1
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
2
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Mahapatra S, Kar P. Computational biophysical characterization of the effect of gatekeeper mutations on the binding of ponatinib to the FGFR kinase. Arch Biochem Biophys 2024; 758:110070. [PMID: 38909834 DOI: 10.1016/j.abb.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fibroblast Growth Factor Receptor (FGFR) is connected to numerous downstream signalling cascades regulating cellular behavior. Any dysregulation leads to a plethora of illnesses, including cancer. Therapeutics are available, but drug resistance driven by gatekeeper mutation impedes the treatment. Ponatinib is an FDA-approved drug against BCR-ABL kinase and has shown effective results against FGFR-mediated carcinogenesis. Herein, we undertake molecular dynamics simulation-based analysis on ponatinib against all the FGFR isoforms having Val to Met gatekeeper mutations. The results suggest that ponatinib is a potent and selective inhibitor for FGFR1, FGFR2, and FGFR4 gatekeeper mutations. The extensive electrostatic and van der Waals interaction network accounts for its high potency. The FGFR3_VM mutation has shown resistance towards ponatinib, which is supported by their lesser binding affinity than wild-type complexes. The disengaged molecular brake and engaged hydrophobic spine were believed to be the driving factors for weak protein-ligand interaction. Taken together, the inhibitory and structural characteristics exhibited by ponatinib may aid in thwarting resistance based on Val-to-Met gatekeeper mutations at an earlier stage of treatment and advance the design and development of other inhibitors targeted at FGFRs harboring gatekeeper mutations.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
4
|
Wu Q, Liao R, Miao C, Hasnat M, Li L, Sun L, Wang X, Yuan Z, Jiang Z, Zhang L, Yu Q. Oncofetal SNRPE promotes HCC tumorigenesis by regulating the FGFR4 expression through alternative splicing. Br J Cancer 2024; 131:77-89. [PMID: 38796598 PMCID: PMC11231362 DOI: 10.1038/s41416-024-02689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Alternative Splicing
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Nude
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Qipeng Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Chunmeng Miao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan
| | - Le Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xinru Wang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Luyong Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qinwei Yu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Huang F, Shi X, Hu M, Yan H, Li X, Ding Y, Zheng X, Cai X, Dai S, Xia Q, Cai Y. Blocking of FGFR4 signaling by F30 inhibits hepatocellular carcinoma cell proliferation through HMOX1-dependent ferroptosis pathway. Eur J Pharmacol 2024; 970:176493. [PMID: 38484925 DOI: 10.1016/j.ejphar.2024.176493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.
Collapse
Affiliation(s)
- Fengyu Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xueqin Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meng Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hang Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yujie Ding
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinxin Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shijie Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qinqin Xia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
6
|
Lin K, Xia B, Wang X, He X, Zhou M, Lin Y, Qiao Y, Li R, Chen Q, Li Y, Feng J, Chen T, Chen C, Li X, Zhang H, Lu L, Liu B, Zhang X. Development of nanobodies targeting hepatocellular carcinoma and application of nanobody-based CAR-T technology. J Transl Med 2024; 22:349. [PMID: 38610029 PMCID: PMC11015683 DOI: 10.1186/s12967-024-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.
Collapse
Affiliation(s)
- Keming Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qier Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jinzhu Feng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tao Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Avenue, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
7
|
Ding K, Chen L, Levine K, Sikora M, Tasdemir N, Dabbs D, Jankowitz R, Hazan R, Shah OS, Atkinson JM, Lee AV, Oesterreich S. Estrogen regulation and functional role of FGFR4 in estrogen receptor positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585626. [PMID: 38562741 PMCID: PMC10983957 DOI: 10.1101/2024.03.18.585626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Resistance to endocrine therapy is a major challenge of managing estrogen receptor positive (ER+) breast cancer. We previously reported frequent overexpression of FGFR4 in endocrine resistant cell lines and breast cancers that recurred and metastasized following endocrine therapy, suggesting FGFR4 as a potential driver of endocrine resistance. In this study, we investigated the role of FGFR4 in mediating endocrine resistance and explored the therapeutic potential of targeting FGFR4 in advanced breast cancer. Methods A gene expression signature of FGFR4 activity was examined in ER+ breast cancer pre- and post-neoadjuvant endocrine therapy and the association between FGFR4 expression and patient survival was examined. A correlation analysis was used to uncover potential regulators of FGFR4 overexpression. To investigate if FGFR4 is necessary to drive endocrine resistance, we tested response to FGFR4 inhibition in long term estrogen deprived (LTED) cells and their paired parental cells. Doxycycline inducible FGFR4 overexpression and knockdown cell models were generated to examine if FGFR4 was sufficient to confer endocrine resistance. Finally, we examined response to FGFR4 monotherapy or combination therapy with fulvestrant in breast cancer cell lines to explore the potential of FGFR4 targeted therapy for advanced breast cancer and assessed the importance of PAM50 subtype in response to FGFR4 inhibition. Results A FGFR4 activity gene signature was significantly upregulated post neoadjuvant aromatase inhibitor treatment, and high FGFR4 expression predicted poorer survival in patients with ER+ breast cancer. Gene expression association analysis using TCGA, METABRIC and SCAN-B datasets uncovered ER as the most significant gene negatively correlated with FGFR4 expression. ER negatively regulates FGFR4 expression at both the mRNA and protein level across multiple ER+ breast cancer cell lines. Despite robust overexpression of FGFR4, LTED cells did not show enhanced responses to FGFR4 inhibition compared to parental cells. Similarly, FGFR4 overexpression, knockdown or hotspot mutations did not significantly alter response to endocrine treatment in ER+ cell lines, nor did FGFR4 and fulvestrant combination treatment show synergistic effects. The HER2-like subtype of breast cancer showed elevated expression of FGFR4 and an increased response to FGFR4 inhibition relative to other breast cancer subtypes. Conclusions Despite ER-mediated upregulation of FGFR4 post endocrine therapy, our study does not support a general role of FGFR4 in mediating endocrine resistance in ER+ breast cancer. Our data suggests that specific genomic backgrounds such as HER2 expression may be required for FGFR4 function in breast cancer and should be further explored.
Collapse
|
8
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
11
|
Yu Cai Lim M, Kiat Ho H. Pharmacological modulation of cholesterol 7α-hydroxylase (CYP7A1) as a therapeutic strategy for hypercholesterolemia. Biochem Pharmacol 2024; 220:115985. [PMID: 38154545 DOI: 10.1016/j.bcp.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Chen X, Huang Y, Chen B, Liu H, Cai Y, Yang Y. Insight into the design of FGFR4 selective inhibitors in cancer therapy: Prospects and challenges. Eur J Med Chem 2024; 263:115947. [PMID: 37976704 DOI: 10.1016/j.ejmech.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Recently, FGFR4 has become a hot target for the treatment of cancer owing to its important role in cellular physiological processes. FGFR4 has been validated to be closely related to the occurrence of cancers, such as hepatocellular carcinoma, rhabdomyosarcoma, breast cancer and colorectal cancer. Hence, the development of FGFR4 small-molecule inhibitors is essential to further understanding the functions of FGFR4 in cancer and the treatment of FGFR4-dependent diseases. Given the particular structures of FGFR1-4, the development of FGFR4 selective inhibitors presents significant challenges. The non-conserved Cys552 in the hinge region of the FGFR4 complex becomes the key to the selectivity of FGFR4 and FGFR1/2/3 inhibitors. In this review, we systematically introduce the close relationship between FGFR4 and cancer, and conduct an in-depth analysis of the developing methodology, binding mechanism, kinase selectivity, pharmacokinetic characteristics of FGFR4 selectivity inhibitors, and their application in clinical research.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yajiao Huang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Ban Chen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Huihui Liu
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yuanrong Yang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China.
| |
Collapse
|
13
|
Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X, Li J. FGF19-Induced Inflammatory CAF Promoted Neutrophil Extracellular Trap Formation in the Liver Metastasis of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302613. [PMID: 37345586 PMCID: PMC10460854 DOI: 10.1002/advs.202302613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Liver metastasis is the main cause of death in patients with colorectal cancer (CRC); thus, necessitating effective biomarkers and therapeutic targets for colorectal cancer liver metastasis (CRLM). Fibroblast growth factor 19 (FGF19) is a protumorigenic gene in numerous human malignancies. In this study, it is shown that FGF19 plays an indispensable role in CRLM. FGF19 expression and secretion are markedly correlated with liver metastasis and lower overall survival rates of patients with CRC. An in vivo metastasis model shows that FGF19 overexpression confers stronger liver-metastatic potential in CRC cells. Mechanistically, FGF19 exerts an immunomodulatory function that creates an environment conducive for metastasis in CRLM. FGF19 mediates the polarization of hepatic stellate cells to inflammatory cancer-associated fibroblasts (iCAFs) by activating the autocrine effect of IL-1α via the FGFR4-JAK2-STAT3 pathway. FGF19-induced iCAFs promote neutrophil infiltration and mediate neutrophil extracellular trap (NET) formation in liver metastatic niches via the production of complement C5a and IL-1β, which in turn accelerates the liver colonization of CRC cells. Importantly, targeting FGF19 signaling with fisogatinib efficiently suppresses FGF19-induced liver metastasis in a mouse model. In summary, this study describes the mechanism by which FGF19 regulates CRLM, thereby providing a novel target for CRLM intervention.
Collapse
Affiliation(s)
- Chen Li
- Department of UltrasoundQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Tianli Chen
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jialiang Liu
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Yue Wang
- Department of General SurgeryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Chunhuan Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Lu Guo
- Department of UltrasoundQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Dandan Shi
- Department of UltrasoundQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Tingguo Zhang
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandong250012China
| | - Xishan Wang
- Department of Colorectal SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jie Li
- Department of UltrasoundQilu Hospital of Shandong UniversityJinanShandong250012China
| |
Collapse
|
14
|
Yang Y, He X, Li Z, Ran K, Wang N, Zhao L, Liu Z, Zeng J, Chang B, Feng Q, Zhang Q, Yu L. Design, synthesis and biological evaluation of indazole derivatives as selective covalent inhibitors of FGFR4 in wild-type and gatekeeper mutants. Eur J Med Chem 2023; 258:115628. [PMID: 37437349 DOI: 10.1016/j.ejmech.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been proved to be an effective target for cancer therapy. Aberration in FGF19/FGFR4 signaling is oncogenic driving force in human hepatocellular carcinoma (HCC). FGFR4 gatekeeper mutations induced acquired resistance remains an unmet clinical challenge for HCC treatment. In this study, a series of 1H-indazole derivatives were designed and synthesized as new irreversible inhibitors of wild-type and gatekeeper mutant FGFR4. These new derivatives showed significant FGFR4 inhibitory and antitumor activities, among which compound 27i was demonstrated to be the most potent compound (FGFR4 IC50 = 2.4 nM). Remarkably, compound 27i exhibited no activity against a panel of 381 kinases at 1 μM. Additionally, compound 27i displayed nanomolar IC50s against huh7 (IC50 = 21 nM) and two mutant cell lines, BaF3/ETV6-FGFR4-V550L and BaF3/ETV6-FGFR4-N535K (IC50 = 2.5/171 nM). Meanwhile, compound 27i exhibited potent antitumor potency (TGI: 83.0%, 40 mg/kg, BID) in Huh7 xenograft mouse models with no obvious toxicity observed. Overall, compound 27i was identified as a promising preclinical candidate for overcoming FGFR4 gatekeeper mutations for HCC treatment.
Collapse
Affiliation(s)
- Yingyue Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojie He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zulong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Ran
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest JiaoTong University, Chengdu, Sichuan, 611756, China
| | - Lifeng Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zhihao Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 611130, PR China
| | - Qiangsheng Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Hu S, Liu Y, Ma J, Ding W, Chen H, Jiang H, Chen H, Wei S, Liu Y, Jin Q, Yuan H, Yan L. Discovery and Structural Optimization of Novel Quinolone Derivatives as Potent Irreversible Pan-Fibroblast Growth Factor Receptor Inhibitors for Treating Solid Tumors. J Med Chem 2023. [PMID: 37335602 DOI: 10.1021/acs.jmedchem.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Aberrant activation of fibroblast growth factor receptors (FGFRs) has been identified as an oncogenic driver force for multiple cancer types, making FGFRs a compelling target for anticancer therapy. Because of the renewed interest in irreversible inhibitors, considerable efforts have been made to find irreversible FGFR inhibitors. Herein, we discovered a series of novel quinolone-based covalent pan-FGFR inhibitors by further optimizing the lead compound (lenvatinib) under the guidance of molecular docking. The representative pan-FGFR inhibitor I-5 exhibited significant inhibitory potency against FGFR1-4 with nanomolar activity and effectively suppressed the proliferation of Huh-7 and Hep3B HCC cells. I-5 displayed high selectivity against a panel of 369 kinases at 1 μM. The irreversible binding to target proteins was characterized by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Moreover, I-5 exhibited favorable PK properties in vivo and induced significant TGI in the Huh-7 and NCI-H1581 xenograft mouse models.
Collapse
Affiliation(s)
- Shihe Hu
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Yu Liu
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Jiye Ma
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Weijie Ding
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Hua Chen
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Haifang Jiang
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Hongxing Chen
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Song Wei
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Yonggao Liu
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, P. R. China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, P. R. China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libo Yan
- SkyRun Pharma Co., Ltd., No. 9 Weidi Road, Nanjing 210046, P. R. China
| |
Collapse
|
16
|
Wang M, Lan L, Wang YW, Zhang JY, Shi L, Sun LP. Design, synthesis, and anticancer evaluation of arylurea derivatives as potent and selective type II irreversible covalent FGFR4 inhibitors. Bioorg Med Chem 2023; 87:117298. [PMID: 37196426 DOI: 10.1016/j.bmc.2023.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Aberrant FGF19/FGFR4 signaling has been demonstrated to be an oncogenic driver of growth and survival in human hepatocellular carcinoma (HCC). At present, the development of FGFR4-specific drugs has become a hotspot in tumor-targeted therapy research. However, no selective FGFR4 inhibitors have been approved by FDA so far. Currently, most of the reported FGFR4 inhibitors that use a covalent targeting strategy to be selective are typical type I inhibitors with a single type. Here, based on Ponatinib, we designed and synthesized a series of arylurea derivatives as novel type II irreversible covalent inhibitors of FGFR4. Among them, the representative compound 6v exhibited an IC50 value of 74 nM against FGFR4 and antiproliferative potency of 0.25 μM and 0.22 μM against Huh7 and Hep3B cell lines. Western blotting results showed that compound 6v significantly inhibited the phosphorylation of FGFR4 and its downstream signaling factors AKT and ERK in a dose-dependent manner in Hep3B cell. These results showed that this series of compounds, as type II irreversible FGFR4 inhibitors, are worthy of further research and structural optimization.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jin-Yang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
17
|
Narisawa T, Naito S, Ito H, Ichiyanagi O, Sakurai T, Kato T, Tsuchiya N. Fibroblast growth factor receptor type 4 as a potential therapeutic target in clear cell renal cell carcinoma. BMC Cancer 2023; 23:170. [PMID: 36803783 PMCID: PMC9942348 DOI: 10.1186/s12885-023-10638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Several clear cell renal cell carcinoma (ccRCC) cases harbour fibroblast growth factor receptor 4 (FGFR4) gene copy number (CN) gains. In this study, we investigated the functional contribution of FGFR4 CN amplification in ccRCC. METHODS The correlation between FGFR4 CN determined via real-time PCR and protein expression evaluated using western blotting and immunohistochemistry was assessed in ccRCC cell lines (A498, A704, and 769-P), a papillary RCC cell line (ACHN), and clinical ccRCC specimens. The effect of FGFR4 inhibition on ccRCC cell proliferation and survival was assessed via either RNA interference or using the selective FGFR4 inhibitor BLU9931, followed by MTS assays, western blotting, and flow cytometry. To investigate whether FGFR4 is a potential therapeutic target, a xenograft mouse model was administered BLU9931. RESULTS 60% of ccRCC surgical specimens harboured an FGFR4 CN amplification. FGFR4 CN was positively correlated with its protein expression. All ccRCC cell lines harboured FGFR4 CN amplifications, whereas ACHN did not. FGFR4 silencing or inhibition attenuated intracellular signal transduction pathways, resulting in apoptosis and suppressed proliferation in ccRCC cell lines. BLU9931 suppressed tumours at a tolerable dose in the mouse model. CONCLUSION FGFR4 contributes to ccRCC cell proliferation and survival following FGFR4 amplification, making it a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Takafumi Narisawa
- Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| | - Sei Naito
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | - Hiromi Ito
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | - Osamu Ichiyanagi
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | - Toshihiko Sakurai
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | - Tomoyuki Kato
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| | - Norihiko Tsuchiya
- grid.268394.20000 0001 0674 7277Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585 Japan
| |
Collapse
|
18
|
Xu J, Cui J, Jiang H, Zeng Y, Cong X. Phase 1 dose escalation study of FGFR4 inhibitor in combination with pembrolizumab in advanced solid tumors patients. Cancer Med 2023; 12:7762-7771. [PMID: 36622048 PMCID: PMC10134273 DOI: 10.1002/cam4.5532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Inhibition of fibroblast growth factor (FGF) 19-FGF Receptor 4 (FGFR4) signaling demonstrates potent anticancer activity. EVER4010001 is a highly selective FGFR4 inhibitor and pembrolizumab is approved for the treatment of several solid tumors. This study determined the maximum tolerated dose (MTD), recommended Phase 2 dose (RP2D), pharmacokinetics, safety, and preliminary efficacy of EVER4010001 plus pembrolizumab in patients with advanced solid tumors. METHODS This Phase 1, multicenter, open-label study enrolled 19 Asian-Chinese patients (57.9% male: median age 58 years) with advanced solid tumors. For "3+3" dose escalation, 3-6 patients received treatment at each dose level (EVER4010001 40, 60, 80, or 100 mg twice daily [BID] plus pembrolizumab 200 mg every 3 weeks). RESULTS At the data cutoff (August 12, 2021), no dose-limiting toxicities (DLTs) were reported at 40 mg-80 mg. At 100 mg, 2 (40.0%) patients had 3 DLTs within the 28-day DLT observation period after first administration. Median time to peak EVER4010001 concentration (Tmax ) was 0.55-1.03 hours. Mean terminal EVER4010001 half-life (T1/2 ) was 4.00-4.92 hours. The area under the concentration-time curve (AUC0-t ) and maximum observed concentration (Cmax ) ranged from 2370.87-5475.77 hour*ng/ml and 606.07-1348.86 ng/ml, respectively. The most common EVER4010001-related treatment-emergent adverse events were diarrhea (94.7%), increased aspartate aminotransferase (57.9%), and increased alanine aminotransferase (47.4%). CONCLUSION Eighty milligrams BID was the MTD and RP2D for EVER4010001 plus pembrolizumab. Efficacy results were promising, and no new safety risks were reported, justifying the Phase 2 portion of this study.
Collapse
Affiliation(s)
- Jianming Xu
- Oncology Department, Chinese PLA General Hospital, Beijing, China
| | - Jiuwei Cui
- Oncology Department, The First Hospital of Jilin University, Changchun, China
| | - Haiping Jiang
- Oncology Department, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yan Zeng
- EverNov Medicines (Zhuhai Hengqin) Co., Ltd, Zhuhai, China
| | - Xiuyu Cong
- EverNov Medicines (Zhuhai Hengqin) Co., Ltd, Zhuhai, China
| |
Collapse
|
19
|
Zhang Y, Wu T, Wang Y, Chen Z, Chen J, Lu S, Xia W. Reciprocal FGF19-GLI2 signaling induces epithelial-to-mesenchymal transition to promote lung squamous cell carcinoma metastasis. Cell Oncol (Dordr) 2023; 46:437-450. [PMID: 36598638 DOI: 10.1007/s13402-022-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Metastatic lung squamous cell carcinoma (LUSC) is one of the most common causes of cancer death worldwide. As yet, however, the molecular mechanism underlying LUSC metastasis remains elusive. In this study, we report a novel mechanism involving signaling interactions between FGF19 and GLI2 that could drive the progression of LUSC. METHODS The expression of FGF19 in human LUSC samples was assessed by immunohistochemistry. The concentration of FGF19 in serum samples was assessed by ELISA. RNA sequencing, scratch wound-healing, trans-well, GO analysis, GSEA, luciferase reporter, Western blotting, immunofluorescence and immunohistochemistry assays, as well as an animal model were used to investigate the molecular mechanism underlying FGF19 driven LUSC progression. The therapeutic effect of a GLI2 inhibitor was determined using both in vitro cellular and in vivo animal experiments. RESULTS We found that FGF19, a member of the fibroblast growth factor family, plays a crucial role in the invasion and metastasis of LUSC, and identified GLI2 as an important downstream effector of FGF19 involved in metastasis. Surprisingly, we found that FGF19 and GLI2 could reciprocally induce the expression of each other, and form a positive feedback loop to promote LUSC cell invasion and metastasis. These findings were corroborated by an association between a poor prognosis of LUSC patients and FGF19/GLI2 co-expression. In addition, we found that the GLI inhibitor GANT61 could effectively reduce FGF19-mediated LUSC invasion and metastasis. CONCLUSION Our data suggest that FGF19 may serve as a novel biomarker for predicting metastatic LUSC. Intervening with the FGF19-GLI2 feedback loop may be a strategy for the treatment of FGF19-driven LUSC metastasis.
Collapse
Affiliation(s)
- Yanshuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Tingyu Wu
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Yuting Wang
- Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Zhuo Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Jiachen Chen
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030, Shanghai, China.
| |
Collapse
|
20
|
Lian Z, Sang C, Li N, Zhai H, Bai W. 3D,2D-QSAR study and docking of novel quinazolines as potential target drugs for osteosarcoma. Front Pharmacol 2023; 14:1124895. [PMID: 36895941 PMCID: PMC9990820 DOI: 10.3389/fphar.2023.1124895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Quinazolines are an important class of benzopyrimidine heterocyclic compounds with a promising antitumor activity that can be used for the design and development of osteosarcoma target compounds. Objective: To predict the compound activity of quinazoline compounds by constructing 2D- and 3D-QSAR models, and to design new compounds according to the main influencing factors of compound activity in the two models. Methods: First, heuristic method and GEP (gene expression programming) algorithm were used to construct linear and non-linear 2D-QSAR models. Then a 3D-QSAR model was constructed using CoMSIA method in SYBYL software package. Finally, new compounds were designed according to molecular descriptors of 2D-QSAR model and contour maps of 3D-QSAR model. Several compounds with optimal activity were used for docking experiments with osteosarcoma related targets (FGFR4). Results: The non-linear model constructed by GEP algorithm was more stable and predictive than the linear model constructed by heuristic method. A 3D-QSAR model with high Q2 (0.63) and R 2 (0.987) values and low error values (0.05) was obtained in this study. The success of the model fully passed the external validation formula, proving that the model is very stable and has strong predictive power. 200 quinazoline derivatives were designed according to molecular descriptors and contour maps, and docking experiments were carried out for the most active compounds. Compound 19g.10 has the best compound activity with good target binding capability. Conclusion: To sum up, the two novel QSAR models constructed were very reliable. The combination of descriptors in 2D-QSAR with COMSIA contour maps provides new design ideas for future compound design in osteosarcoma.
Collapse
Affiliation(s)
- Zheng Lian
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenglin Sang
- Department of Orthopedics, The 960th Hospital of the Chinese People's Liberation Army, Jinan, China
| | - Nianhu Li
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honglin Zhai
- Department of Orthopedics, The 960th Hospital of the Chinese People's Liberation Army, Jinan, China
| | - Wenzhe Bai
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Devan AR, Pavithran K, Nair B, Murali M, Nath LR. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World J Gastroenterol 2022; 28:5250-5264. [PMID: 36185626 PMCID: PMC9521521 DOI: 10.3748/wjg.v28.i36.5250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/30/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that performs a dual role as a tumor suppressor and tumor promoter during cancer progression. Among different ligands of the TGF-β family, TGF-β1 modulates most of its biological outcomes. Despite the abundant expression of TGF-β1 in the liver, steatosis to hepatocellular carcinoma (HCC) progression triggers elevated TGF-β1 levels, contributing to poor prognosis and survival. Additionally, elevated TGF-β1 levels in the tumor microenvironment create an immunosuppressive stage via various mechanisms. TGF-β1 has a prime role as a diagnostic and prognostic biomarker in HCC. Moreover, TGF-β1 is widely studied as a therapeutic target either as monotherapy or combined with immune checkpoint inhibitors. This review provides clinical relevance and up-to-date information regarding the potential of TGF-β1 in diagnosis, prognosis, and therapy against HCC.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Keechilat Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Maneesha Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
22
|
Lin Q, Chen X, Qu L, Guo M, Wei H, Dai S, Jiang L, Chen Y. Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants. Commun Chem 2022; 5:100. [PMID: 36698015 PMCID: PMC9814635 DOI: 10.1038/s42004-022-00718-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor receptor (FGFR) dysregulation is involved in a variety of tumorigenesis and development. Cholangiocarcinoma is closely related with FGFR aberrations, and pemigatinib is the first drug approved to target FGFR for the treatment of cholangiocarcinoma. Herein, we undertake biochemical and structural analysis on pemigatinib against FGFRs as well as gatekeeper mutations. The results show that pemigatinib is a potent and selective FGFR1-3 inhibitor. The extensive network of hydrogen bonds and van der Waals contacts found in the FGFR1-pemigatinib binding mode accounts for the high potency. Pemigatinib also has excellent potency against the Val-to-Ile gatekeeper mutation but less potency against the Val-to-Met/Phe gatekeeper mutation in FGFR. Taken together, the inhibitory and structural profiles exemplified by pemigatinib may help to thwart Val-to-Ile gatekeeper mutation-based resistance at earlier administration and to advance the further design and improvement for inhibitors toward FGFRs with gatekeeper mutations.
Collapse
Affiliation(s)
- Qianmeng Lin
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lingzhi Qu
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuyan Dai
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
23
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
24
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
25
|
Chan SL, Schuler M, Kang YK, Yen CJ, Edeline J, Choo SP, Lin CC, Okusaka T, Weiss KH, Macarulla T, Cattan S, Blanc JF, Lee KH, Maur M, Pant S, Kudo M, Assenat E, Zhu AX, Yau T, Lim HY, Bruix J, Geier A, Guillén-Ponce C, Fasolo A, Finn RS, Fan J, Vogel A, Qin S, Riester M, Katsanou V, Chaudhari M, Kakizume T, Gu Y, Porta DG, Myers A, Delord JP. A first-in-human phase 1/2 study of FGF401 and combination of FGF401 with spartalizumab in patients with hepatocellular carcinoma or biomarker-selected solid tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:189. [PMID: 35655320 PMCID: PMC9161616 DOI: 10.1186/s13046-022-02383-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deregulation of FGF19-FGFR4 signaling is found in several cancers, including hepatocellular carcinoma (HCC), nominating it for therapeutic targeting. FGF401 is a potent, selective FGFR4 inhibitor with antitumor activity in preclinical models. This study was designed to determine the recommended phase 2 dose (RP2D), characterize PK/PD, and evaluate the safety and efficacy of FGF401 alone and combined with the anti-PD-1 antibody, spartalizumab. METHODS Patients with HCC or other FGFR4/KLB expressing tumors were enrolled. Dose-escalation was guided by a Bayesian model. Phase 2 dose-expansion enrolled patients with HCC from Asian countries (group1), non-Asian countries (group2), and patients with other solid tumors expressing FGFR4 and KLB (group3). FGF401 and spartalizumab combination was evaluated in patients with HCC. RESULTS Seventy-four patients were treated in the phase I with single-agent FGF401 at 50 to 150 mg. FGF401 displayed favorable PK characteristics and no food effect when dosed with low-fat meals. The RP2D was established as 120 mg qd. Six of 70 patients experienced grade 3 dose-limiting toxicities: increase in transaminases (n = 4) or blood bilirubin (n = 2). In phase 2, 30 patients in group 1, 36 in group 2, and 20 in group 3 received FGF401. In total, 8 patients experienced objective responses (1 CR, 7 PR; 4 each in phase I and phase II, respectively). Frequent adverse events (AEs) were diarrhea (73.8%), increased AST (47.5%), and ALT (43.8%). Increase in levels of C4, total bile acid, and circulating FGF19, confirmed effective FGFR4 inhibition. Twelve patients received FGF401 plus spartalizumab. RP2D was established as FGF401 120 mg qd and spartalizumab 300 mg Q3W; 2 patients reported PR. CONCLUSIONS At biologically active doses, FGF401 alone or combined with spartalizumab was safe in patients with FGFR4/KLB-positive tumors including HCC. Preliminary clinical efficacy was observed. Further clinical evaluation of FGF401 using a refined biomarker strategy is warranted. TRIAL REGISTRATION NCT02325739 .
Collapse
Affiliation(s)
- Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Martin Schuler
- West German Cancer Center, University Hospital Essen, Germany & German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Julien Edeline
- Centre Eugène Marquis, Rennes, France and ARPEGO (Accès à La Recherche Précoce Dans Le Grand-Ouest) Network, Rennes, France
| | - Su Pin Choo
- National Cancer Centre, Singapore, Singapore
| | - Chia-Chi Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), IOB Quirón, Barcelona, Spain
| | | | | | - Kyung-Hun Lee
- Seoul National University Hospital, Seoul, South Korea
| | | | | | | | - Eric Assenat
- Hôpital Saint-Eloi Montpellier, Montpellier, France
| | - Andrew X Zhu
- Massachusetts General Hospital, Boston, MA, USA.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | | | | | - Jordi Bruix
- Barcelona clinic liver cancer (BCLC) Group, Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - Jia Fan
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Shukui Qin
- No. 81th PLA Hospital Nanjing, Jiangsu, China
| | - Markus Riester
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | | | | | - Yi Gu
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Andrea Myers
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | |
Collapse
|
26
|
Zhong Z, Shi L, Fu T, Huang J, Pan Z. Discovery of Novel 7-Azaindole Derivatives as Selective Covalent Fibroblast Growth Factor Receptor 4 Inhibitors for the Treatment of Hepatocellular Carcinoma. J Med Chem 2022; 65:7278-7295. [PMID: 35549181 DOI: 10.1021/acs.jmedchem.2c00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been identified as a potential target for the treatment of hepatocellular carcinoma (HCC) with aberrant FGFR4 signaling because of its important role in HCC progression and development. Several FGFR4 inhibitors are under clinical development. Using a 7-azaindole scaffold, we discovered a series of novel selective and covalent FGFR4 inhibitors by performing a structure-based design approach. Representative compounds 24 and 30 exhibited potent FGFR4 inhibition and high selectivity among kinases. Western blot analysis showed that compounds 24 and 30 significantly inhibited the FGF19/FGFR4 signaling pathway in HuH-7 cells and effectively suppressed the proliferation of HuH-7 HCC cells and MDA-MB-453 breast cancer cells. Moreover, compound 30 exhibited significant in vivo antitumor activity in a mouse HuH-7 xenograft model. Thus, compound 30 and the 7-azaindole scaffold can be applied to develop anticancer agents for the treatment of cancers characterized by aberrant FGFR4 signaling.
Collapse
Affiliation(s)
- Zhenpeng Zhong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Liyang Shi
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Tiancheng Fu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jiajun Huang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
27
|
He WP, Yang GP, Yang ZX, Shen HW, You ZS, Yang GF. Maelstrom promotes tumor metastasis through regulation of FGFR4 and epithelial-mesenchymal transition in epithelial ovarian cancer. J Ovarian Res 2022; 15:55. [PMID: 35513870 PMCID: PMC9074322 DOI: 10.1186/s13048-022-00992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence has indicated that Maelstrom (MAEL) plays an oncogenic role in various human carcinomas. However, the exact function and mechanisms by which MAEL acts in epithelial ovarian cancer (EOC) remain unclear. RESULTS This study demonstrated that MAEL was frequently overexpressed in EOC tissues and cell lines. Overexpression of MAEL was positively correlated with the histological grade of tumors, FIGO stage, and pT/pN/pM status (p < 0.05), and it also acted as an independent predictor of poor patient survival (p < 0.001). Ectopic overexpression of MAEL substantially promoted invasiveness/metastasis and induced epithelial-mesenchymal transition (EMT), whereas silencing MAEL by short hairpin RNA effectively inhibited its oncogenic function and attenuated EMT. Further study demonstrated that fibroblast growth factor receptor 4 (FGFR4) was a critical downstream target of MAEL in EOC, and the expression levels of FGFR4 were significantly associated with MAEL. (P < 0.05). CONCLUSION Our findings suggest that overexpression of MAEL plays a crucial oncogenic role in the development and progression of EOC through the upregulation of FGFR4 and subsequent induction of EMT, and also provide new insights on its potential as a therapeutic target for EOC.
Collapse
Affiliation(s)
- Wei-Peng He
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Gui-Ping Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Zun-Xian Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Hong-Wei Shen
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Ze-Shan You
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Guo-Fen Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Chaudhary CL, Lim D, Chaudhary P, Guragain D, Awasthi BP, Park HD, Kim JA, Jeong BS. 6-Amino-2,4,5-trimethylpyridin-3-ol and 2-amino-4,6-dimethylpyrimidin-5-ol derivatives as selective fibroblast growth factor receptor 4 inhibitors: design, synthesis, molecular docking, and anti-hepatocellular carcinoma efficacy evaluation. J Enzyme Inhib Med Chem 2022; 37:844-856. [PMID: 35296193 PMCID: PMC8933034 DOI: 10.1080/14756366.2022.2048378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel series of aminotrimethylpyridinol and aminodimethylpyrimidinol derivatives were designed and synthesised for FGFR4 inhibitors. Structure-activity relationship on the FGFR4 inhibitory activity of the new compounds was clearly elucidated by an intensive molecular docking study. Anti-cancer activity of the compounds was evaluated using hepatocellular carcinoma (HCC) cell lines and a chick chorioallantoic membrane (CAM) tumour model. Compound 6O showed FGFR4 inhibitory activity over FGFR1 - 3. Compared to the positive control BLU9931, compound 6O exhibited at least 8 times higher FGFR4 selectivity. Strong anti-proliferative activity of compound 6O was observed against Hep3B, an HCC cell line which was a much more sensitive cell line to BLU9931. In vivo anti-tumour activity of compound 6O against Hep3B-xenografted CAM tumour model was almost similar to BLU9931. Overall, compound 6O, a novel derivative of aminodimethylpyrimidinol, was a selective FGFR4 kinase inhibitor blocking HCC tumour growth.
Collapse
Affiliation(s)
| | - Dongchul Lim
- Innovo Therapeutics Inc, Daejeon, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
29
|
Nam Y, Shin I, Kim Y, Ryu S, Kim N, Ju E, Sim T. Anti-cancer effects of 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one derivatives on hepatocellular carcinoma harboring FGFR4 activation. Neoplasia 2021; 24:34-49. [PMID: 34864570 PMCID: PMC8649585 DOI: 10.1016/j.neo.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is disease with a high mortality rate and limited treatment options. Alterations of fibroblast growth factor receptor 4 (FGFR4) has been regarded as an oncogenic driver for HCC and a promising target for HCC therapeutics. Herein, we report that GNF-7, a multi-targeted kinase inhibitor, and its derivatives including SIJ1263 (IC50 < 1 nM against FGFR4) are highly potent FGFR4 inhibitors and are capable of strongly suppressing proliferation of HCC cells and Ba/F3 cells transformed with wtFGFR4 or mtFGFR4. Compared with known FGFR4 inhibitors, both GNF-7 and SIJ1263 possess much higher (up to 100-fold) anti-proliferative activities via FGFR signaling blockade and apoptosis on HCC cells. Especially, SIJ1263 is 80-fold more potent (GI50 = 24 nM) on TEL-FGFR4 V550E Ba/F3 cells than BLU9931, which suggests that SIJ1263 would be effective for overriding drug resistance. In addition, both substances strongly suppress migration/invasion and colony formation of HCC cells. It is worth noting that SIJ1263 is superior to GNF-7 with regards to the fact that activities of SIJ1263 are higher than those of GNF-7 in all assays performed in this study. Collectively, this study provides insight into designing highly potent FGFR4 inhibitors capable of potentially overcoming drug-resistance for the treatment of HCC patients.
Collapse
Affiliation(s)
- Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Namdoo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon, 21984, Republic of Korea
| | - Eunhye Ju
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
30
|
Pan C, Nie W, Wang J, Du J, Pan Z, Gao J, Lu Y, Che J, Zhu H, Dai H, Chen B, He Q, Dong X. Design, synthesis and biological evaluation of quinazoline derivatives as potent and selective FGFR4 inhibitors. Eur J Med Chem 2021; 225:113794. [PMID: 34488024 DOI: 10.1016/j.ejmech.2021.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Aberrant activation of the fibroblast growth factor 19-fibroblast growth factor receptor 4 (FGF19-FGFR4) signaling pathway has been proved to promote hepatocellular carcinoma (HCC) proliferation. It is assumed that the first FGFR4 inhibitor BLU9931 did not enter clinical studies, presumably due to its rapid metabolism in liver microsomes. Here, we report the development of series of quinazoline derivatives based on FGFR4 inhibitor BLU9931 through structural modification of its solvent region pocket to minimize its potential metabolic liability. Among them, compound 35a exhibited comparable or superior kinase inhibitory activity (IC50 = 8.5 nM) and selectivity in cells. More importantly, compound 35a improved liver microsomes stability compared to BLU9931. Cellular mechanistic studies demonstrated that 35a induced apoptosis via the FGFR4 signaling pathway blockage. In addition, the computational simulation revealed the possible binding mode to FGFR4 protein, which provides a plausible explanation of high potent and metabolic stability.
Collapse
Affiliation(s)
- Chenghao Pan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenwen Nie
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiao Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiamin Du
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhichao Pan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Binhui Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China; Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
31
|
Dark and bright side of targeting fibroblast growth factor receptor 4 in the liver. J Hepatol 2021; 75:1440-1451. [PMID: 34364916 DOI: 10.1016/j.jhep.2021.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) receptor 4 (FGFR4) and its cognate ligand, FGF19, are implicated in a range of cellular processes, including differentiation, metabolism and proliferation. Indeed, their aberrant activation has been associated with the development of hepatic tumours. Despite great advances in early diagnosis and the development of new therapies, liver cancer is still associated with a high mortality rate, owing primarily to high molecular heterogeneity and unclear molecular targeting. The development of FGFR4 inhibitors is a promising tool in patients with concomitant supraphysiological levels of FGF19 and several clinical trials are testing these treatments for patients with advanced hepatocellular carcinoma (HCC). Conversely, using FGF19 analogues to activate FGFR4-KLOTHO β represents a novel therapeutic strategy in patients presenting with cholestatic liver disorders and non-alcoholic steatohepatitis, which could potentially prevent the development of metabolic HCC. Herein, we provide an overview of the currently available therapeutic options for targeting FGFR4 in HCC and other liver diseases, highlighting the need to carefully stratify patients and personalise therapeutic strategies.
Collapse
|
32
|
Yang ZC, Luo MJ, Liu LL, Cai MY, Liang YJ, Chen QY, Tang LQ, Mai HQ. Alpha-fetoprotein-producing recurrent nasopharyngeal carcinoma: A case report. SAGE Open Med Case Rep 2021; 9:2050313X211057704. [PMID: 34777811 PMCID: PMC8573489 DOI: 10.1177/2050313x211057704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Alpha-fetoprotein hardly increased due to nasopharyngeal cancer. In this article, we reported a 57-year-old male nasopharyngeal carcinoma patient who had posttreatment subscapular metastasis with high serum alpha-fetoprotein but negative plasma Epstein–Barr virus DNA. Pathology results indicated that the scapular mass was undifferentiated non-keratinizing carcinoma originated in the nasopharynx. Moreover, no liver lesion was detected by imaging examination. In view of the positive alpha-fetoprotein and alpha-fetoprotein messenger RNA staining result in the right scapular mass fine needle aspiration biopsy sample, we considered the diagnosis of alpha-fetoprotein-producing nasopharyngeal carcinoma that had never been reported before.
Collapse
Affiliation(s)
- Zhen-Chong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mei-Juan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Jing Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin-Quan Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
33
|
Role of FGF15 in Hepatic Surgery in the Presence of Tumorigenesis: Dr. Jekyll or Mr. Hyde? Cells 2021; 10:cells10061421. [PMID: 34200439 PMCID: PMC8228386 DOI: 10.3390/cells10061421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
The pro-tumorigenic activity of fibroblast growth factor (FGF) 19 (FGF15 in its rodent orthologue) in hepatocellular carcinoma (HCC), as well as the unsolved problem that ischemia-reperfusion (IR) injury supposes in liver surgeries, are well known. However, it has been shown that FGF15 administration protects against liver damage and regenerative failure in liver transplantation (LT) from brain-dead donors without tumor signals, providing a benefit in avoiding IR injury. The protection provided by FGF15/19 is due to its anti-apoptotic and pro-regenerative properties, which make this molecule a potentially beneficial or harmful factor, depending on the disease. In the present review, we describe the preclinical models currently available to understand the signaling pathways responsible for the apparent controversial effects of FGF15/19 in the liver (to repair a damaged liver or to promote tumorigenesis). As well, we study the potential pharmacological use that has the activation or inhibition of FGF15/19 pathways depending on the disease to be treated. We also discuss whether FGF15/19 non-pro-tumorigenic variants, which have been developed for the treatment of liver diseases, might be promising approaches in the surgery of hepatic resections and LT using healthy livers and livers from extended-criteria donors.
Collapse
|
34
|
Tumor Fibroblast Growth Factor Receptor 4 Level Predicts the Efficacy of Lenvatinib in Patients With Advanced Hepatocellular Carcinoma. Clin Transl Gastroenterol 2021; 11:e00179. [PMID: 32677805 PMCID: PMC7263646 DOI: 10.14309/ctg.0000000000000179] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Biomarkers for optimizing the outcome of treatment with lenvatinib in patients with advanced hepatocellular carcinoma remain to be established despite intensive and comprehensive genomic research. Lenvatinib is characterized by its prominent inhibitory potency for fibroblast growth factor receptor (FGFR) 4 compared with earlier tyrosine kinase inhibitors. Thus, in this study, we focused on simplified quantification of FGFR4 in tumors as a potential predictive indicator. METHODS According to The Cancer Genome Atlas data set curation, FGFR4 messenger RNA is broadly overexpressed in hepatocellular carcinoma in the absence of gene alteration. Gene set enrichment analysis revealed that the aggressiveness of the tumor was closely related to the FGFR4 level. To confirm the relationship between the benefits of lenvatinib and tumor addiction to the FGFR4 pathway, we analyzed protein levels in tumors and peripheral blood obtained from 57 prospectively registered patients treated with lenvatinib. RESULTS Positive immunohistochemistry (>10% of tumor cells) for FGFR4 in biopsy samples before treatment was associated with a longer progression-free survival (2.5 vs 5.5 months, P = 0.01) and a favorable objective response rate (31% vs 81%, P = 0.006). By contrast, the concentration of soluble FGFR4 in peripheral blood as measured by an enzyme-linked immunosorbent assay was not associated with survival outcomes, because its fluctuations reflect hepatic fibrosis. Additional RNA sequencing analysis using archival surgical specimens (n = 90) suggested that alternative RNA splicing of FGFR4 in cancer may also explain this discrepancy. DISCUSSION The tumor FGFR4 level was an independent predictor of response to lenvatinib.
Collapse
|
35
|
Luo XY, Wu KM, He XX. Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. J Exp Clin Cancer Res 2021; 40:172. [PMID: 34006331 PMCID: PMC8130401 DOI: 10.1186/s13046-021-01968-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the deadliest health burdens worldwide, few drugs are available for its clinical treatment. However, in recent years, major breakthroughs have been made in the development of new drugs due to intensive fundamental research and numerous clinical trials in HCC. Traditional systemic therapy schemes and emerging immunotherapy strategies have both advanced. Between 2017 and 2020, the United States Food and Drug Administration (FDA) approved a variety of drugs for the treatment of HCC, including multikinase inhibitors (regorafenib, lenvatinib, cabozantinib, and ramucirumab), immune checkpoint inhibitors (nivolumab and pembrolizumab), and bevacizumab combined with atezolizumab. Currently, there are more than 1000 ongoing clinical trials involving HCC, which represents a vibrant atmosphere in the HCC drug research and development field. Additionally, traditional Chinese medicine approaches are being gradually optimized. This review summarizes FDA-approved agents for HCC, elucidates promising agents evaluated in clinical phase I/II/III trials and identifies emerging targets for HCC treatment. In addition, we introduce the development of HCC drugs in China. Finally, we discuss potential problems in HCC drug therapy and possible future solutions and indicate future directions for the development of drugs for HCC treatment.
Collapse
Affiliation(s)
- Xiang-Yuan Luo
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kong-Ming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
37
|
He Q, Huang W, Liu D, Zhang T, Wang Y, Ji X, Xie M, Sun M, Tian D, Liu M, Xia L. Homeobox B5 promotes metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1 upregulation. Am J Cancer Res 2021; 11:5759-5777. [PMID: 33897880 PMCID: PMC8058721 DOI: 10.7150/thno.57659] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Since metastasis remains the main reason for HCC-associated death, a better understanding of molecular mechanism underlying HCC metastasis is urgently needed. Here, we elucidated the role of Homeobox B5 (HOXB5), a member of the HOX transcriptional factor family, in promoting HCC metastasis. Method: The expression of HOXB5 and its functional targets fibroblast growth factor receptor 4 (FGFR4) and C-X-C motif chemokine ligand 1 (CXCL1) were detected by immunohistochemistry. Luciferase reporter and chromatin immunoprecipitation assays were performed to measure the transcriptional regulation of target genes by HOXB5. The effects of FGFR4 and CXCL1 on HOXB5-mediated metastasis were analyzed by an orthotopic metastasis model. Results: Elevated expression of HOXB5 had a positive correlation with poor tumour differentiation, higher TNM stage, and indicated unfavorable prognosis. Overexpression of HOXB5 promoted HCC metastasis through transactivating FGFR4 and CXCL1 expression, whereas knockdown of FGFR4 and CXCL1 decreased HOXB5-enhanced HCC metastasis. Moreover, HOXB5 overexpression in HCC cells promoted myeloid derived suppressor cells (MDSCs) infiltration through CXCL1/CXCR2 axis. Either depletion of MDSCs by anti-Gr1 or blocking CXCL1-CXCR2 axis by CXCR2 inhibitor impaired HOXB5-mediated HCC metastasis. In addition, fibroblast growth factor 19 (FGF19) contributed to the HOXB5 upregulation through PI3K/AKT/HIF1α pathway. Overexpression of FGF15 (an analog of FGF19 in mouse) promoted HCC metastasis, whereas knockdown of HOXB5 significantly inhibited FGF15-enhanced HCC metastasis in immunocompetent mice. HOXB5 expression was positively associated with CXCL1 expression and intratumoral MDSCs accumulation in human HCC tissues. Patients who co-expressed HOXB5/CXCL1 or HOXB5/CD11b exhibited the worst prognosis. Furthermore, the combination of FGFR4 inhibitor BLU-554 and CXCR2 inhibitor SB265610 dramatically decreased HOXB5-mediated HCC metastasis. Conclusion: HOXB5 was a potential prognostic biomarker in HCC patients and targeting this loop may provide a promising treatment strategy for the inhibition of HOXB5-mediated HCC metastasis.
Collapse
|
38
|
An updated meta-analysis of the association between fibroblast growth factor receptor 4 polymorphisms and susceptibility to cancer. Biosci Rep 2021; 40:226581. [PMID: 33017009 PMCID: PMC7584815 DOI: 10.1042/bsr20192051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is a cell surface receptor tyrosine kinases (RTKs) for FGFs. Several studies have focused on the association between FGFR4 polymorphisms and cancer development. This meta-analysis aimed to estimate the association between FGFR4 rs351855 (Gly388Arg), rs1966265 (Val10Ile), rs7708357, rs2011077, and rs376618 polymorphisms and cancer risk. Eligible studies were identified from electronic databases. All statistical analyses were achieved with the STATA 14.0 software. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantitatively estimate the association. Overall, no significant association was found among rs351855, rs2011077, and rs376618 polymorphisms with the risk of overall cancer. The rs1966265 polymorphism significantly decreased the risk of cancer in recessive (OR = 0.87, 95% CI = 0.78–0.97, P=0.009, TT vs CT+CC) genetic model. Whereas the rs7708357 polymorphism was positively associated with cancer risk in dominant (OR = 1.17, 95% CI = 1.02–1.36, P=0.028) genetic model. Stratified analysis revealed that rs351855 variant significantly increased the risk of prostate cancer in heterozygous (OR = 1.16, 95% CI = 1.02–1.32, P=0.025 AG vs GG), dominant (OR = 1.20, 95% CI = 1.06–1.35, P=0.004, AG+AA vs GG), and allele (OR = 1.22, 95% CI = 1.06–1.41, P=0.005, A vs G) genetic models. In summary, the findings of this meta-analysis indicate that rs1966265, rs7708357, and rs351855 polymorphisms are correlated to cancer development. Further well-designed studies are necessary to draw more precise conclusions.
Collapse
|
39
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
40
|
Wang J, Zhao H, Zheng L, Zhou Y, Wu L, Xu Y, Zhang X, Yan G, Sheng H, Xin R, Jiang L, Lei J, Zhang J, Chen Y, Peng J, Chen Q, Yang S, Yu K, Li D, Xie Q, Li Y. FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Am J Cancer Res 2021; 11:5045-5060. [PMID: 33754043 PMCID: PMC7978301 DOI: 10.7150/thno.56369] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims: Liver cancer stem cells (LCSCs) mediate therapeutic resistance and correlate with poor outcomes in patients with hepatocellular carcinoma (HCC). Fibroblast growth factor (FGF)-19 is a crucial oncogenic driver gene in HCC and correlates with poor prognosis. However, whether FGF19 signaling regulates the self-renewal of LCSCs is unknown. Methods: LCSCs were enriched by serum-free suspension. Self-renewal of LCSCs were characterized by sphere formation assay, clonogenicity assay, sorafenib resistance assay and tumorigenic potential assays. Ca2+ image was employed to determine the intracellular concentration of Ca2+. Gain- and loss-of function studies were applied to explore the role of FGF19 signaling in the self-renewal of LCSCs. Results: FGF19 was up-regulated in LCSCs, and positively correlated with certain self-renewal related genes in HCC. Silencing FGF19 suppressed self-renewal of LCSCs, whereas overexpressing FGF19 facilitated CSCs-like properties via activation of FGF receptor (FGFR)-4 in none-LCSCs. Mechanistically, FGF19/FGFR4 signaling stimulated store-operated Ca2+ entry (SOCE) through both the PLCγ and ERK1/2 pathways. Subsequently, SOCE-calcineurin signaling promoted the activation and translocation of nuclear factors of activated T cells (NFAT)-c2, which transcriptionally activated the expression of stemness-related genes (e.g., NANOG, OCT4 and SOX2), as well as FGF19. Furthermore, blockade of FGF19/FGFR4-NFATc2 signaling observably suppressed the self-renewal of LCSCs. Conclusions: FGF19/FGFR4 axis promotes the self-renewal of LCSCs via activating SOCE/NFATc2 pathway; in turn, NFATc2 transcriptionally activates FGF19 expression. Targeting this signaling circuit represents a potential strategy for improving the therapeutic efficacy of HCC.
Collapse
|
41
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Garcia-Recio S, Thennavan A, East MP, Parker JS, Cejalvo JM, Garay JP, Hollern DP, He X, Mott KR, Galván P, Fan C, Selitsky SR, Coffey AR, Marron D, Brasó-Maristany F, Burgués O, Albanell J, Rojo F, Lluch A, de Dueñas EM, Rosen JM, Johnson GL, Carey LA, Prat A, Perou CM. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest 2021; 130:4871-4887. [PMID: 32573490 DOI: 10.1172/jci130323] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanisms driving tumor progression from less aggressive subtypes to more aggressive states represent key targets for therapy. We identified a subset of luminal A primary breast tumors that give rise to HER2-enriched (HER2E) subtype metastases, but remain clinically HER2 negative (cHER2-). By testing the unique genetic and transcriptomic features of these cases, we developed the hypothesis that FGFR4 likely participates in this subtype switching. To evaluate this, we developed 2 FGFR4 genomic signatures using a patient-derived xenograft (PDX) model treated with an FGFR4 inhibitor, which inhibited PDX growth in vivo. Bulk tumor gene expression analysis and single-cell RNA sequencing demonstrated that the inhibition of FGFR4 signaling caused molecular switching. In the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohort, FGFR4-induced and FGFR4-repressed signatures each predicted overall survival. Additionally, the FGFR4-induced signature was an independent prognostic factor beyond subtype and stage. Supervised analysis of 77 primary tumors with paired metastases revealed that the FGFR4-induced signature was significantly higher in luminal/ER+ tumor metastases compared with their primaries. Finally, multivariate analysis demonstrated that the FGFR4-induced signature also predicted site-specific metastasis for lung, liver, and brain, but not for bone or lymph nodes. These data identify a link between FGFR4-regulated genes and metastasis, suggesting treatment options for FGFR4-positive patients, whose high expression is not caused by mutation or amplification.
Collapse
Affiliation(s)
- Susana Garcia-Recio
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Aatish Thennavan
- Lineberger Comprehensive Center and.,Oral and Craniofacial Biomedicine Program, School of Dentistry, and
| | - Michael P East
- Department of Pharmacology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joel S Parker
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Juan M Cejalvo
- Translational Genomics and Targeted Therapeutics in Oncology (IDIBAPS), Barcelona, Spain.,Medical Oncology Department, Hospital Clinic, Barcelona, Spain
| | - Joseph P Garay
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Daniel P Hollern
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Xiaping He
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Kevin R Mott
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | - Patricia Galván
- Translational Genomics and Targeted Therapeutics in Oncology (IDIBAPS), Barcelona, Spain.,Medical Oncology Department, Hospital Clinic, Barcelona, Spain
| | - Cheng Fan
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine
| | | | | | | | - Fara Brasó-Maristany
- Translational Genomics and Targeted Therapeutics in Oncology (IDIBAPS), Barcelona, Spain.,Medical Oncology Department, Hospital Clinic, Barcelona, Spain
| | - Octavio Burgués
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.,Department of Pathology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Joan Albanell
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain.,IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain.,Medical Oncology Department Hospital del Mar, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain.,Fundación Jiménez Díaz, Madrid, Spain
| | - Ana Lluch
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain.,Hospital Clínico Universitario de Valencia, Valencia, Spain.,Biomedical Research Institute INCLIVA, Universitat de València, Valencia, Spain
| | - Eduardo Martinez de Dueñas
- GEICAM, Spanish Breast Cancer Group, Madrid, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC-ISCIII), Madrid, Spain.,Hospital Provincial de Castellón, Castellón, Spain
| | - Jeffery M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Gary L Johnson
- Department of Pharmacology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lisa A Carey
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aleix Prat
- Translational Genomics and Targeted Therapeutics in Oncology (IDIBAPS), Barcelona, Spain.,Medical Oncology Department, Hospital Clinic, Barcelona, Spain.,SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Charles M Perou
- Lineberger Comprehensive Center and.,Department of Genetics, School of Medicine.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Peng T, Sun Y, Lv Z, Zhang Z, Su Q, Wu H, Zhang W, Yuan W, Zuo L, Shi L, Zhang LF, Zhou X, Mi Y. Effects of FGFR4 G388R, V10I polymorphisms on the likelihood of cancer. Sci Rep 2021; 11:1373. [PMID: 33446698 PMCID: PMC7809464 DOI: 10.1038/s41598-020-80146-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
The correlation between G388R or V10I polymorphisms of fibroblast growth factor receptor (FGFR) 4 gene and the risk of carcinoma has been investigated previously, but the results are contradictory. Odds ratios (ORs) with 95% confidence intervals (95%CIs), in silico tools, and immunohistochemical staining (IHS) were adopted to assess the association. In total, 13,793 cancer patients and 16,179 controls were evaluated in our pooled analysis. Summarization of all the studies showed that G388R polymorphism is associated with elevated susceptibility to cancer under homozygous comparison (OR = 1.21, 95%CI = 1.03–1.43, P = 0.020) and a recessive genetic model (OR = 1.21, 95%CI = 1.04–1.41, P = 0.012). In the stratification analysis by cancer type and ethnicity, similar findings were indicated for prostate cancer, breast cancer, and individuals of Asian descendant. Polyphen2 bioinformatics analysis showed that the G388R mutation is predicted to damage the protein function of FGFR4. IHS analysis indicated that FGFR4 expression is increased in advanced prostate cancer. These findings may guide personalized treatment of certain types of cancers. Up-regulation of FGFR4 may be related to a poor prognosis in prostate cancer.
Collapse
Affiliation(s)
- Tao Peng
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China
| | - Yangyang Sun
- Department of Pathology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Zhiwei Lv
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Quanxin Su
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Hao Wu
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Wei Zhang
- Department of Oncology, Taizhou People's Hospital, South Hailing Road 399, Taizhou, 225300, People's Republic of China
| | - Wei Yuan
- Department of Cardiology, Taizhou People's Hospital, South Hailing Road 399, Taizhou, 225300, People's Republic of China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Li Shi
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China
| | - Li-Feng Zhang
- Department of Urology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China.
| | - Xiaoli Zhou
- Department of Pathology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglong Road, Changzhou, 213003, People's Republic of China.
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, People's Republic of China.
| |
Collapse
|
44
|
Huynh H, Prawira A, Le TBU, Vu TC, Hao HX, Huang A, Wang Y, Porta DG. FGF401 and vinorelbine synergistically mediate antitumor activity and vascular normalization in FGF19-dependent hepatocellular carcinoma. Exp Mol Med 2020; 52:1857-1868. [PMID: 33235319 PMCID: PMC8080677 DOI: 10.1038/s12276-020-00524-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal cancer with limited therapeutic options, and standard therapy with sorafenib provides only modest survival benefits. Fibroblast growth factor 19 (FGF19) has been proposed as a driver oncogene, and targeting its receptor, FGFR-4, may provide a better alternative to standard therapy for patients with FGF19-driven tumors. Sixty-three HCC patient-derived xenograft (PDX) models were screened for FGF19 expression. Mice bearing high and low FGF19-expressing tumors were treated with FGF401 and/or vinorelbine, and the antitumor activity of both agents was assessed individually and in combination. Tumor vasculature and intratumoral hypoxia were also examined. High FGF19 expression was detected in 14.3% (9 of 63) of the HCC models tested and may represent a good target for HCC treatment. FGF401 potently inhibited the growth of high FGF19-expressing HCC models regardless of FGF19 gene amplification. Furthermore, FGF401 inhibited the FGF19/FGFR-4 signaling pathway, cell proliferation, and hypoxia, induced apoptosis and blood vessel normalization and prolonged the overall survival (OS) of mice bearing high FGF19 tumors. FGF401 synergistically acted with the microtubule-depolymerizing drug vinorelbine to further suppress tumor growth, promote apoptosis, and prolong the OS of mice bearing high FGF19 tumors, with no evidence of increased toxicity. Our study suggests that a subset of patients with high FGF19-expressing HCC tumors could benefit from FGF401 or FGF401/vinorelbine treatment. A high level of FGF19 in a tumor may serve as a potential biomarker for patient selection. The drugs FGF401 and vinorelbine, when working together synergistically, could be effective in treating those liver cancers driven by the activity of the fibroblast growth factor 19 (FGF19) protein. The drugs’ effects on human tumors grafted into mice were studied by an international research team led by Hung Huynh at the National Cancer Centre in Singapore. FGF401 is a small molecule that inhibits the activity of the receptor protein that the FGF19 growth factor interacts with to promote some cancers. Vinorelbine disrupts protein microtubules required for the cell division that allows cancer cells to multiply. In combination, the drugs achieved significantly enhanced anti-cancer effects which can now be tested in clinical trials. The research also uncovered new details of FGF401’s therapeutic actions, including its ability to restore healthy blood vessel formation.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore.
| | - Aldo Prawira
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Thanh Chung Vu
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Huai-Xiang Hao
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Alan Huang
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Youzhen Wang
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Diana Graus Porta
- Oncology Translational Research, Novartis Institutes for Biomedical Research at Basel, Basel, Switzerland
| |
Collapse
|
45
|
Influence of NOS3 rs2070744 genotypes on hepatocellular carcinoma patients treated with lenvatinib. Sci Rep 2020; 10:17054. [PMID: 33051476 PMCID: PMC7553969 DOI: 10.1038/s41598-020-73930-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
We investigated whether or not nitric oxide synthase 3 (NOS3) rs2070744 genotypes can affect the response for lenvatinib treatment in patients with hepatocellular carcinoma (HCC). We evaluated the relation of the NOS3 rs2070744 genotypes to the tumor response, progression-free survival (PFS), and overall survival (OS) as the response for lenvatinib. We also examined the association between fibroblast growth factor receptor (FGFR) gene polymorphisms, a potential feature of lenvatinib, and the response. There were no significant differences between the studies for either PFS or OS, even though patients with the TT genotype had a longer mean PFS (hazard ratio [HR] 0.60; p = 0.069) and mean OS (HR 0.46; p = 0.075) than those with the TC/CC genotypes. However, patients with a single-nucleotide polymorphism (SNP) combination pattern of the NOS3 rs2070744 TC/CC and FGFR4 rs351855 CT/TT genotypes had a significantly shorter mean PFS (HR 2.56; p = 0.006) and mean OS (HR 3.36; p = 0.013) than those with the other genotypes. The NOS3 rs2070744 genotypes did not influence the clinical response. However, the SNP combination pattern of the NOS3 rs2070744 and FGFR4 rs351855 genotypes may be helpful as treatment effect predictors and prognostic factors for HCC patients treated with lenvatinib.
Collapse
|
46
|
Rezende Miranda R, Fu Y, Chen X, Perino J, Cao P, Carpten J, Chen Y, Zhang C. Development of a Potent and Specific FGFR4 Inhibitor for the Treatment of Hepatocellular Carcinoma. J Med Chem 2020; 63:11484-11497. [PMID: 33030342 DOI: 10.1021/acs.jmedchem.0c00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormal activation of the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) signaling pathway has been shown to drive the proliferation of a significant portion of hepatocellular carcinoma (HCC). Resistance and toxicity are serious drawbacks that have been observed upon use of the current first- and second-line treatment options for HCC, therefore warranting the investigation of alternative therapeutic approaches. We report the development and biological characterization of a covalent inhibitor that is highly potent and exquisitely specific to FGFR4. The crystal structure of this inhibitor in complex with FGFR4 was solved, confirming its covalent binding and revealing its binding mode. We also describe the first clickable probe for FGFR4 that can be used to directly measure target engagement in cells. Our compound exhibited great antitumor activity in HCC cell lines and tumor xenograft models. These results provide evidence of a promising therapeutic lead for the treatment of a subset of HCC patients.
Collapse
Affiliation(s)
- Renata Rezende Miranda
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China
| | - John Perino
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Ping Cao
- BridGene Biosciences Inc., 1230 Bordeaux Dr, Sunnyvale, California 94089, United States
| | - John Carpten
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chao Zhang
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.,USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
47
|
Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther 2020; 214:107590. [PMID: 32492514 PMCID: PMC7494643 DOI: 10.1016/j.pharmthera.2020.107590] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The fibroblast growth factor receptor (FGFR) signaling pathway has long been known to cancer researchers because of its role in cell survival, proliferation, migration, and angiogenesis. Dysregulation of FGFR signaling is frequently reported in cancer studies, but most of these studies focus on FGFR1-3. However, there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis, tumor progression, and resistance to anti-tumor therapy in multiple types of cancer. Importantly, there are several novel FGFR4-specific inhibitors in clinical trials, making FGFR4 an attractive target for further research. In this review, we focus on assessing the role of FGFR4 in cancer, with an emphasis on breast cancer. First, the structure, physiological functions and downstream signaling pathways of FGFR4 are introduced. Next, different mechanisms reported to cause aberrant FGFR4 activation and their functions in cancer are discussed, including FGFR4 overexpression, FGF ligand overexpression, FGFR4 somatic hotspot mutations, and the FGFR4 G388R single nucleotide polymorphism. Finally, ongoing and recently completed clinical trials targeting FGFRs in cancer are reviewed, highlighting the therapeutic potential of FGFR4 inhibition for the treatment of breast cancer.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Molecular Targeted Therapy
- Mutation
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lyuqin Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Qiao C, Qian H, Wang J, Zhao T, Ma P, Wang S, Zhang T, Liu X. PD173074 blocks G1/S transition via CUL3-mediated ubiquitin protease in HepG2 and Hep3B cells. PLoS One 2020; 15:e0234708. [PMID: 32555680 PMCID: PMC7302471 DOI: 10.1371/journal.pone.0234708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are frequently altered in a variety of human cancer cells and are overexpressed in hepatocellular carcinoma (HCC). Several literatures have proven that they are efficacious for HCC therapy, however, the underlying mechanism remains unclear. Here, we found FGFR4 was overexpressed in HCC cell lines HepG2 and Hep3B and we used PD173074, an FGFR4 inhibitor, to explore the role of FGFR4 and its underlying mechanism in these cell lines. The results showed that PD173074 significantly arrested HepG2 and Hep3B cells in G1 phase and inhibited cell proliferation. Furthermore, Western blot analysis revealed that PD173074 decreased the levels of P-FRS2α, P-ERK, CDK2, cyclin E and NF-κB (p65) in the nucleus while it increased the levels of ubiquitin and CUL3, an E3 ubiquitin ligase which involves in cyclin E degradation. Meanwhile, the data from RT-qPCR showed that PD173074 also decreased miR-141 level. In conclusion, these results suggest that FGFR4 is involved in HCC by ERK/CUL3/cyclin E signaling pathway, and the finding may provide a potential theoretical basis for treatment by targeting FGFR4 in HCC.
Collapse
Affiliation(s)
- Chuchu Qiao
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Hongyan Qian
- School of Forensic Science and Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Jue Wang
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Tingting Zhao
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Pengyu Ma
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Sicen Wang
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Tao Zhang
- School of Pharmacy, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| | - Xinshe Liu
- School of Forensic Science and Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, ShaanXi, China
| |
Collapse
|
49
|
Chen J, Du F, Dang Y, Li X, Qian M, Feng W, Qiao C, Fan D, Nie Y, Wu K, Xia L. Fibroblast Growth Factor 19-Mediated Up-regulation of SYR-Related High-Mobility Group Box 18 Promotes Hepatocellular Carcinoma Metastasis by Transactivating Fibroblast Growth Factor Receptor 4 and Fms-Related Tyrosine Kinase 4. Hepatology 2020; 71:1712-1731. [PMID: 31529503 DOI: 10.1002/hep.30951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The poor prognosis of patients with hepatocellular carcinoma (HCC) is mainly attributed to its high rate of metastasis and recurrence. However, the molecular mechanisms underlying HCC metastasis need to be elucidated. The SRY-related high-mobility group box (SOX) family proteins, which are a group of highly conserved transcription factors, play important roles in cancer initiation and progression. Here, we report on a role of SOX18, a member of the SOX family, in promoting HCC invasion and metastasis. APPROACH AND RESULTS The elevated expression of SOX18 was positively correlated with poor tumor differentiation, higher tumor-node-metastasis (TNM) stage, and poor prognosis. Overexpression of SOX18 promoted HCC metastasis by up-regulating metastasis-related genes, including fibroblast growth factor receptor 4 (FGFR4) and fms-related tyrosine kinase 4 (FLT4). Knockdown of both FGFR4 and FLT4 significantly decreased SOX18-mediated HCC invasion and metastasis, whereas the stable overexpression of FGFR4 and FLT4 reversed the decrease in cell invasion and metastasis that was induced by inhibition of SOX18. Fibroblast growth factor 19 (FGF19), which is the ligand of FGFR4, up-regulated SOX18 expression. A mechanistic investigation indicated that the up-regulation of SOX18 that was mediated by the FGF19-FGFR4 pathway relied on the phosphorylated (p)-fibroblast growth factor receptor substrate 2/p-glycogen synthase kinase 3 beta/β-catenin pathway. SOX18 knockdown significantly reduced FGF19-enhanced HCC invasion and metastasis. Furthermore, BLU9931, a specific FGFR4 inhibitor, significantly reduced SOX18-mediated HCC invasion and metastasis. In human HCC tissues, SOX18 expression was positively correlated with FGF19, FGFR4, and FLT4 expression, and patients that coexpressed FGF19/SOX18, SOX18/FGFR4, or SOX18/FLT4 had the worst prognosis. CONCLUSIONS We defined a FGF19-SOX18-FGFR4 positive feedback loop that played a pivotal role in HCC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of HCC.
Collapse
Affiliation(s)
- Jie Chen
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Feng Du
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yunzhi Dang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Meirui Qian
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Limin Xia
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Ji L, Lin Z, Wan Z, Xia S, Jiang S, Cen D, Cai L, Xu J, Cai X. miR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR. Cell Death Dis 2020; 11:250. [PMID: 32313144 PMCID: PMC7170966 DOI: 10.1038/s41419-020-2413-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
HCC is a common malignancy worldwide and surgery or reginal treatments are deemed insufficient for advanced-stage disease. Sorafenib is an inhibitor of many kinases and was shown to benefit advanced HCC patients. However, resistance emerges soon after initial treatment, limiting the clinical benefit of sorafenib, and the mechanisms still remain elusive. Thus, this study aims to investigate the mechanisms of sorafenib resistance and to provide possible targets for combination therapies. Through miRNA sequencing, we found that miR-486-3p was downregulated in sorafenib resistant HCC cell lines. Cell viability experiments showed increased miR-486-3p expression could induce cell apoptosis while miR-486-3p knockdown by CRISPR-CAS9 technique could reduce cell apoptosis in sorafenib treatment. Clinical data also indicated that miR-486-3p level was downregulated in tumor tissue compared with adjacent normal tissue in HCC patients. Mechanism dissections showed that FGFR4 and EGFR were the targets of miR-486-3p, which was verified by luciferase reporter assay. Importantly, FGFR4 or EGFR selective inhibitor could enhance sorafenib efficacy in the resistant cells. Moreover, in vivo sorafenib resistant model identified that over-expressing miR-486-3p by lentivirus injection could overcome sorafenib resistance by significantly suppressing tumor growth in combination with the treatment of sorafenib. In conclusion, we found miR-486-3p was an important mediator regulating sorafenib resistance by targeting FGFR4 and EGFR, thus offering a potential target for HCC treatment.
Collapse
Affiliation(s)
- Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhe Wan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Shunjie Xia
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Shi Jiang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Dong Cen
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Liuxin Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.
| |
Collapse
|