1
|
Wang S, Feng R, Hu K, Hu X, Qu Q, Mu L, Wen J, Ma C. Polystyrene microplastics facilitate formation of refractory dissolved organic matter and reduce CO 2 emissions. ENVIRONMENT INTERNATIONAL 2024; 190:108809. [PMID: 38878654 DOI: 10.1016/j.envint.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 08/28/2024]
Abstract
Microplastics, as a type of anthropogenic pollution in aquatic ecosystems, affect the carbon cycle of organic matter. Although some studies have investigated the effects of microplastics on dissolved organic matter (DOM), the impact of alterations in the chemical properties of microplastics on refractory DOM and carbon release remains unclear. Here, we observed that microplastic treatments (e.g., polystyrene, PS) altered the composition and function of microbial community, notably increasing the abundance of microbial families involved in consuming easily degradable organic matter. During the process in which microbial community decomposed organic matter into DOM, PS underwent surface oxidation. The oxidized PS aggregated with DOM and microorganisms through electrostatic interactions and chemical bonds. Moreover, these interactions between oxidized PS and microbial community affect the utilization of organic matter, resulting in a significant decrease in CO2 emissions. Specifically, total CO2 emissions decreased by approximately 23.76 % with 0.1 mg/L PS treatment and by 44.97 % with 10 mg/L PS treatment compared to those in PS-free treatments over the entire reaction. These findings underscored the significance of the chemical properties of PS in the interactions among DOM and microorganisms, emphasizing the potential impact of PS microplastics on the carbon cycle in ecosystems.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China
| | - Li Mu
- Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Jingyu Wen
- Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
2
|
Liu S, Zhang P, Wu Y, Zhou H, Wu H, Jin Y, Wu D, Wu G. SLC25A19 is a novel prognostic biomarker related to immune invasion and ferroptosis in HCC. Int Immunopharmacol 2024; 136:112367. [PMID: 38823177 DOI: 10.1016/j.intimp.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
SLC25A19 is a mitochondrial thiamine pyrophosphate (TPP) carrier that mediates TPP entry into the mitochondria. SLC25A19 has been recognized to play a crucial role in many metabolic diseases, but its role in cancer has not been clearly reported. Based on clinical data from The Cancer Genome Atlas (TCGA), the following parameters were analyzed among HCC patients: SLC25A19 expression, enrichment analyses, immune infiltration, ferroptosis and prognosis analyses. In vitro, the SLC25A19 high expression was validated by qRT-PCR and Immunohistochemistry. Subsequently, a series of cell function experiments, including CCK8, EdU, clone formation, trans-well and scratch assays, were conducted to illustrate the effect of SLC25A19 on the growth and metastasis of cancer cells. Meanwhile, indicators related to ferroptosis were also detected. SCL25A19 is highly expressed in HCC and predicts a poor prognosis. Elevated SLC25A19 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Our results indicate that SLC25A19 has a generally good prognosis predictive and diagnostic ability. The results of gene enrichment analyses showed that SLC25A19 is significantly correlated with immune infiltration, fatty acid metabolism, and ferroptosis marker genes. In vitro experiments have confirmed that silencing SLC25A19 can significantly inhibit the proliferation and migration ability of cancer cells and induce ferroptosis in HCC. In conclusion, these findings indicate that SLC25A19 is novel prognostic biomarker related to immune invasion and ferroptosis in HCC, and it is an excellent candidate for therapeutic target against HCC.
Collapse
Affiliation(s)
- Shiqi Liu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Pengjie Zhang
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yubo Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haonan Zhou
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Haomin Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Yifan Jin
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Di Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China
| | - Gang Wu
- Hepatobiliary Surgery Department, First Hospital of China Medical, University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning, Province, PR China; Key Laboratory of General Surgery of Liaoning Province, the First Affiliated Hospital of China Medical University, No.155, Nanjingbei Street, 110001 Shenyang, Liaoning Province, PR China.
| |
Collapse
|
3
|
Hu X, Wang S, Feng R, Hu K. Natural organic small molecules promote the aging of plastic wastes and refractory carbon decomposition in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134043. [PMID: 38492386 DOI: 10.1016/j.jhazmat.2024.134043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Microplastics and nanoplastics are ubiquitous in rivers and undergo environmental aging. However, the molecular mechanisms of plastic aging and the in-depth effects of aging on ecological functions remain unclear in waters. The synergies of microplastics and nanoplastics (polystyrene as an example) with natural organic small molecules (e.g., natural hyaluronic acid and vitamin C related to biological tissue decomposition) are the key to producing radicals (•OH and •C). The radicals promote the formation of bubbles on plastic surfaces and generate derivatives of plastics such as monomer and dimer styrene. Nanoplastics are easier to age than microplastics. Pristine plastics inhibit the microbial Shannon diversity index and evenness, but the opposite results are observed for aging plastics. Pristine plastics curb pectin decomposition (an indicator of plant-originated refractory carbon), but aging plastics promote pectin decomposition. Microplastics and nanoplastics undergoing aging processes enhance the carbon biogeochemical cycle. For example, the increased carbohydrate active enzyme diversity, especially the related glycoside hydrolase and functional species Pseudomonas and Clostridium, contributes to refractory carbon decomposition. Different from the well-studied toxicity and aging of plastic pollutants, this study connects plastic pollutants with biological tissue decomposition, biodiversity and climate change together in rivers.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhu L, Wang H, Sun J, Lu L, Li S. Sulfur Vacancies in Pyrite Trigger the Path to Nonradical Singlet Oxygen and Spontaneous Sulfamethoxazole Degradation: Unveiling the Hidden Potential in Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6753-6762. [PMID: 38526226 DOI: 10.1021/acs.est.3c09316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Pharmaceutical residues in sediments are concerning as ubiquitous emerging contaminants. Pyrite is the most abundant sulfide minerals in the estuarine and coastal sediments, making it a major sink for pharmaceutical pollutants such as sulfamethoxazole (SMX). However, research on the adsorption and redox behaviors of SMX on the pyrite surface is limited. Here, we investigated the impact of the nonphotochemical process of pyrite on the fate of coexisting SMX. Remarkably, sulfur vacancies (SVs) on pyrite promoted the generation of nonradical species (hydrogen peroxide, H2O2 and singlet oxygen, 1O2), thereby exhibiting prominent SMX degradation performance under darkness. Nonradical 1O2 contributed approximately 73.1% of the total SMX degradation. The SVs with high surrounding electron density showed an advanced affinity for adsorbing O2 and then initiated redox reactions in the sediment electron-storing geobattery pyrite, resulting in the extensive generation of H2O2 through a two-electron oxygen reduction pathway. Surface Fe(III) (hydro)oxides on pyrite facilitated the decomposition of H2O2 to 1O2 generation. Distinct nonradical products were observed in all investigated estuarine and coastal samples with the concentrations of H2O2 ranging from 1.96 to 2.94 μM, while the concentrations of 1O2 ranged from 4.63 × 10-15 to 8.93 × 10-15 M. This dark-redox pathway outperformed traditional photochemical routes for pollutant degradation, broadening the possibilities for nonradical species use in estuarine and coastal sediments. Our study highlighted the SV-triggered process as a ubiquitous yet previously overlooked source of nonradical species, which offered fresh insights into geochemical processes and the dynamics of pollutants in regions of frequent redox oscillations and sulfur-rich sediments.
Collapse
Affiliation(s)
- Lijun Zhu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Huan Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jian Sun
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
5
|
Zeng Y, Wang H, Hu J, Zhang J, Wang F, Wang T, Zhou Q, Dahlgren RA, Gao M, Gao H, Chen Z. Illuminated fulvic acid stimulates denitrification and As(III) immobilization in flooded paddy soils via an enhanced biophotoelectrochemical pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169670. [PMID: 38160830 DOI: 10.1016/j.scitotenv.2023.169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Fulvic acid (FA) is a representative photosensitive dissolved organic matter (DOM) compound that occurs naturally in paddy soils. In this study, the effect of a FA + nitrate treatment (0, 4 and 8 mg/L FA + 20 mmol/L nitrate) on denitrification and As(III) immobilization in flooded paddy soils was assessed under dark and intermittently illuminated conditions (12 h light+12 h dark). The FA input stimulated denitrification in illuminated soils (~100 % of nitrate removal within 6 days) compared to dark conditions (~92 % nitrate removal after 6 days). Meanwhile, As(III) (initial concentration of 0.1 mmol/L) was nearly completely immobilized (~100 %) under illuminated conditions after 4 days for the FA + nitrate treatment compared to 90- 93 % retention in the dark. Denitrification and As immobilization were positively related to the FA dosage in the illuminated assays. The stronger denitrification in illuminated soils was ascribed to denitrifiers harvesting photoelectrons from photosensitive substrates/semiconducting minerals. FA addition also increased the activities of denitrifying enzymes (e.g., NAR, NIR and NOR) and the denitrification electron transport system by nearly 0.6-0.7 and 1.5-1.8 times that of the nitrate-alone treatment under illuminated and dark conditions, thereby fostering stronger denitrification. Upon irradiation, As(III) immobilization was not only stimulated by the interactions with the denitrification pathway whereby As(III) acts as an electron donor for denitrifiers, but was also modulated by Fe(III)/oxidative reactive species-derived photooxidation of As(III). Moreover, the FA + nitrate treatment promoted the enrichment of metal-oxidizing bacteria (e.g., Stenotrophomonas and Acidovorax) that are responsible for nitrate-dependent As(III)/Fe(II) oxidation. The results of this study enhance our understanding of interactions among the biogeochemical cycles of As, Fe, N and C, which are intricately linked by a biophotoelectrochemical pathway in flooded paddy soils.
Collapse
Affiliation(s)
- Yanqiong Zeng
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Feng Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Tongyu Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Qiqi Zhou
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Randy A Dahlgren
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA
| | - Meiling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Zheng Chen
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|