1
|
Svobodová G, Šadibolová M, Velecká E, Mráziková L, Vaculová P, Matoušková P, Kuneš J, Maletínská L, Boušová I. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models. Antioxidants (Basel) 2024; 13:1371. [PMID: 39594513 PMCID: PMC11591148 DOI: 10.3390/antiox13111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Vaculová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic; (L.M.); (P.V.); (J.K.); (L.M.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic; (G.S.); (M.Š.); (E.V.); (P.M.)
| |
Collapse
|
2
|
Karmacharya A, Kasai S, Mukai Y, Sato S. Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction. Mol Nutr Food Res 2024; 68:e2400472. [PMID: 39420699 DOI: 10.1002/mnfr.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Sub-optimal prenatal conditions such as maternal undernutrition during pregnancy and lactation posit high risks of adult metabolic diseases. High fructose intake causes insulin resistance and liver inflammation contributing to metabolic diseases. However, food-based preventive measure for these metabolic diseases in the offspring is under-researched. This study aims to investigate the effect of maternal broccoli powder (BP) intake during lactation on insulin resistance and liver inflammation in high-fructose-diet-fed adult male offspring exposed to maternal protein restriction. METHODS AND RESULTS Pregnant Wistar rats are provided normal protein (NP) or low protein (LP) diets and 0% or 0.74% BP-containing NP diets and 0% or 0.74% BP-containing LP diet during lactation. At weaning, offspring receiving water (W) or 10% fructose solution (Fr) are assigned into six groups: NP/NP/W, NP/NP/Fr, NP/NPBP/Fr, LP/LP/W, LP/LP/Fr, and LP/LPBP/Fr. At week 13, plasma insulin, macrophage infiltration, activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) phosphorylation, and autophagy flux markers are examined. LP/LPBP/Fr shows lower insulin levels and Homeostatic model assessment for insulin resistance (HOMA-IR) values than LP/LP/Fr. Liver macrophage infiltration are decreased in LP/LPBP/Fr. LP/LPBP/Fr exhibits upregulated AMPK phosphorylation, downregulated mTOR phosphorylation, and increased Microtubule-associated protein1A/1B-light chain 3B-II (LC3B-II) levels. CONCLUSION Maternal BP intake during lactation ameliorates insulin resistance and inflammation in the livers of adult offspring on a high-fructose diet from LP mothers.
Collapse
Affiliation(s)
- Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, 238-8522, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| |
Collapse
|
3
|
Li X, Hu Z, Shi Q, Qiu W, Liu Y, Liu Y, Huang S, Liang L, Chen Z, He X. Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression. Oncogene 2024; 43:3121-3136. [PMID: 39251845 DOI: 10.1038/s41388-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.
Collapse
Affiliation(s)
- Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenying Qiu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Linhui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Xia M, Li W, Lin H, Zeng H, Ma S, Wu Q, Ma H, Li X, Pan B, Gao J, Hu Y, Liu Y, Wang S, Gao X. DNA methylation age acceleration contributes to the development and prediction of non-alcoholic fatty liver disease. GeroScience 2024; 46:3525-3542. [PMID: 37605101 PMCID: PMC11226581 DOI: 10.1007/s11357-023-00903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prevalent in the aging society. Despite body weight reduction, the prevalence of NAFLD has been increasing with aging for unknown reasons. Here, we investigate the association of DNA methylation age acceleration, a hallmark of aging, with risk of NAFLD. Genome-wide DNA methylation profiles were measured in 95 participants who developed type 2 diabetes during 4-year follow-up, and 356 randomly sampled participants from Shanghai Changfeng Study. DNA methylation age was calculated using the Horvath's method, and liver fat content (LFC) was measured using a quantitative ultrasound method. Subjects with highest tertile of DNA methylation age acceleration (≥ 9.5 years) had significantly higher LFC (7.2% vs 3.1%, P = 0.008) but lower body fat percentage (29.7% vs 33.0%, P = 0.032) than those with lowest tertile of DNA methylation age acceleration (< 4.0 years). After adjustment for age, sex, alcohol drinking, cigarette smoking, BMI, waist circumference, and different type blood cell counts, the risk of NAFLD was still significantly increased in the highest tertile group (OR, 4.55; 95% CI, 1.06-19.61). Even in subjects with similar LFC at baseline, DNA methylation age acceleration was associated with higher increase in LFC (4.0 ± 10.7% vs 0.9 ± 9.5%, P = 0.004) after a median of 4-year follow-up. Further analysis found that 6 CpGs of Horvath age predictors were associated with longitudinal changes in LFC after multivariate adjustment and located on genes that might lead to fat redistribution from peripheral adipose to liver. Combination of the key CpG methylation related to liver fat content with conventional risk factors improves the performance for NAFLD prediction.
Collapse
Affiliation(s)
- Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoming Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
5
|
Xu L, Fan YH, Zhang XJ, Bai L. Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease. World J Hepatol 2024; 16:703-715. [PMID: 38818286 PMCID: PMC11135277 DOI: 10.4254/wjh.v16.i5.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits. Its complexity stems from genetic predisposition, environmental influences, and metabolic factors. Epigenetic processes govern various cellular functions such as transcription, chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, especially the process of histone methylation, are intricately intertwined with fat accumulation in the liver. Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis. While early-stage NAFLD is reversible, its progression to severe stages becomes almost irreversible. Therefore, early detection and intervention in NAFLD are crucial, and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430060, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Cui Y, Ru M, Wang Y, Weng L, Haji RA, Liang H, Zeng Q, Wei Q, Xie X, Yin C, Huang J. Epigenetic regulation of H3K27me3 in laying hens with fatty liver hemorrhagic syndrome induced by high-energy and low-protein diets. BMC Genomics 2024; 25:374. [PMID: 38627644 PMCID: PMC11022457 DOI: 10.1186/s12864-024-10270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.
Collapse
Affiliation(s)
- Yong Cui
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meng Ru
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yujie Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Linjian Weng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ramlat Ali Haji
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiping Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xianhua Xie
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chao Yin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
8
|
Ceccherini E, Michelucci E, Signore G, Coco B, Zari M, Bellini M, Brunetto MR, Cecchettini A, Rocchiccioli S. The Clinical Utility of the Saliva Proteome in Rare Diseases: A Pilot Study for Biomarker Discovery in Primary Sclerosing Cholangitis. J Clin Med 2024; 13:544. [PMID: 38256678 PMCID: PMC10816894 DOI: 10.3390/jcm13020544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a rare chronic inflammatory liver disease characterized by biliary strictures and cholestasis. Due to the lack of effective serological indicators for diagnosis and prognosis, in the present study, we examined the potentiality of the saliva proteome to comprehensively screen for novel biomarkers. METHODS Saliva samples of PSC patients and healthy controls were processed and subsequently analyzed using a liquid chromatography-tandem mass spectrometry technique. A bioinformatic approach was applied to detect the differentially expressed proteins, their related biological functions and pathways, and the correlation with the clinical evidence in order to identify a possible marker for the PSC group. RESULTS We identified 25 differentially expressed proteins in PSC patients when compared to the healthy control group. Among them, eight proteins exhibited area under the curve values up to 0.800, suggesting these saliva proteins as good discriminators between the two groups. Multiple positive correlations were also identified between the dysregulated salivary proteins and increased serum alkaline phosphatase levels and the presence of ulcerative colitis. Pathway analysis revealed significant enrichments in the immune system, neutrophil degranulation, and in the interleukine-17 signaling pathway. CONCLUSION We demonstrated the potentiality of saliva as a useful biofluid to obtain a fingerprint of the pathology, suggesting disulfide-isomerase A3 and peroxiredoxin-5 as the better discriminating proteins in PSC patients. Hence, analysis of saliva proteins could become, in future, a useful tool in the screening of patients with suspected PSC.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Institute of Chemistry of Organometallic Compounds, National Research Council, 56124 Pisa, Italy
| | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Barbara Coco
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy; (B.C.); (M.R.B.)
| | - Michela Zari
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.Z.); (M.B.)
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.Z.); (M.B.)
| | - Maurizia Rossana Brunetto
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy; (B.C.); (M.R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
| |
Collapse
|
9
|
Wu XF, Liu Y, Zhan JS, Huang QL, Li WY. A novel splice variant of goat CPT1a gene and their diverse mRNA expression profiles. Anim Biotechnol 2023; 34:2571-2581. [PMID: 36047452 DOI: 10.1080/10495398.2022.2106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The Alternative splicing (AS) of Carnitine palmitoyltransferase 1a (CPT1a) and their expression profiles had never been illuminated in goats until now. Herein, a novel splice transcript in the CPT1a gene that is predicted to result in the skipping of exons 6-19 (CPT1a-sv1) has been isolated in addition to the full-length transcript in goats. The result of RT-PCR showed that CPT1a-sv1 is 606 bp in length and consists of 6 exons. A novel exon 6 was consisted of partial exon 5 and partial exon 19, compared to that in CPT1a. RT-qPCR analysis showed that the expression patterns of CPT1a and CPT1a-sv1 are spatially different. In both kid and adult goats, the CPT1a transcript is strongly expressed in the liver, spleen, lung, kidney, and brain tissues. However, CPT1a-sv1 has a strong tissue-specific expression pattern, with moderate RNA levels in the liver and brain of kids, while highly expressed in the liver and minimally expressed in the brain of adults. We observed two transcripts to be involved in brain development. These findings improve our understanding of the function of the CPT1a gene in goats and provide information on the molecular mechanism of AS events.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yuan Liu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jin-Shun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Qin-Lou Huang
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wen-Yang Li
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Park SH, Lee J, Hwang JT, Chung MY. Physiologic and epigenetic effects of nutrients on disease pathways. Nutr Res Pract 2023; 17:13-31. [PMID: 36777807 PMCID: PMC9884588 DOI: 10.4162/nrp.2023.17.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jaein Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min-Yu Chung
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
11
|
Dnmt1/Tet2-mediated changes in Cmip methylation regulate the development of nonalcoholic fatty liver disease by controlling the Gbp2-Pparγ-CD36 axis. Exp Mol Med 2023; 55:143-157. [PMID: 36609599 PMCID: PMC9898513 DOI: 10.1038/s12276-022-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 01/07/2023] Open
Abstract
Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.
Collapse
|
12
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
13
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
14
|
Maternal One-Carbon Supplement Reduced the Risk of Non-Alcoholic Fatty Liver Disease in Male Offspring. Nutrients 2022; 14:nu14122545. [PMID: 35745277 PMCID: PMC9228996 DOI: 10.3390/nu14122545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have suggested that prevention of obesity and non-alcoholic fatty liver disease (NAFLD) should start with maternal dietary management. We previously reported disrupted methionine cycle, associated with NAFLD, in male offspring liver due to maternal high-fat (HF) diet, thus we hypothesize that maternal one-carbon supplement may reduce the risk of NAFLD in offspring via the normalizing methionine cycle. To test it, female mice (F0) were exposed to either a maternal normal-fat diet (NF group) a maternal HF diet (HF group), or a maternal methyl donor supplement (H1S or H2S group) during gestation and lactation. The offspring male mice (F1) were exposed to a postweaning HF diet to promote NAFLD. While the HF offspring displayed obesity, glucose intolerance and hepatic steatosis, the H1S and H2S offspring avoided hepatic steatosis. This phenotype was associated with the normalization of the methionine cycle and the restoration of L-carnitine and AMPK activity. Furthermore, maternal HF diet induced epigenetic regulation of important genes involved in fatty acid oxidation and oxidative phosphorylation via DNA methylation modifications, which were recovered by maternal one-carbon supplementation. Our study provides evidence that maternal one-carbon supplement can reverse/block the adverse effects of maternal HF diet on promoting offspring NAFLD, suggesting a potential nutritional strategy that is administered to mothers to prevent NAFLD in the offspring.
Collapse
|
15
|
de Oliveira DT, de Paiva NCN, Carneiro CM, Guerra-Sá R. Dynamic changes in hepatic DNA methylation during the development of nonalcoholic fatty liver disease induced by a high-sugar diet. J Physiol Biochem 2022; 78:763-775. [PMID: 35716250 DOI: 10.1007/s13105-022-00900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
DNA methylation is an important epigenetic mechanism of gene expression control. The present study aimed to evaluate the temporal effect of isocaloric high-sugar diet (HSD) intake on the development of nonalcoholic fatty liver disease (NAFLD) and the role of DNA methylation in this event. Newly weaned Wistar rats were divided into eight groups and fed a standard chow diet or an HSD ad libitum for 4 weeks, 8 weeks, 15 weeks, and 18 weeks. After the experimental periods, the animals were euthanized and their livers were removed for histological analysis, gene expression of maintenance methylase (Dnmt1), de novo methylases (Dnmt3a and Dnmt3b), demethylases (Tet2 and Tet3) of DNA, and global DNA methylation. HSD intake led to the gradual development of NAFLD. HSD intake for 18 weeks was associated with downregulation of Dnmt1 expression and global DNA hypomethylation; these results were negatively correlated with more severe steatosis scores observed in these animals. The HSD consumption for 18 weeks was also associated with a decrease in Dnmt3a and Tet2 expression. Interestingly, the expression of de novo methyltransferase Dnmt3b was reduced by HSD during all experimental periods. Together, these results indicate that the downregulation of de novo DNA methylation, Dnmt3b, induced by HSD is the primary factor in the development of NAFLD. On the other hand, disease progression is associated with downregulation of maintenance DNA methylation and global DNA hypomethylation. These results suggest a link between the dynamic changes in hepatic DNA methylation and the development of NAFLD induced by an HSD intake.
Collapse
Affiliation(s)
- Daiane Teixeira de Oliveira
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Nívia Carolina Nogueira de Paiva
- Laboratório de Imunopatologia, Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas Em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Departamento de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
16
|
Betaine Alleviates High-Fat Diet-Induced Disruptionof Hepatic Lipid and Iron Homeostasis in Mice. Int J Mol Sci 2022; 23:ijms23116263. [PMID: 35682942 PMCID: PMC9180950 DOI: 10.3390/ijms23116263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat deposition in the liver, which is often associated with disrupted iron homeostasis. Betaine has been reported to be hepatoprotective, yet whether and how betaine ameliorates high-fat diet-induced disruption of hepatic lipid and iron homeostasis remains elusive. In this study, mice were fed either standard (CON) or high-fat diet (HFD) for 9 weeks to establish a NAFLD model. Mice raised on HF diet were then assigned randomly to HF and HFB groups, HFB group being supplemented with 1% (w/v) of betaine in the drinking water for 13 weeks. Betaine supplementation significantly alleviated excessive hepatic lipid deposition and restored hepatic iron content. Betaine partly yet significantly reversed HFD-induced dysregulation of lipogenic genes such as PRARγ and CD36, as well as the iron-metabolic genes including FPN and HAMP that encodes hepcidin. Similar mitigation effects of betaine were observed for BMP2 and BMP6, the up-stream regulators of hepcidin expression. Betaine significantly rectified disrupted expression of methyl transfer gene, including BHMT, GNMT and DNMT1. Moreover, HFD-modified CpG methylation on the promoter of PRARγ and HAMP genes was significantly reversed by betaine supplementation. These results indicate that betaine alleviates HFD-induced disruption of hepatic lipid and iron metabolism, which is associated with modification of CpG methylation on promoter of lipogenic and iron-metabolic genes.
Collapse
|
17
|
Bioinformatics study of the potential therapeutic effects of ginsenoside Rf in reversing nonalcoholic fatty liver disease. Biomed Pharmacother 2022; 149:112879. [PMID: 35358801 DOI: 10.1016/j.biopha.2022.112879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Ginsenoside Rf, a tetracyclic triterpenoid only present in Panax ginseng, has been proven to relieve lipid metabolism and inflammatory reactions, which can be a potential treatment for nonalcoholic fatty liver disease (NAFLD). Therefore, this study aimed to reveal the underlying mechanisms of ginsenoside Rf in the treatment of early-stage NAFLD (NAFL) by using a bioinformatics method and biological experiments. METHODS Target genes associated with NAFL were screened from the Gene Expression Omnibus (GEO) database, a database repository of high-throughput gene expression data and hybridization arrays, chips, and microarrays. Subsequently, gene set enrichment analysis was performed by using Gene Ontology enrichment analysis tool. Then, the binding capacity between ginsenoside Rf and NAFL-related targets was evaluated by molecular docking. Finally, the FFA-induced HepG2 cell model treated with ginsenoside Rf was adopted to verify the effect of ginsenoside Rf and the related mechanisms. RESULTS There were 41 common differentially expressed genes in the GEO dataset. Gene Ontology and Reactome pathway enrichment analysis of the differentially expressed genes showed that many pathways could be related to the pathogenesis of NAFL, including those participating in the cytokine-mediated signaling pathway, G protein-coupled receptor signaling pathway, and response to lipopolysaccharide. Finally, the qRT-PCR analysis results indicated that ginsenoside Rf therapy could ameliorate the transcription of ANXA2, BAZ1A, DNMT3L and MMP9. CONCLUSION Our research discovered the relevant mechanisms and basic pharmacological effects of ginsenoside Rf in the treatment of NAFL. These results might facilitate the development of ginsenoside Rf as an alternative medication for NAFL.
Collapse
|
18
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
19
|
Ando Y, Yamada H, Munetsuna E, Yamazaki M, Kageyama I, Teshigawara A, Nouchi Y, Fujii R, Mizuno G, Sadamoto N, Ishikawa H, Suzuki K, Hashimoto S, Ohashi K. Maternal High-Fructose Corn Syrup consumption causes insulin resistance and hyperlipidemia in offspring via DNA methylation of the Pparα promoter region. J Nutr Biochem 2022; 103:108951. [PMID: 35123000 DOI: 10.1016/j.jnutbio.2022.108951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE There are concerns about the negative effects of fructose intake during pregnancy on the next generation. We have previously reported that offspring from dams fed with fructose during gestation and lactation demonstrate abnormal lipid metabolism in the liver. In this study, we aimed to elucidate the molecular mechanism of the effects of maternal high-fructose corn syrup (HFCS) consumption on offspring. BASIC PROCEDURES Pregnant Sprague-Dawley rats were fed with 20% HFCS water solution during gestation and lactation. Offspring were put on a normal diet after weaning, and the serum parameters and gene expression patterns were studied at predetermined intervals. MAIN FINDINGS Offsprings from pregnant rats fed with 20% HFCS (HFCS group) developed insulin resistance and hyperlipidemia at 60 days of age. RNA-seq analysis demonstrated that peroxisome proliferator-activated receptor α (PPARα) expression is downregulated by maternal HFCS intake. Hepatic Pparα expression in the HFCS group appeared to be suppressed by the enhanced DNA methylation of its promoter region. PRINCIPAL CONCLUSIONS It is suggested that the development of insulin resistance and hyperlipidemia in the HFCS group may be attributable to aberrant Pparα methylation in the offspring liver. Pparα hypermethylation may be one of molecular mechanism underlying the toxicity of maternal fructose intake.
Collapse
Affiliation(s)
- Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Murechohara, Takamatsu, Kagawa 761-0123 Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan; Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Nao Sadamoto
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192 Japan
| |
Collapse
|
20
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chen LJ, Lin XX, Guo J, Xu Y, Zhang SX, Chen D, Zhao Q, Xiao J, Lian GH, Peng SF, Guo D, Yang H, Shu Y, Zhou HH, Zhang W, Chen Y. Lrp6 Genotype affects Individual Susceptibility to Nonalcoholic Fatty Liver Disease and Silibinin Therapeutic Response via Wnt/β-catenin-Cyp2e1 Signaling. Int J Biol Sci 2021; 17:3936-3953. [PMID: 34671210 PMCID: PMC8495406 DOI: 10.7150/ijbs.63732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is a serious threat to human health worldwide, with a high genetic susceptibility. Rs2302685, a functional germline variant of LRP6, has been recently found to associate with NAFLD risk. This study was aimed to clarify the underlying mechanism associated with rs2302685 risk and its impact on pharmacotherapy in treatment of NAFLD. Methods: Venous blood samples were collected from NAFLD and non-NAFLD patients for SNP genotyping by using mass spectrometry. The Lrp6-floxdel mouse (Lrp6(+/-)) was generated to model the partial function associated with human rs2302685. The liver injury and therapeutic effects of silibinin were compared between Lrp6(+/-) and Lrp6(+/+) mice received a methionine-choline deficient (MCD) diet or normal diet. The effect of Lrp6 functional alteration on Wnt/β-catenin-Cyp2e1 signaling activities was evaluated by a series of cellular and molecular assays. Results: The T allele of LRP6 rs2302685 was confirmed to associate with a higher risk of NAFLD in human subjects. The carriers of rs2302685 had reduced level of AST and ALT as compared with the noncarriers. The Lrp6(+/-) mice exhibited a less severe liver injury induced by MCD but a reduced response to the treatment of silibinin in comparison to the Lrp6(+/+) mice, suggesting Lrp6 as a target of silibinin. Wnt/β-catenin-Cyp2e1 signaling together with ROS generation could be exacerbated by the overexpression of Lrp6, while decreased in response to Lrp6 siRNA or silibinin treatment under NAFLD modeling. Conclusions: The Lrp6 function affects individual susceptibility to NAFLD and the therapeutic effect of silibinin through the Wnt/β-catenin-Cyp2e1 signaling pathway. The present work has provided an underlying mechanism for human individual susceptibility to NAFLD associated with Lrp6 polymorphisms as well as a rationale for the effective use of silibinin in NAFLD patients.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Xiu-Xian Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Song-Xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guang-Hui Lian
- Department of gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201. USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Changsha 410078, Hunan, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
22
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
24
|
Alqahtani SA, Schattenberg JM. NAFLD in the Elderly. Clin Interv Aging 2021; 16:1633-1649. [PMID: 34548787 PMCID: PMC8448161 DOI: 10.2147/cia.s295524] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease globally. Current estimates are that 24% of the adult population, thus, one billion individuals worldwide, are affected. Interestingly, the prevalence of fatty liver seems to peak between 40─50 years of age in males and 60─69 years in females, often slightly decreasing in older (>70 years) cohorts. Furthermore, several risk factors for NAFLD development, such as hypertension, diabetes, hyperlipidemia, and obesity are higher in older adults. The diagnosis and management strategies in older adults are sometimes challenging, and certain age-specific factors have to be taken into account by healthcare professionals. In this review, we provide an overview of considerations relevant to the management and diagnosis of NAFLD in older adults (age >65 years) and discuss the types of pharmacological interventions available for the management of non-alcoholic steatohepatitis (NASH) in the aging population.
Collapse
Affiliation(s)
- Saleh A Alqahtani
- Liver Transplantation Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
25
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
26
|
Chung MY, Kim HJ, Choi HK, Park JH, Hwang JT. Black Mulberry Extract Elicits Hepatoprotective Effects in Nonalcoholic Fatty Liver Disease Models by Inhibition of Histone Acetylation. J Med Food 2021; 24:978-986. [PMID: 34524028 DOI: 10.1089/jmf.2021.k.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation by histone acetyltransferase (HAT) is associated with various biological processes and the progression of diseases, including nonalcoholic fatty liver disease (NAFLD). The objective of this study was to investigate whether the hypolipidemic properties of black mulberry (Morus atropurpurea Roxb.) fruit extract (BME) contribute toward protection against NAFLD by HAT inhibition. HepG2 cells were treated with oleic and palmitic acids to induce lipid accumulation, which was significantly attenuated by the treatment with BME at 50 and 100 μg/mL. BME also markedly reduced the expression of proteins associated with lipogenesis, which was attributed to the BME-mediated downregulation of lipogenic genes in HepG2 cells. BME significantly inhibited in vitro total HAT and p300 activities. In addition, BME suppressed total acetylated lysine as well as specific histone acetylation of proteins H3K14 and H3K27 in HepG2 cells. Mice were then fed with either a chow diet or western diet (WD), with or without BME (1%, w/w) supplementation, for 12 weeks to confirm hypolipidemic activity of BME. BME attenuated serum nonesterified fatty acids and low-density lipoprotein (LDL) cholesterol levels, which was likely associated with the downregulation of hepatic lipogenic gene expression in WD-fed obese mice. Taken together, the hypolipidemic activity of BME was observed in HepG2 cells treated with fatty acids as well as in livers of obese mice, and the hepatoprotection of BME is likely associated with the inhibition of acetylation. Further investigation is warranted to determine whether BME can be developed into an efficacious dietary intervention to attenuate the progression of NAFLD by epigenetic regulation in clinical settings.
Collapse
Affiliation(s)
- Min-Yu Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Hyo-Jin Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| | - Hyo-Kyoung Choi
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Jae Ho Park
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Jin-Taek Hwang
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
27
|
Carbone A, De Santis E, Cela O, Giambra V, Miele L, Marrone G, Grieco A, Buschbeck M, Capitanio N, Mazza T, Mazzoccoli G. The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9081057. [PMID: 34440260 PMCID: PMC8391426 DOI: 10.3390/biomedicines9081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Luca Miele
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Antonio Grieco
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, IJC Building, Can Ruti Campus Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel./Fax: +39-(0882)-410-255
| |
Collapse
|
28
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
29
|
Ipsen DH, Agerskov RH, Klaebel JH, Lykkesfeldt J, Tveden-Nyborg P. The development of nonalcoholic steatohepatitis is subjected to breeder dependent variation in guinea pigs. Sci Rep 2021; 11:2955. [PMID: 33536590 PMCID: PMC7859397 DOI: 10.1038/s41598-021-82643-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Variability in disease development due to differences in strains and breeders constitutes a substantial challenge in preclinical research. However, the impact of the breeder on non-alcoholic steatohepatitis (NASH) is not yet fully elucidated. This retrospective study investigates NASH development in guinea pigs from Charles River or Envigo fed a high fat diet (20% fat, 15% sucrose, 0.35% cholesterol) for 16 or 24/25 weeks. Charles River animals displayed more severe NASH, with higher steatosis (p < 0.05 at week 16), inflammation (p < 0.05 at both week), fibrosis (p < 0.05 at week 16) and disease activity (p < 0.05 at both weeks). Accordingly, alanine and aspartate aminotransferase were increased at week 24/25 (p < 0.01). Hepatic expression of inflammatory (Ccl2, Cxcl8) and fibrotic (Pdgf, Serpine1, Col1a1) genes was also increased (p < 0.05). Differences were observed in healthy chow (4% fat, 0% sucrose, 0% cholesterol) fed animals: Envigo animals displayed higher relative liver weights (p < 0.01 at both weeks), liver cholesterol (p < 0.0001 at week 24/25) and aspartate aminotransferase (p < 0.05 at week 16), but lower levels of alkaline phosphatase (p < 0.0001 at week 24/25). These findings accentuates the importance of the breeder and its effect on NASH development and severity. Consequently, this may affect reproducibility, study comparison and limit the potential of developing novel therapies.
Collapse
Affiliation(s)
- D H Ipsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - R H Agerskov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - J H Klaebel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - J Lykkesfeldt
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| | - Pernille Tveden-Nyborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
30
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
31
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21218138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people’s perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2262
| |
Collapse
|
32
|
Asif S, Morrow NM, Mulvihill EE, Kim KH. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front Genet 2020; 11:590369. [PMID: 33193730 PMCID: PMC7593700 DOI: 10.3389/fgene.2020.590369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nadya M. Morrow
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Guo X, Puttabyatappa M, Domino SE, Padmanabhan V. Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Mol Cell Endocrinol 2020; 514:110913. [PMID: 32562712 PMCID: PMC7397566 DOI: 10.1016/j.mce.2020.110913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance and tissue-specific changes in insulin sensitivity with liver and muscle manifesting insulin resistance accompanied by inflammatory, oxidative and lipotoxic state. In contrast, visceral (VAT) and subcutaneous (SAT) adipose tissues are insulin sensitive in spite of VAT manifesting changes in inflammatory and oxidative state. We hypothesized that prenatal T-induced changes in tissue-specific insulin resistance arise from disrupted lipid storage and metabolism gene expression driven by changes in DNA and histone modifying enzymes. Changes in gene expression were assessed in liver, muscle and 4 adipose (VAT, SAT, epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep. Prenatal T-treatment increased lipid droplet and metabolism genes PPARA and PLIN1 in liver, SREBF and PLIN1 in muscle and showed a trend for decrease in PLIN2 in PRAT. Among epigenetic modifying enzymes, prenatal T-treatment increased expression of 1) DNMT1 in liver and DNMT3A in VAT, PRAT, muscle and liver; 2) HDAC1 in ECAT, HDAC2 in muscle with decrease in HDAC3 in VAT; 3) EP300 in VAT and ECAT; and 4) KDM1A in VAT with increases in liver histone acetylation. Increased lipid storage and metabolism genes in liver and muscle are consistent with lipotoxicity in these tissues with increased histone acetylation likely contributing to increased liver PPARA. These findings are suggestive that metabolic defects in prenatal T-treated sheep may arise from changes in key genes mediated, in part, by tissue-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | - Steven E Domino
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
34
|
Wen Y, Rattan S, Flaws JA, Irudayaraj J. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. Toxicol Appl Pharmacol 2020; 402:115123. [PMID: 32628958 DOI: 10.1016/j.taap.2020.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous industrial pollutant, is a known endocrine disrupter implicated in metabolic diseases. Prenatal DEHP exposure promotes epigenetic multi- and transgenerational inheritance of adult onset disease in subsequent generations (F1-F3). However, the epigenetic toxicity is less understood in the liver. In this study, CD-1 mice were prenatally exposed to 20 μg/kg/day, 200 μg/kg/day, 500 mg/kg/day, or 750 mg/kg/day DEHP from gestational day (GD) 10.5 until birth of pups. Following prenatal exposure, the multigenerational and transgenerational effects of mRNA expression of epigenetic regulators were evaluated in F1, F2, and F3 generation mouse livers at postnatal days (PNDs) 8 and 60. Results showed that DEHP exposed mice livers exhibited significant changes in global DNA methylation levels in all three generations, with the effect being different in F2 after high dosage exposure. Histopathology indicated that DEHP exposure could induce mild damage in F1 livers. The expression levels of DNA methyltransferase 1 (Dnmt1) were significantly changed in both the F1 and F2 generations at PND 8, suggesting that maintenance Dnmt1 plays a major role in the multigenerational effect that occur in the early developmental stages. Additionally, DEHP exposure caused significant changes in ten-eleven translocation methylcytosine (Tet) dioxygenases encoding Tet1 expression in all three generations and Tet2 expression in F3 at PND 60, implicating their contributions in inducing both multi- and transgenerational effects after DEHP exposure in mouse liver. Overall, our results establish that prenatal and ancestral DEHP exposure are critical for epigenetic regulation of DNA methylation in female mouse livers.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020; 36:429-441. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research, effective therapies for metabolic (dysfunction)-associated fatty liver disease (MAFLD) are lacking. An increasing body of evidence suggests that epigenetic dysregulation is frequent in MAFLD, and orchestrates many aspects of its development and progression. Furthermore, the high plasticity of epigenetic modifications in response to environmental cues renders epigenetics a novel area for therapeutic drug discovery. Over recent years, several epigenetics-based drugs and diagnostic biomarkers have entered clinical development and/or obtained regulatory approval. Here, we review recent advances in our understanding of epigenetic regulation and programming during MAFLD, including DNA methylation, histone modifications, chromatin remodelling, transcriptional control, and noncoding (nc)RNAs. We also discuss the potential translational implications and challenges of epigenetics in the context of MAFLD.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
36
|
Lai Z, Chen J, Ding C, Wong K, Chen X, Pu L, Huang Q, Chen X, Cheng Z, Liu Y, Tan X, Zhu H, Wang L. Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity (Silver Spring) 2020; 28:197-205. [PMID: 31785086 DOI: 10.1002/oby.22667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Clinical relevance of global DNA methylation and one-carbon metabolite levels with histological severity remains uncertain in patients with nonalcoholic fatty liver disease (NAFLD). This study aimed to evaluate hepatic global DNA methylation and serum one-carbon metabolite concentrations in patients with NAFLD and the possible associations of these parameters with liver histology. METHODS Liver biopsies from 18 control participants and 47 patients with NAFLD were evaluated. RESULTS The hepatic global DNA methylation level was significantly lower in the NAFLD group than in the control group among participants with overweight. Participants with moderate inflammation and mild fibrosis had significantly lower levels of global DNA methylation than those without these characteristics. Participants with borderline nonalcoholic steatohepatitis had significantly lower global DNA methylation levels than controls. The hepatic global DNA methylation level tended to decrease with the increasing hepatic inflammation grade and disease progression. The NAFLD group had a significantly higher serum homocysteine concentration than the control group among participants with overweight. This level tended to increase with increasing hepatic steatosis grade and disease progression. CONCLUSIONS Patients with NAFLD exhibited lower hepatic levels of global DNA methylation and elevated serum homocysteine concentrations, which are associated with the histological severity of NAFLD.
Collapse
Affiliation(s)
- Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Junliang Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Kwanshu Wong
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xingyi Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Liuzhen Pu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiangwei Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xiaolin Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Zijian Cheng
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yan Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Xuying Tan
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, Moses DID, Hartono S, Fan V, Lim TKH, Schuster SC, Foo RS, Chow PKH, Pettersson S. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci 2019; 76:4341-4354. [PMID: 31119300 PMCID: PMC11105172 DOI: 10.1007/s00018-019-03114-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic liver disease that is thought to be reversible by changing the diet. To examine the impact of dietary changes on progression and cure of NAFLD, we fed mice a high-fat diet (HFD) or high-fructose diet (HFrD) for 9 weeks, followed by an additional 9 weeks, where mice were given normal chow diet. As predicted, the diet-induced NAFLD elicited changes in glucose tolerance, serum cholesterol, and triglyceride levels in both diet groups. Moreover, the diet-induced NAFLD phenotype was reversed, as measured by the recovery of glucose intolerance and high cholesterol levels when mice were given normal chow diet. However, surprisingly, the elevated serum triglyceride levels persisted. Metagenomic analysis revealed dietary-induced changes of microbiome composition, some of which remained altered even after reversing the diet to normal chow, as illustrated by species of the Odoribacter genus. Genome-wide DNA methylation analysis revealed a "priming effect" through changes in DNA methylation in key liver genes. For example, the lipid-regulating gene Apoa4 remained hypomethylated in both groups even after introduction to normal chow diet. Our results support that dietary change, in part, reverses the NAFLD phenotype. However, some diet-induced effects remain, such as changes in microbiome composition, elevated serum triglyceride levels, and hypomethylation of key liver genes. While the results are correlative in nature, it is tempting to speculate that the dietary-induced changes in microbiome composition may in part contribute to the persistent epigenetic modifications in the liver.
Collapse
Affiliation(s)
- Hyejin Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Oliver Worsley
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Edwin Yang
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Rikky Wenang Purbojati
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Ai Leng Liang
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wilson Tan
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Daniela I Drautz Moses
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Vanessa Fan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Roger Sy Foo
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Department of Medicine, Cardiovascular Research Institute, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.
| | - Pierce Kah Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Hepato-Pancreato-Biliary and Transplantation Surgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Department of Neurobiology, Care sciences and Society, Karolinska Institutet, Bioclincium, J30:10, Akademiska stråket 1, 17164, Stockholm, Sweden.
| |
Collapse
|
38
|
Sinton MC, Hay DC, Drake AJ. Metabolic control of gene transcription in non-alcoholic fatty liver disease: the role of the epigenome. Clin Epigenetics 2019; 11:104. [PMID: 31319896 PMCID: PMC6637519 DOI: 10.1186/s13148-019-0702-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent. Despite intense research in this field, the molecular processes underlying the pathology of NAFLD remain poorly understood. Hepatic intracellular lipid accumulation may lead to dysregulated tricarboxylic acid (TCA) cycle activity and associated alterations in metabolite levels. The TCA cycle metabolites alpha-ketoglutarate, succinate and fumarate are allosteric regulators of the alpha-ketoglutarate-dependent dioxygenase family of enzymes. The enzymes within this family have multiple targets, including DNA and chromatin, and thus may be capable of modulating gene transcription in response to intracellular lipid accumulation through alteration of the epigenome. In this review, we discuss what is currently understood in the field and suggest areas for future research which may lead to the development of novel preventative or therapeutic interventions for NAFLD.
Collapse
Affiliation(s)
- Matthew C Sinton
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
39
|
Maternal and Post-weaning High-Fat Diets Produce Distinct DNA Methylation Patterns in Hepatic Metabolic Pathways within Specific Genomic Contexts. Int J Mol Sci 2019; 20:ijms20133229. [PMID: 31262088 PMCID: PMC6651091 DOI: 10.3390/ijms20133229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calorie-dense high-fat diets (HF) are associated with detrimental health outcomes, including obesity, cardiovascular disease, and diabetes. Both pre- and post-natal HF diets have been hypothesized to negatively impact long-term metabolic health via epigenetic mechanisms. To understand how the timing of HF diet intake impacts DNA methylation and metabolism, male Sprague–Dawley rats were exposed to either maternal HF (MHF) or post-weaning HF diet (PHF). At post-natal week 12, PHF rats had similar body weights but greater hepatic lipid accumulation compared to the MHF rats. Genome-wide DNA methylation was evaluated, and analysis revealed 1744 differentially methylation regions (DMRs) between the groups with the majority of the DMR located outside of gene-coding regions. Within differentially methylated genes (DMGs), intragenic DNA methylation closer to the transcription start site was associated with lower gene expression, whereas DNA methylation further downstream was positively correlated with gene expression. The insulin and phosphatidylinositol (PI) signaling pathways were enriched with 25 DMRs that were associated with 20 DMGs, including PI3 kinase (Pi3k), pyruvate kinase (Pklr), and phosphodiesterase 3 (Pde3). Together, these results suggest that the timing of HF diet intake determines DNA methylation and gene expression patterns in hepatic metabolic pathways that target specific genomic contexts.
Collapse
|
40
|
One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem Cells Int 2019; 2019:3894101. [PMID: 30956668 PMCID: PMC6431457 DOI: 10.1155/2019/3894101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond energy production, nutrient metabolism plays a crucial role in stem cell lineage determination. Changes in metabolism based on nutrient availability and dietary habits impact stem cell identity. Evidence suggests a strong link between metabolism and epigenetic mechanisms occurring during embryonic development and later life of offspring. Metabolism regulates epigenetic mechanisms such as modifications of DNA, histones, and microRNAs. In turn, these epigenetic mechanisms regulate metabolic pathways to modify the metabolome. One-carbon metabolism (OCM) is a crucial metabolic process involving transfer of the methyl groups leading to regulation of multiple cellular activities. OCM cycles and its related micronutrients are ubiquitously present in stem cells and feed into the epigenetic mechanisms. In this review, we briefly introduce the OCM process and involved micronutrients and discuss OCM-associated epigenetic modifications, including DNA methylation, histone modification, and microRNAs. We further consider the underlying OCM-mediated link between nutrition and epigenetic modifications in embryonic development.
Collapse
|
41
|
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193:178-193. [DOI: 10.1016/j.pharmthera.2018.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. A Maternal High-Fat Diet Induces DNA Methylation Changes That Contribute to Glucose Intolerance in Offspring. Front Endocrinol (Lausanne) 2019; 10:871. [PMID: 31920981 PMCID: PMC6923194 DOI: 10.3389/fendo.2019.00871] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Scope: Overnutrition in utero is a critical contributor to the susceptibility of diabetes by programming, although the exact mechanism is not clear. In this paper, we aimed to study the long-term effect of a maternal high-fat (HF) diet on offspring through epigenetic modifications. Procedures: Five-week-old female C57BL6/J mice were fed a HF diet or control diet for 4 weeks before mating and throughout gestation and lactation. At postnatal week 3, pups continued to consume a HF or switched to a control diet for 5 weeks, resulting in four groups of offspring differing by their maternal and postweaning diets. Results: The maternal HF diet combined with the offspring HF diet caused hyperglycemia and insulin resistance in male pups. Even after changing to the control diet, male pups exposed to the maternal HF diet still exhibited hyperglycemia and glucose intolerance. The livers of pups exposed to a maternal HF diet had a hypermethylated insulin receptor substrate 2 (Irs2) gene and a hypomethylated mitogen-activated protein kinase kinase 4 (Map2k4) gene. Correspondingly, the expression of the Irs2 gene decreased and that of Map2k4 increased in pups exposed to a maternal HF diet. Conclusion: Maternal overnutrition programs long-term epigenetic modifications, namely, Irs2 and Map2k4 gene methylation in the offspring liver, which in turn predisposes the offspring to diabetes later in life.
Collapse
|
43
|
Tsai CC, Lin YJ, Yu HR, Sheen JM, Lin IC, Lai YJ, Tain YL, Huang LT, Tiao MM. Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis. Int J Mol Sci 2018; 19:ijms19113565. [PMID: 30424542 PMCID: PMC6274685 DOI: 10.3390/ijms19113565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
We examined the mechanisms of chronic liver steatosis after prenatal dexamethasone exposure and whether melatonin rescues adult offspring with liver steatosis. Melatonin rescued prenatal dexamethasone-exposed livers with steatosis in young rats. Sprague-Dawley rats pregnant at gestational day 14–21 were administered with intraperitoneal dexamethasone (DEX) or prenatal dexamethasone and melatonin between gestational day 14 and postnatal day ~120 (DEX+MEL). Chronic programming effects in the liver were assessed at day ~120. Liver steatosis increased in the DEX compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05), with no changes in cellular apoptosis. Expression of leptin and its receptor decreased in the DEX (p < 0.05) and increased in the DEX+MEL group (p < 0.05), as revealed by RT-PCR and Western blotting. Tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 expression increased in the DEX group compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05). Liver DNA methyltransferase activity and leptin methylation increased in the DEX group (p < 0.05) and decreased in the DEX+MEL group (p < 0.05), with no changes in HDAC activity. Thus, prenatal dexamethasone induces liver steatosis at ~120 days via altered leptin expression and liver inflammation without leptin resistance. Melatonin reverses leptin methylation and expression and decreases inflammation and chronic liver steatosis not via apoptosis or histone deacetylation (HDAC).
Collapse
Affiliation(s)
- Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan.
| |
Collapse
|
44
|
Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:1-12. [PMID: 30454678 DOI: 10.1016/j.mrrev.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern associated with increased mortality due to cardiovascular disease, type II diabetes, insulin resistance, liver disease, and malignancy. The molecular mechanism underlying these processes is not fully understood but involves hepatic fat accumulation and alteration of energy metabolism and inflammatory signals derived from various cell types including immune cells. During the last two decades, epigenetic mechanisms have emerged as important regulators of chromatin alteration and the reprogramming of gene expression. Recently, epigenetic mechanisms have been implicated in the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) genesis. Epigenetic mechanisms could be used as potential therapeutic targets and as noninvasive diagnostic biomarkers for NAFLD. These mechanisms can determine disease progression and prognosis in NAFLD. In this review, we discuss the role of epigenetic mechanisms in the progression of NAFLD and potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Nissar U Ashraf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
45
|
Analysis of diet-induced differential methylation, expression, and interactions of lncRNA and protein-coding genes in mouse liver. Sci Rep 2018; 8:11537. [PMID: 30069000 PMCID: PMC6070528 DOI: 10.1038/s41598-018-29993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate expression of protein-coding genes in cis through chromatin modifications including DNA methylation. Here we interrogated whether lncRNA genes may regulate transcription and methylation of their flanking or overlapping protein-coding genes in livers of mice exposed to a 12-week cholesterol-rich Western-style high fat diet (HFD) relative to a standard diet (STD). Deconvolution analysis of cell type-specific marker gene expression suggested similar hepatic cell type composition in HFD and STD livers. RNA-seq and validation by nCounter technology revealed differential expression of 14 lncRNA genes and 395 protein-coding genes enriched for functions in steroid/cholesterol synthesis, fatty acid metabolism, lipid localization, and circadian rhythm. While lncRNA and protein-coding genes were co-expressed in 53 lncRNA/protein-coding gene pairs, both were differentially expressed only in 4 lncRNA/protein-coding gene pairs, none of which included protein-coding genes in overrepresented pathways. Furthermore, 5-methylcytosine DNA immunoprecipitation sequencing and targeted bisulfite sequencing revealed no differential DNA methylation of genes in overrepresented pathways. These results suggest lncRNA/protein-coding gene interactions in cis play a minor role mediating hepatic expression of lipid metabolism/localization and circadian clock genes in response to chronic HFD feeding.
Collapse
|
46
|
Akazawa Y, Nakao K. To die or not to die: death signaling in nonalcoholic fatty liver disease. J Gastroenterol 2018; 53:893-906. [PMID: 29574534 PMCID: PMC6061666 DOI: 10.1007/s00535-018-1451-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging liver disease worldwide. In subset of patients, NAFLD progresses to its advanced form, nonalcoholic steatohepatitis (NASH), which is accompanied with inflammation and fibrosis. Saturated free fatty acid-induced hepatocyte apoptosis is a feature of NASH. Death signaling in NASH does not always result in apoptosis, but can alternatively lead to the survival of cells presenting signs of pro-inflammatory and pro-fibrotic signals. With the current lack of established treatments for NASH, it is important to understand the molecular mechanisms responsible for disease development and progression. This review focuses on the latest findings in hepatocyte death signaling and discusses possible targets for intervention, including caspases, death receptor and c-Jun N-terminal kinase 1 signaling, oxidative stress, and endoplasmic reticulum stress, as well as epigenomic factors.
Collapse
Affiliation(s)
- Yuko Akazawa
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki City, 852-8501, Nagasaki, Japan.
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, 852-8501, Nagasaki, Japan.
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Hospital, Nagasaki City, 852-8501, Nagasaki, Japan
| |
Collapse
|
47
|
Komatsu M, Kanda T, Urai H, Kurokochi A, Kitahama R, Shigaki S, Ono T, Yukioka H, Hasegawa K, Tokuyama H, Kawabe H, Wakino S, Itoh H. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism. Sci Rep 2018; 8:8637. [PMID: 29872122 PMCID: PMC5988709 DOI: 10.1038/s41598-018-26882-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD)+, these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD+ content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD+-dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD+ and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.
Collapse
Affiliation(s)
- Motoaki Komatsu
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hidenori Urai
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Arata Kurokochi
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rina Kitahama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
48
|
The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun 2018; 9:2092. [PMID: 29844386 PMCID: PMC5974278 DOI: 10.1038/s41467-018-04361-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrant histone methylation profile is reported to correlate with the development and progression of NAFLD during obesity. However, the identification of specific epigenetic modifiers involved in this process remains poorly understood. Here, we identify the histone demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By specifically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2 facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to hepatosteatosis development in the absence of inflammation and insulin resistance. Moreover, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2) further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver from the pathogenesis progression of NAFLD.
Collapse
|
49
|
Wang B, Fu X, Zhu MJ, Du M. Retinoic acid inhibits white adipogenesis by disrupting GADD45A-mediated Zfp423 DNA demethylation. J Mol Cell Biol 2018; 9:338-349. [PMID: 28992291 DOI: 10.1093/jmcb/mjx026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
Retinoic acid (RA), a bioactive metabolite of vitamin A, is a critical mediator of cell differentiation. RA blocks adipogenesis, but mechanisms remain to be established. ZFP423 is a key transcription factor maintaining white adipose identity. We found that RA inhibits Zfp423 expression and adipogenesis via blocking DNA demethylation in the promoter of Zfp423, a process mediated by growth arrest and DNA-damage-inducible protein alpha (GADD45A). RA induces the partnering between retinoic acid receptor (RAR) and tumor suppressor inhibitor of growth protein 1 (ING1), which prevents the formation of GADD45A and ING1 complex necessary for locus-specific Zfp423 DNA demethylation. In vivo, vitamin A supplementation prevents obesity, downregulates Gadd45a expression, and reduces GADD45A binding and DNA demethylation in the Zfp423 promoter. Inhibition of Zfp423 expression due to RA contributes to the enhanced brown adipogenesis. In summary, RA inhibits white adipogenesis by inducing RAR and ING1 interaction and inhibiting Gadd45a expression, which prevents GADD45A-mediated DNA demethylation.
Collapse
Affiliation(s)
- B Wang
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100094, China.,Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
50
|
Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes (Basel) 2018; 9:genes9040199. [PMID: 29642504 PMCID: PMC5924541 DOI: 10.3390/genes9040199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.
Collapse
|