 DOI: 10.1016/j.marpolbul.2023.115950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
Various environmental indicators were used to evaluate the water and sediment quality of the Netravathi-Gurupur estuary, India, for trace metals and pesticide pollution. The descended order of studied metal concentrations (μg/L) in the water was Fe (592.71) > Mn (98.35) > Zn (54.69) > Cu (6.64) > Cd (3.24) > Pb (2.38) > Cr (0.82) and in sediment (mg/kg) was Fe (11,396.53) > Mn (100.61) > Cr (75.41) > Zn (20.04) > Cu (12.77) > Pb (3.46) > Cd (0.02). However, pesticide residues were not detected in this estuarine environment. The various metal indexes categorised the water as uncontaminated, whereas contamination factor, enrichment factor, geo-accumulation index, degree of contamination and pollution load index indicated low to moderate sediment contamination. Multivariate statistics showed that the dominance of natural sources of trace metals with little anthropogenic impact. Improvement in water/sediment quality during the study period might be due to COVID-19 imposed lockdown.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - D J Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Pranab Gogoi
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
12
|
Liu H, Wang H, Zhou J, Zhang Y, Wang H, Li M, Wang X. Environmental cadmium pollution and health risk assessment in rice-wheat rotation area around a smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:433-444. [PMID: 38012484 DOI: 10.1007/s11356-023-31215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cadmium (Cd) pollution induced by smelting process is of great concern worldwide. However, the comprehensive risk assessment of Cd exposures in smelting areas with farming coexist is lacking. In this study, atmospheric deposition, soil, surface and drinking water, rice, wheat, vegetable, fish, pork, and human hair samples were collected in rice-wheat rotation area near nonferrous smelter to investigate smelting effect on environmental Cd pollution and human health. Results showed high Cd deposition (0.88-2.61 mg m-2 year-1) combined with high bioavailability (37-42% totality) in study area. Moreover, 90%, 83%, 57%, and 3% of sampled soil, wheat, rice, and vegetable of Cd were higher than national allowable limits of China, respectively, indicating smelting induced serious environmental Cd pollution. Especially, higher Cd accumulation occurred in wheat compared to rice by factors of 1.5-2.0. However, as for Cd exposure to local residents, due to rice as staple food, rice intake ranked as main route and accounted for 49-53% of total intake, followed by wheat and vegetable. Cd exposure showed high potential noncarcinogenic risks with hazard quotient (HQ) of 0.63-4.99 using Monte Carlo probabilistic simulation, mainly from crop food consumption (mean 94% totality). Further, residents' hair Cd was significant correlated with HQ of wheat and rice ingestion, highlighting negative impact of cereal pollution to resident health. Therefore, smelting process should not coexist with cereal cultivating.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| |
Collapse
|
13
|
Xue SM, Jiang SQ, Li RZ, Jiao YY, Kang Q, Zhao LY, Li ZH, Chen M. The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167752. [PMID: 37838060 DOI: 10.1016/j.scitotenv.2023.167752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Heavy metal (HM) pollution is a major concern in freshwater ecosystem management. The different types of endogenous organic matter and the way their decomposition affects HM transformation in freshwater lakes is not well understood. An ex situ mesocosm study was conducted to compare HM transformation in sediments during anaerobic decomposition of cyanobacterial bloom biomass (CBB) and submerged cyanobacterial vegetation in Lake Taihu, known as Potamogeton malaianus (PM). Microbial community structures were examined through Illumina sequencing of 16S rDNA. Results indicate that Zn had a remarkably higher amount of potential mobile fraction than other heavy metals (Cr, Pb, Cu, Ni, and Cd) detected in sediments, especially in sediments collected from CBB-dominated areas (approximately 150 mg kg-1). CBB decomposition has caused a significant increase in exchangeable Zn content in sediments and a decrease in reducible Zn that was three times greater than PM decomposition. Additionally, oxidizable Zn content declined during CBB decomposition but increased during PM decomposition. Furthermore, the relative abundance of the main fermentative bacteria and some sulfate-reducing bacteria genera (e.g., Desulfomicrobium) were significantly associated with the HM content of exchangeable and reducible fractions during CBB decomposition. Overall, the findings indicate that Zn is more susceptible to endogenous organic matter decomposition than other metals in freshwater lakes, and the impacts of CBB decomposition on the transformation of heavy metals in sediment are greater than that of submerged macrophyte decomposition.
Collapse
Affiliation(s)
- Si-Min Xue
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Shu-Qi Jiang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Rui-Ze Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qun Kang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
14
|
Niu S, Xia Y, Yang C, Liu C. Impacts of the steel industry on sediment pollution by heavy metals in urban water system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122364. [PMID: 37580006 DOI: 10.1016/j.envpol.2023.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
The impact of the steel industry on sediment heavy metal (HM) pollution in urban aquatic environments was investigated in a major iron ore-producing area (Ma'anshan) in China. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 9.68 ± 3.56, 170.31 ± 82.40, 90.62 ± 19.54, 30.61 ± 6.72, 125.43 ± 63.60, and 1276.59 ± 701.90 mg/kg in the steel industry intruded upon sediments and 4.63 ± 1.41, 87.60 ± 10.96, 52.67 ± 19.99, 37.49 ± 6.17, 35.84 ± 11.41, and 189.02 ± 95.57 mg/kg in the control area, respectively. Comparing with the local soil background (0.08 mg/kg for Cd, 62.6 mg/kg for Cr, 19.3 mg/kg for Cu, 28.1 mg/kg for Ni, 26.0 mg/kg for Pb, and 58.0 mg/kg for Zn), significantly higher levels of Cd, Cr, Cu, Pb, and Zn were detected in the steel industry affected sediments. The enrichment factor and principal component analysis indicated that the heavy metals (HMs), except for Ni, were primarily derived from anthropogenic inputs, particularly from steel industrial activities. Multiple risk assessment models suggested that the sediments affected by industrial activities showed significant toxic effects for Cd, Cr, Pb, and Zn, with Cd being the main contributor to sediment toxicity. However, the alkaline nature of the sediments (pH = 7.85 ± 0.57) and the high proportion of residual fraction Cd (61.09% ± 26.64%) may help to reduce the toxic risks in the sediments. Effective measures to eliminate tinuous thethe continous input of Cd and Zn via surface runoff are crucial.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, People's Republic of China.
| | - Yanrong Xia
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, People's Republic of China
| | - Cuihe Yang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, People's Republic of China
| | - Chaoge Liu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'ansh, 243002, People's Republic of China
| |
Collapse
|