1
|
Mirzaei-nasab F, Majd A, Seyedena Y, Hosseinkhan N, Farahani N, Hashemi M. Integrative analysis of exosomal ncRNAs and their regulatory networks in liver cancer progression. Pract Lab Med 2025; 45:e00464. [PMID: 40226122 PMCID: PMC11992429 DOI: 10.1016/j.plabm.2025.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a significant global health challenge with complex molecular underpinnings. Recent advancements in understanding the role of non-coding RNAs (ncRNAs) and exosomes in cancer biology have opened new avenues for research into potential diagnostic and therapeutic strategies. Methods This study utilized a comprehensive approach to analyze gene expression patterns and regulatory networks in HCC. We integrated RNA sequencing data gathered from both tissue samples and exosomes. The WGCNA and limma R packages were employed to construct co-expression networks and identify differentially expressed ncRNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Results Our analysis demonstrated distinct expression profiles of various ncRNAs in HCC, revealing their intricate interactions with cancer-related genes. Key findings include the identification of a network of microRNAs that interact with selected lncRNAs and their potential roles as biomarkers. Moreover, exosomal RNA was shown to effectively reflect tissue-specific gene expression changes. Conclusions The results of this study highlight the significance of exosomal ncRNAs in the progression of liver cancer, suggesting their potential as both diagnostic biomarkers and therapeutic targets. Future research should focus on the functional implications of these ncRNAs to further elucidate their roles in HCC and explore their applications in clinical settings.
Collapse
Affiliation(s)
- Farzin Mirzaei-nasab
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Majd
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
| | - Yousef Seyedena
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
| | - Nazanin Hosseinkhan
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Shen X, Tan J, Liu R, Zhu G, Rooper L, Xing M. The genetic duet of concurrent RASAL1 and PTEN alterations promotes cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. Mol Oncol 2025; 19:248-259. [PMID: 39032134 PMCID: PMC11705815 DOI: 10.1002/1878-0261.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The significance of the prominent tumor suppressor gene for RAS protein activator-like 1 (RASAL1) could be better understood by combined genetic, clinical, and functional studies. Here, we investigated the oncogenic and clinical impacts of genetic alterations of RASAL1, particularly when coexisting with genetic alterations of the gene for phosphatase and tensin homolog (PTEN), in 9924 cancers of 33 types in the TCGA database. We found common concurrent genetic alterations of the two genes, which were cooperatively associated with activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, with cancer progression and mortality rates being 46.36% and 31.72% with concurrent gene alterations, versus 29.80% and 16.93% with neither gene alteration (HR 1.64, 95% CI 1.46-1.84 and 1.77, 95% CI 1.53-2.05), respectively. This was enhanced by additional tumor protein p53 (TP53) gene alterations, with cancer progression and mortality rates being 47.65% and 34.46% with coexisting RASAL1, PTEN, and TP53 alterations versus 25.30% and 13.11% with no alteration (HR 2.21, 95% CI 1.92-2.56 and 2.76, 95% CI 2.31-3.30), respectively. In the case of breast cancer, this genetic trio was associated with a triple-negative risk of 68.75% versus 3.83% with no genetic alteration (RR 17.94, 95% CI 9.60-33.51), consistent with the aggressive nature of triple-negative breast cancer. Mice with double knockouts of Rasal1 and Pten displayed robust Pi3k pathway activation, with the development of metastasizing malignancies, while single gene knockout resulted in only benign neoplasma. These results suggest that RASAL1, like PTEN, is a critical player in negatively regulating the PI3K-AKT pathway; defect in RASAL1 causes RAS activation, thus initiating the PI3K-AKT pathway signaling, which cannot terminate with concurrent PTEN defects. Thus, the unique concurrent RASAL1 and PTEN defects drive oncogenesis and cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. This represents a robust genetic mechanism to promote human cancer.
Collapse
Affiliation(s)
- Xiaopei Shen
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jie Tan
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rengyun Liu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Guangwu Zhu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Lisa Rooper
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mingzhao Xing
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
3
|
Alhaskawi A, Dong YZ, Zou XD, Hasan Abdullah Ezzi S, Wang ZW, Zhou HY, Abdalbary SA, Lu H. Advanced hepatocellular carcinoma in a patient with neurofibromatosis type 1 and malignant peripheral nerve sheath tumor. Hepatobiliary Pancreat Dis Int 2024; 23:530-532. [PMID: 37648555 DOI: 10.1016/j.hbpd.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Affiliation(s)
- Ahmad Alhaskawi
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yan-Zhao Dong
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Di Zou
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Chinese Medicine, the Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| | | | - Ze-Wei Wang
- Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Ying Zhou
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Zeng X, An R, Guo R, Li H. Hypermethylated RASAL1's promotive role in chemoresistance and tumorigenesis of choriocarcinoma was regulated by TET2 but not DNMTs. BMC Cancer 2024; 24:977. [PMID: 39118077 PMCID: PMC11312928 DOI: 10.1186/s12885-024-12758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Patients with choriocarcinoma (CC) accompanying chemoresistance conventionally present a poor prognosis. Whether ras protein activator like-1 (RASAL1) functions as a tumor promoter or suppressor depends on tumor types. However, the role of RASAL1 in process of chemoresistance of CC and underlying molecular mechanism remain elusive. METHODS The expression pattern of RASAL1 in CC cells and tissues was measured using Western blotting, immunohistochemistry and qRT-PCR. Cell viability and proliferative ability were assessed by MTT assay, Tunnel assay and flow cytometric analysis. Additionally, the stemness was evaluated by the colony formation and tumor sphere formation. Methotrexate (MTX) was applied to exam the chemosensitivity of CC cells. RESULTS The expression of RASAL1 was reduced both at the protein and mRNA levels in CC tissues and cells compared to hydatidiform mole (HM) and invasive mole (IM). Loss of RASAL1 was attributed to its promoter hypermethylation and could be restored by 5-Aza. Knock-down of RASAL1 promoted the viability, proliferative potential, stemness and EMT phenotype of JEG-3 cells. However, induced overexpression of RASAL1 by 5-Aza significantly prohibited cell proliferation and stemness potential of the JAR cell. Additionally, the xenograft model indicated that knockdown of RASAL1 led to a remarkable increase of tumor volume and weight in comparison with its counterpart. Moreover, the stimulatory activity brought by decrease of RASAL1 could be deprived by β-catenin inhibitor XAV 939, yet the suppressive activity resulted from its promoter demethylation could be rescued by β-catenin activator BML-284, indicating that function of RASAL1 depends on β-catenin. Besides, the co-immunoprecipitation assay confirmed the physical binding between RASAL1 and β-catenin. Further investigations showed hypermethylated RASAL1 was regulated by TET2 but not DNMTs. CONCLUSION Taken together, the present data elucidated that reduced RASAL1 through its promoter hypermethylation regulated by TET2 promoted the tumorigenicity and chemoresistance of CC via modulating β-catenin both in vitro and in vivo.
Collapse
Affiliation(s)
- Xianling Zeng
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, Henan, 450052, China.
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou, Henan, 450052, China
| | - Han Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| |
Collapse
|
5
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR. Disable 2, A Versatile Tissue Matrix Multifunctional Scaffold Protein with Multifaceted Signaling: Unveiling Role in Breast Cancer for Therapeutic Revolution. Cell Biochem Biophys 2024; 82:501-520. [PMID: 38594547 DOI: 10.1007/s12013-024-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- β (TGF-β) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
8
|
Mestareehi A, Abu-Farsakh N. Impact of Protein Phosphatase Expressions on the Prognosis of Hepatocellular Carcinoma Patients. ACS OMEGA 2024; 9:10299-10331. [PMID: 38463290 PMCID: PMC10918787 DOI: 10.1021/acsomega.3c07787] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
The study was conducted to unveil the significance of protein phosphatases in the prognosis of hepatocellular carcinoma (HCC) patients and its related molecular biological attributes as well as to discover novel potential biomarkers for therapeutic significance and diagnostic purposes that may benefit clinical practice. Analyzing a data set from 159 HCC patients using high-throughput phosphoproteomics, we examined the dysregulated expression of protein phosphatases. Employing bioinformatic and pathway analyses, we explored differentially expressed genes linked to protein phosphatases. A protein-protein interaction network was constructed using the search tool for the retrieval of interacting genes/proteins database. We quantified a total of 11,547 phosphorylation sites associated with 4043 phosphoproteins from HCC patients. Within this data set, we identified 105 identified phosphorylation sites associated with protein phosphatases; 28 genes were upregulated and 3 were downregulated in HCC. Enriched pathways using Gene Set Enrichment Analysis encompassed oocyte meiosis, proteoglycans in cancer, the oxytocin signaling pathway, the cGMP-PKG signaling pathway, the vascular smooth muscle, and the cAMP signaling pathway. The Kyoto encyclopedia of genes and genomes (KEGG) analysis highlighted pathways like mitogen-activated protein kinase, AMPK, and PI3K-Akt, indicating potential involvement in HCC progression. Notably, the PPI network identified hub genes, emphasizing their interconnections and potential roles in HCC. In our study, we found significantly upregulated levels of CDC25C, PPP1R13L, and PPP1CA, which emerge as promising avenues. This significant expression could serve as potent diagnostic and prognostic markers to enhance the effectiveness of HCC cancer treatment, offering efficiency and accuracy in patient assessment. The findings regarding protein phosphatases reveal their elevated expression in HCC, correlating with unfavorable prognosis. Moreover, the outcomes of gene ontology and KEGG pathway analyses suggest that protein phosphatases may influence liver cancer by engaging diverse targets and pathways, ultimately fostering the progression of HCC. These results underscore the substantial potential of protein phosphatases as key contributors to HCC's development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance the comprehension of the intricate molecular mechanisms underpinning HCC.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
| | - Noor Abu-Farsakh
- Department
of Gastroenterology and Hepatology, Internal Medicine Department, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
9
|
Deurloo MHS, Eide S, Turlova E, Li Q, Spijker S, Sun HS, Groffen AJA, Feng ZP. Rasal1 regulates calcium dependent neuronal maturation by modifying microtubule dynamics. Cell Biosci 2024; 14:13. [PMID: 38246997 PMCID: PMC10800070 DOI: 10.1186/s13578-024-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. RESULTS We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. CONCLUSIONS Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.
Collapse
Affiliation(s)
- M H S Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Eide
- Department of Physiology, University of Toronto, Toronto, Canada
| | - E Turlova
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Q Li
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Spijker
- Department Molecular and Cellular Neurobiology, Neurogenomics and Cognition Research, VU University of Amsterdam, Amsterdam, The Netherlands
| | - H-S Sun
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - A J A Groffen
- Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Z-P Feng
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Chen Z, Zhang L, Yang Y, Liu H, Kang X, Nie Y, Fan D. DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in gastric cancer cells. Epigenetics 2023; 18:2254976. [PMID: 37691391 PMCID: PMC10496526 DOI: 10.1080/15592294.2023.2254976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Though DNMTs inhibitors were widely used in myelodysplastic syndrome and leukaemia, their application in solid tumours has been limited by low response rate and lack of optimal combination strategies. In gastric cancer (GC), the therapeutic implication of KRAS mutation or MEK/ERK activation for combinational use of DNMTs inhibitors with MEK/ERK inhibitors remains elusive. In this study, stable knockdown of DNMT1 expression by lentiviral transfection led to decreased sensitivity of GC cells to 5-Azacytidine. KRAS knockdown in KRAS mutant GC cells or the MEK/ERK activation by EGF stimulation in GC cells increased DNMT1 expression, while inhibition of MEK/ERK activity by Selumetinib led to decreased DNMT1 expression. 5-Azacytidine treatment, which led to dramatic decline of DNMTs protein levels and increased activity of MEK/ERK pathway, altered the activity of MEK/ERK inhibitor Selumetinib on GC cells. Both RAS-dependent gene expression signature and expression levels of multiple MEK/ERK-dependent genes were correlated with DNMT1 expression in TCGA stomach cancer samples. In conclusion, DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in GC cells. Combining DNMTs inhibitor with MEK/ERK inhibitor might be a promising strategy for patients with GC.[Figure: see text].
Collapse
Affiliation(s)
- Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhang
- Department of Internal Medicine, Central Medical Branch of Chinese PLA General Hospital, Beijing, China
| | - Yang Yang
- Department of Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haiming Liu
- School of Software Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyu Kang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Klemm S, Evert K, Utpatel K, Muggli A, Simile MM, Chen X, Evert M, Calvisi DF, Scheiter A. Identification of DUSP4/6 overexpression as a potential rheostat to NRAS-induced hepatocarcinogenesis. BMC Cancer 2023; 23:1086. [PMID: 37946160 PMCID: PMC10636894 DOI: 10.1186/s12885-023-11577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.
Collapse
Affiliation(s)
- Sophie Klemm
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Alexandra Muggli
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, Sassari, Italy
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
12
|
Milosevic I, Todorovic N, Filipovic A, Simic J, Markovic M, Stevanovic O, Malinic J, Katanic N, Mitrovic N, Nikolic N. HCV and HCC Tango-Deciphering the Intricate Dance of Disease: A Review Article. Int J Mol Sci 2023; 24:16048. [PMID: 38003240 PMCID: PMC10671156 DOI: 10.3390/ijms242216048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC) accounting for around one-third of all HCC cases. Prolonged inflammation in chronic hepatitis C (CHC), maintained through a variety of pro- and anti-inflammatory mediators, is one of the aspects of carcinogenesis, followed by mitochondrial dysfunction and oxidative stress. Immune response dysfunction including the innate and adaptive immunity also plays a role in the development, as well as in the recurrence of HCC after treatment. Some of the tumor suppressor genes inhibited by the HCV proteins are p53, p73, and retinoblastoma 1. Mutations in the telomerase reverse transcriptase promoter and the oncogene catenin beta 1 are two more important carcinogenic signaling pathways in HCC associated with HCV. Furthermore, in HCV-related HCC, numerous tumor suppressor and seven oncogenic genes are dysregulated by epigenetic changes. Epigenetic regulation of gene expression is considered as a lasting "epigenetic memory", suggesting that HCV-induced changes persist and are associated with liver carcinogenesis even after cure. Epigenetic changes and immune response dysfunction are recognized targets for potential therapy of HCC.
Collapse
Affiliation(s)
- Ivana Milosevic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Nevena Todorovic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Ana Filipovic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Jelena Simic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Marko Markovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Olja Stevanovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Jovan Malinic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Natasa Katanic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
- Faculty of Medicine, University of Pristina Situated in Kosovska Mitrovica, 28000 Kosovska Mitrovica, Serbia
| | - Nikola Mitrovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Natasa Nikolic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| |
Collapse
|
13
|
Zhao J, Xu Y. PITX1 plays essential functions in cancer. Front Oncol 2023; 13:1253238. [PMID: 37841446 PMCID: PMC10570508 DOI: 10.3389/fonc.2023.1253238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
PITX1, also known as the pituitary homeobox 1 gene, has emerged as a key regulator in animal growth and development, attracting significant research attention. Recent investigations have revealed the implication of dysregulated PITX1 expression in tumorigenesis, highlighting its involvement in cancer development. Notably, PITX1 interacts with p53 and exerts control over crucial cellular processes including cell cycle progression, apoptosis, and chemotherapy resistance. Its influence extends to various tumors, such as esophageal, colorectal, gastric, and liver cancer, contributing to tumor progression and metastasis. Despite its significance, a comprehensive review examining PITX1's role in oncology remains lacking. This review aims to address this gap by providing a comprehensive overview of PITX1 in different cancer types, with a particular focus on its clinicopathological significance.
Collapse
Affiliation(s)
- Jingpu Zhao
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
15
|
Heredia-Torres TG, Rincón-Sánchez AR, Lozano-Sepúlveda SA, Galan-Huerta K, Arellanos-Soto D, García-Hernández M, Garza-Juarez ADJ, Rivas-Estilla AM. Unraveling the Molecular Mechanisms Involved in HCV-Induced Carcinogenesis. Viruses 2022; 14:2762. [PMID: 36560766 PMCID: PMC9786602 DOI: 10.3390/v14122762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer induced by a viral infection is among the leading causes of cancer. Hepatitis C Virus (HCV) is a hepatotropic oncogenic positive-sense RNA virus that leads to chronic infection, exposing the liver to a continuous process of damage and regeneration and promoting hepatocarcinogenesis. The virus promotes the development of carcinogenesis through indirect and direct molecular mechanisms such as chronic inflammation, oxidative stress, steatosis, genetic alterations, epithelial-mesenchymal transition, proliferation, and apoptosis, among others. Recently, direct-acting antivirals (DAAs) showed sustained virologic response in 95% of cases. Nevertheless, patients treated with DAAs have reported an unexpected increase in the early incidence of Hepatocellular carcinoma (HCC). Studies suggest that HCV induces epigenetic regulation through non-coding RNAs, DNA methylation, and chromatin remodeling, which modify gene expressions and induce genomic instability related to HCC development that persists with the infection's clearance. The need for a better understanding of the molecular mechanisms associated with the development of carcinogenesis is evident. The aim of this review was to unravel the molecular pathways involved in the development of carcinogenesis before, during, and after the viral infection's resolution, and how these pathways were regulated by the virus, to find control points that can be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Tania Guadalupe Heredia-Torres
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana Rosa Rincón-Sánchez
- IBMMTG, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Sonia Amelia Lozano-Sepúlveda
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Kame Galan-Huerta
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Daniel Arellanos-Soto
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Marisela García-Hernández
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Aurora de Jesús Garza-Juarez
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| | - Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, CIIViM, School of Medicine, Universidad Autónoma de Nuevo León (UANL), Monterrey 64460, Mexico
| |
Collapse
|
16
|
Xu JJ, Zhu L, Li HD, Du XS, Li JJ, Yin NN, Meng XM, Huang C, Li J. DNMT3a-mediated methylation of PSTPIP2 enhances inflammation in alcohol-induced liver injury via regulating STAT1 and NF-κB pathway. Pharmacol Res 2022; 177:106125. [PMID: 35149186 DOI: 10.1016/j.phrs.2022.106125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Na-Na Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; Hefei 230032, China.
| |
Collapse
|
17
|
HELLS Is Negatively Regulated by Wild-Type P53 in Liver Cancer by a Mechanism Involving P21 and FOXM1. Cancers (Basel) 2022; 14:cancers14020459. [PMID: 35053620 PMCID: PMC8773711 DOI: 10.3390/cancers14020459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The tumor suppressor protein P53 is a major player in preventing liver cancer development and progression. In this study we could show that P53 negatively regulates the expression of Helicase, lymphoid specific (HELLS), previously described as an important pro-tumorigenic epigenetic regulator in hepatocarcinogenesis. The regulatory mechanism included induction of the P53 target gene P21 (CDKN1A) resulting in repression of HELLS via downregulation of the transcription factor Forkhead Box Protein M1 (FOXM1). Our in vitro and in vivo findings indicate an important additional aspect of the tumor suppressive function of P53 in liver cancer linked to epigenetic regulation. Abstract The major tumor suppressor P53 (TP53) acts primarily as a transcription factor by activating or repressing subsets of its numerous target genes, resulting in different cellular outcomes (e.g., cell cycle arrest, apoptosis and senescence). P53-dependent gene regulation is linked to several aspects of chromatin remodeling; however, regulation of chromatin-modifying enzymes by P53 is poorly understood in hepatocarcinogenesis. Herein, we identified Helicase, lymphoid specific (HELLS), a major epigenetic regulator in liver cancer, as a strong and selective P53 repression target within the SNF2-like helicase family. The underlying regulatory mechanism involved P53-dependent induction of P21 (CDKN1A), leading to repression of Forkhead Box Protein M1 (FOXM1) that in turn resulted in downregulation of HELLS expression. Supporting our in vitro data, we found higher expression of HELLS in murine HCCs arising in a Trp53−/− background compared to Trp53+/+ HCCs as well as a strong and highly significant correlation between HELLS and FOXM1 expression in different HCC patient cohorts. Our data suggest that functional or mutational inactivation of P53 substantially contributes to overexpression of HELLS in HCC patients and indicates a previously unstudied aspect of P53′s ability to suppress liver cancer formation.
Collapse
|
18
|
Scheiter A, Evert K, Reibenspies L, Cigliano A, Annweiler K, Müller K, Pöhmerer LMG, Xu H, Cui G, Itzel T, Materna-Reichelt S, Coluccio A, Honarnejad K, Teufel A, Brochhausen C, Dombrowski F, Chen X, Evert M, Calvisi DF, Utpatel K. RASSF1A independence and early galectin-1 upregulation in PIK3CA-induced hepatocarcinogenesis: new therapeutic venues. Mol Oncol 2021; 16:1091-1118. [PMID: 34748271 PMCID: PMC8895452 DOI: 10.1002/1878-0261.13135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant activation of the phosphoinositide 3‐kinase (PI3K)/AKT/mTOR and Ras/mitogen‐activated protein kinase (MAPK) pathways is a hallmark of hepatocarcinogenesis. In a subset of hepatocellular carcinomas (HCCs), PI3K/AKT/mTOR signaling dysregulation depends on phosphatidylinositol‐4,5‐bisphosphate 3‐kinase, catalytic subunit alpha (PIK3CA) mutations, while RAS/MAPK activation is partly attributed to promoter methylation of the tumor suppressor Ras association domain‐containing protein 1 (RASSF1A). To evaluate a possible cocarcinogenic effect of PIK3CA activation and RASSF1A knockout, plasmids expressing oncogenic forms of PIK3CA (E545K or H1047R mutants) were delivered to the liver of RASSF1A knockout and wild‐type mice by hydrodynamic tail vein injection combined with sleeping beauty‐mediated somatic integration. Transfection of either PIK3CA E545K or H1047R mutants sufficed to induce HCCs in mice irrespective of RASSF1A mutational background. The related tumors displayed a lipogenic phenotype with upregulation of fatty acid synthase and stearoyl‐CoA desaturase‐1 (SCD1). Galectin‐1, which was commonly upregulated in preneoplastic lesions and tumors, emerged as a regulator of SCD1. Co‐inhibitory treatment with PIK3CA inhibitors and the galectin‐1 inhibitor OTX008 resulted in synergistic cytotoxicity in human HCC cell lines, suggesting novel therapeutic venues.
Collapse
Affiliation(s)
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Germany
| | | | | | | | - Karolina Müller
- Center for Clinical Studies, University Hospital Regensburg, Germany
| | | | - Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Guofei Cui
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Timo Itzel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Silvia Materna-Reichelt
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Andrea Coluccio
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Andreas Teufel
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Frank Dombrowski
- Institute of Pathology, University Medicine of Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Germany
| | | | | |
Collapse
|
19
|
Zhao P, Malik S, Xing S. Epigenetic Mechanisms Involved in HCV-Induced Hepatocellular Carcinoma (HCC). Front Oncol 2021; 11:677926. [PMID: 34336665 PMCID: PMC8320331 DOI: 10.3389/fonc.2021.677926] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is the third leading cause of cancer-related deaths, which is largely caused by virus infection. About 80% of the virus-infected people develop a chronic infection that eventually leads to liver cirrhosis and hepatocellular carcinoma (HCC). With approximately 71 million HCV chronic infected patients worldwide, they still have a high risk of HCC in the near future. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches. Hepatitis C virus (HCV) infection largely causes hepatocellular carcinoma (HCC) worldwide with 3 to 4 million newly infected cases diagnosed each year. It is urgent to explore its underlying molecular mechanisms for therapeutic treatment and biomarker discovery. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches.
Collapse
Affiliation(s)
- Pin Zhao
- Guandong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shaojun Xing
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
20
|
Moon H, Ro SW. MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:3026. [PMID: 34204242 PMCID: PMC8234271 DOI: 10.3390/cancers13123026] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, and its incidence is increasing steadily. Recently, the MAPK/ERK signaling pathway in HCC has gained renewed attention from basic and clinical researchers. The MAPK/ERK signaling pathway is activated in more than 50% of human HCC cases; however, activating mutations in RAS and RAF genes are rarely found in HCC, which are major genetic events leading to the activation of the MAPK/ERK signaling pathway in other cancers. This suggests that there is an alternative mechanism behind the activation of the signaling pathway in HCC. Here, we will review recent advances in understanding the cellular and molecular mechanisms involved in the activation of the MAPK/ERK signaling pathway and discuss potential therapeutic strategies targeting the signaling pathway in the context of HCC.
Collapse
Affiliation(s)
| | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea;
| |
Collapse
|
21
|
Lu X, Li J, Lou H, Cao Z, Fan X. Genome-Wide DNA Methylation Alterations and Potential Risk Induced by Subacute and Subchronic Exposure to Food-Grade Nanosilica in Mice. ACS NANO 2021; 15:8225-8243. [PMID: 33938728 DOI: 10.1021/acsnano.0c07323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intensive application of nanomaterials in the food industry has raised concerns about their potential risks to human health. However, limited data are available on the biological safety of nanomaterials in food, especially at the epigenetic level. This study examined the implications of two types of synthetic amorphous silica (SAS), food-grade precipitated silica (S200) and fumed silica Aerosil 200F (A200F), which are nanorange food additives. After 28-day continuous and intermittent subacute exposure to these SAS via diet, whole-genome methylation levels in mouse peripheral leukocytes and liver were significantly altered in a dose- and SAS type-dependent manner, with minimal toxicity detected by conventional toxicological assessments, especially at a human-relevant dose (HRD). The 84-day continuous subchronic exposure to all doses of S200 and A200F induced liver steatosis where S200 accumulated in the liver even at HRD. Genome-wide DNA methylation sequencing revealed that the differentially methylated regions induced by both SAS were mainly located in the intron, intergenic, and promoter regions after 84-day high-dose continuous exposure. Bioinformatics analysis of differentially methylated genes indicated that exposure to S200 or A200F may lead to lipid metabolism disorders and cancer development. Pathway validation experiments indicated both SAS types as potentially carcinogenic. While S200 inhibited the p53-mediated apoptotic pathway in mouse liver, A200F activated the HRAS-mediated MAPK signaling pathway, which is a key driver of hepatocarcinogenesis. Thus, caution must be paid to the risk of long-term exposure to food-grade SAS, and epigenetic parameters should be included as end points during the risk assessment of food-grade nanomaterials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junying Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeya Cao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
| |
Collapse
|
22
|
Zhu X, Luo X, Song Z, Jiang S, Long X, Gao X, Xie X, Zheng L, Wang H. miR-188-5p promotes oxaliplatin resistance by targeting RASA1 in colon cancer cells. Oncol Lett 2021; 21:481. [PMID: 33968197 DOI: 10.3892/ol.2021.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The efficacy of chemotherapy for colon cancer is limited due to the development of chemoresistance. MicroRNA (miR)-188-5p is downregulated in various types of cancer. The aim of the present study was to explore the molecular role of miR-188 in oxaliplatin (OXA) resistance. An OXA-resistant colon cancer cell line, SW480/OXA, was used to examine the effects of miR-188-5p on the sensitivity of colon cancer cells to OXA. The target of miR-188-5p was identified using a luciferase assay. Cell cycle distribution was also assessed using flow cytometry. The measurement of p21 protein expression, Hoechst 33342 staining and Annexin V/propidium iodide staining was used to evaluate apoptosis. The expression of miR-188-5p significantly increased in SW480/OXA compared with wild-type SW480 cells. The luciferase assay demonstrated that miR-188-5p inhibited Ras GTPase-activating protein 1 (RASA1; also known as p120/RasGAP) luciferase activity by binding to the 3'-untranslated region of RASA1 mRNA, suggesting that miR-188-5p could target RASA1. In addition, miR-188-5p downregulation or RASA1 overexpression promoted the chemosensitivity of SW480/OXA, as evidenced by increased apoptosis and G1/S cell cycle arrest. Moreover, RASA1 silencing abrogated the increase in cell apoptosis induced by the miR-188-5p inhibitor. The findings of the present study suggested that miR-188-5p could enhance colon cancer cell chemosensitivity by promoting the expression of RASA1.
Collapse
Affiliation(s)
- Xijia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Zhike Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Shiyu Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xueyuan Gao
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Xinyang Xie
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Laijian Zheng
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Haipeng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
23
|
Moon H, Ro SW. Ras Mitogen-activated Protein Kinase Signaling and Kinase Suppressor of Ras as Therapeutic Targets for Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2021; 21:1-11. [PMID: 37384270 PMCID: PMC10035721 DOI: 10.17998/jlc.21.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a high incidence cancer and a major health concern worldwide. Among the many molecular signaling pathways that are dysregulated in HCC, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK) signaling pathway has gained renewed attention from basic and clinical researchers. Mutations in Ras and Raf genes which are known to activate the Ras/Raf/MAPK signaling pathway have been infrequently detected in human HCC; however, the Ras/Raf/MAPK signaling pathway is activated in more than 50% of HCC cases, suggesting an alternative mechanism for the activation of the signaling pathway. Kinase suppressor of Ras acts as a molecular scaffold for facilitating the assembly of Ras/Raf/MAPK signaling pathway components and has been implicated in the regulation of this signaling pathway. In this review, we provide important insights into the cellular and molecular mechanisms involved in the activation of the Ras/Raf/MAPK signaling pathway and discuss potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Hyuk Moon
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| | - Simon Weonsang Ro
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| |
Collapse
|
24
|
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol 2021; 236:5512-5532. [PMID: 33580511 DOI: 10.1002/jcp.30276] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022]
Abstract
In cancerous cells, significant changes occur in the activity of signaling pathways affecting a wide range of cellular activities ranging from growth and proliferation to apoptosis, invasiveness, and metastasis. Extensive changes also happen with respect to the metabolism of a cancerous cell encompassing a wide range of functions that include: nutrient acquisition, biosynthesis of macromolecules, and energy generation. These changes are important and some therapeutic approaches for treating cancers have focused on targeting the metabolism of cancerous cells. Oncogenes and tumor suppressor genes have a significant effect on the metabolism of cells. There appears to be a close interaction between metabolism and the signaling pathways in a cancerous cell, in which the interaction provides the metabolic needs of a cancerous cell for uncontrolled proliferation, resistance to apoptosis, and metastasis. In this review, we have reviewed the latest findings in this regard and briefly review the most recent research findings regarding targeting the metabolism of cancer cells as a therapeutic approach for treatment of cancer.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Sabahi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Bioinformatics analysis of prognostic value of PITX1 gene in breast cancer. Biosci Rep 2020; 40:226181. [PMID: 32830857 PMCID: PMC7494990 DOI: 10.1042/bsr20202537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Paired-like homeodomain transcription factor 1 (PITX1) participates in miscellaneous biological processes including cell growth, development, progression and invasion in various malignant tumors. However, the analysis of the association between PITX1 expression and the survival in breast cancer remains unclear. METHODS Clinical prognostic parameters and survival data related to PITX1 in breast cancer patients were performed using the bioinformatic analysis including Oncomine, Bc-GenExMiner v4.3, PrognoScan and UCSC Xena. RESULTS We found that PITX1 gene expression was significantly higher in different histological classification of breast cancer. The Scarff-Bloom-Richardson (SBR) grade, Nottingham prognostic index (NPI), estrogen receptor (ER) negative, epidermal growth factor receptor-2 (HER2) positive, lymph node positive, triple-negative status and basal-like status were positively correlated with PITX1 level, except for patients' age and the progesterone receptor (PR) status. We have found that the increased PITX1 expression correlated with worse relapse-free survival, disease specific survival and overall survival. PITX1 was positively correlated with metastatic relapse-free survival and distant metastasis-free survival. We also confirmed positive correlation between PITX1 and the nucleotide-binding oligomerization domain 2 (NOD2). CONCLUSION The lower expression of PITX1 was associated with better clinical prognostic parameters and clinical survival in breast cancer according to the bioinformatic analysis.
Collapse
|
26
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
27
|
Zhang Y, Li Y, Wang Q, Su B, Xu H, Sun Y, Sun P, Li R, Peng X, Cai J. Role of RASA1 in cancer: A review and update (Review). Oncol Rep 2020; 44:2386-2396. [PMID: 33125148 PMCID: PMC7610306 DOI: 10.3892/or.2020.7807] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Ras p21 protein activator 1 (RASA1) is a regulator of Ras GDP and GTP and is involved in numerous physiological processes such as angiogenesis, cell proliferation, and apoptosis. As a result, RASA1 also contributes to pathological processes in vascular diseases and tumour formation. This review focuses on the role of RASA1 in multiple tumours types in the lung, intestines, liver, and breast. Furthermore, we discuss the potential mechanisms of RASA1 and its downstream effects through Ras/RAF/MEK/ERK or Ras/PI3K/AKT signalling. Moreover, miRNAs are capable of regulating RASA1 and could be a novel targeted treatment strategy for tumours.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yue Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Quanyue Wang
- Qinghai Institute of Health Sciences, Xining, Qinghai 810000, P.R. China
| | - Bo Su
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hui Xu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yang Sun
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Pei Sun
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Rumeng Li
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
28
|
Yuan SP, Li CX, Qin S, Wen J, Zhang XB, Tian X, Zhu CY, Li T, Huang JP, Zheng XH. High expression of disabled homolog 2-interacting protein contributes to tumor development and proliferation in cutaneous squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1131. [PMID: 33240980 PMCID: PMC7576015 DOI: 10.21037/atm-20-5067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Disabled homolog 2-interacting protein (DAB2IP), a Ras GTPase-activating protein, is downregulated in several cancers. Its depletion is involved in tumor cell proliferation, apoptosis, and metastasis, as well as epithelial–mesenchymal transition. The present study aimed to explore the potential role of DAB2IP in cutaneous squamous cell carcinoma (cSCC) and provide a theoretical basis for the diagnosis and targeted therapy of cSCC. Methods The clinicopathological features of DAB2IP expression in cSCC were analyzed by immunohistochemistry, and the effects of DAB2IP on SCL-1 cell behavior were determined via genetic interference in vitro. SCL-1 cell lines that exhibited reduced expression of DAB2IP and a scrambled shRNA control were constructed using a lentivirus vector-based shRNA technique. RNA extraction, reverse transcription-quantitative PCR (RT-qPCR), MTT assay, colony formation test, cell cycle analysis, apoptosis test, transwell assay, wound-healing assay, in vitro invasive assay were used in this study. Results The immunohistochemical results demonstrated that the expression of DAB2IP was higher in cSCC tissues than in soft fibroma. The level of DAB2IP expression was associated with the degree of malignancy and the depth of tumor infiltration; however, it had no association with patients’ sex, tumor size, location, or phenotype. The results of the MTT, cell cycle, apoptosis, and invasion experiments demonstrated that knockdown of DAB2IP inhibited the viability and invasion of SCL-1 cells in vitro. Conclusions High expression of DAB2IP may contribute to the development and proliferation of cSCC.
Collapse
Affiliation(s)
- Shao-Ping Yuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chang-Xing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si Qin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ju Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xi-Bao Zhang
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Xin Tian
- Guangzhou Institute of Dermatology, Guangzhou, China
| | - Chao-Ying Zhu
- Guangzhou Panyu Station for Chronic Disease Control, Guangzhou, China
| | - Ting Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jin-Ping Huang
- Department of Dermatology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | | |
Collapse
|
29
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
30
|
Duan Y, Yin X, Lai X, Liu C, Nie W, Li D, Xie Z, Li Z, Meng F. Upregulation of DAB2IP Inhibits Ras Activity and Tumorigenesis in Human Pancreatic Cancer Cells. Technol Cancer Res Treat 2020; 19:1533033819895494. [PMID: 32336215 PMCID: PMC7225836 DOI: 10.1177/1533033819895494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
KRAS mutation-induced Ras activation plays an important role in the pathogenesis of pancreatic cancer, but the role of wild-type Ras and Ras GTPase-activating proteins remains unclear. The present study was designed to determine the expression spectra of Ras GTPase-activating proteins genes in pancreatic cancer cells, and the role of DAB2IP, a Ras GTPase-activating proteins gene, in the development and progression of pancreatic cancer. Following the analyses of the expression profiles of 16 Ras GTPase-activating proteins in 6 pancreatic cancer cell lines including Bxpc-3 (with wild-type KRAS), Capan-2, Sw1990, Aspc-1, CFPAC-1, and Panc-1 (with mutant KRAS) and 1 normal human pancreatic ductal epithelial cell line, H6C7, the expression of DAB2IP messenger RNA was further analyzed by quantitative real-time polymerase chain reaction. The role of DAB2IP in pancreatic cancer was further investigated in vitro and in vivo by upregulating DAB2IP in Bxpc-3 cells through transfection of DAB2IP into Bxpc-3 cells with recombinant lentivirus. The DAB2IP expression in pancreatic cancer cells and tissues with wild-type KRAS was significantly lower than that in cells and tissues with mutant KRAS (P < .05). In Bxpc-3 cells with wild-type KRAS, overexpression of DAB2IP decreased the expression of P-AKT and P-ERK and the Ras activity; increased the expression of P-JNK and caspase 3; inhibited cell proliferation, invasiveness, and migration; and increased the cell sensitivity to cetuximab. Overexpression of DAB2IP inhibited tumor progression in a mouse model. In conclusion, DAB2IP downregulates Ras activity in wild-type pancreatic cancer cells. Overexpression of DAB2IP decreases the Ras activity, inhibits cell proliferation, and increases sensitivity to cetuximab in wild-type pancreatic cancer cells. In conclusion, DAB2IP may serve as a potential molecular therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yifan Duan
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyu Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Lai
- Department of Oncology Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjing Nie
- The Third People's Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Dongfeng Li
- Research Center of Medical Sciences, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijun Xie
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Zijun Li
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Institute of Geriatrics, Guangzhou, China
| | - Fan Meng
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
31
|
Harrell Stewart DR, Clark GJ. Pumping the brakes on RAS - negative regulators and death effectors of RAS. J Cell Sci 2020; 133:133/3/jcs238865. [PMID: 32041893 DOI: 10.1242/jcs.238865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.
Collapse
Affiliation(s)
- Desmond R Harrell Stewart
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| | - Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| |
Collapse
|
32
|
Li L, Fan Y, Huang X, Luo J, Zhong L, Shu XS, Lu L, Xiang T, Chan ATC, Yeo W, Chen C, Chan WY, Huganir RL, Tao Q. Tumor Suppression of Ras GTPase-Activating Protein RASA5 through Antagonizing Ras Signaling Perturbation in Carcinomas. iScience 2019; 21:1-18. [PMID: 31654850 PMCID: PMC6820368 DOI: 10.1016/j.isci.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/08/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrant RAS signaling activation is common in cancers with even few Ras mutations, indicating alternative dysregulation other than genetic mutations. We identified a Ras GTPase-activating gene RASA5/SYNGAP1, at the common 6p21.3 deletion, methylated/downregulated in multiple carcinomas and different from other RASA family members (RASA1-RASA4), indicating its special functions in tumorigenesis. RASA5 mutations are rare, unlike other RASA members, whereas its promoter CpG methylation is frequent in multiple cancer cell lines and primary carcinomas and associated with patient's poor survival. RASA5 expression inhibited tumor cell migration/invasion and growth in mouse model, functioning as a tumor suppressor. RASA5 suppressed RAS signaling, depending on its Ras GTPase-activating protein catalytic activity, which could be counteracted by oncogenic HRas Q61L mutant. RASA5 knockdown enhanced Ras signaling to promote tumor cell growth. RASA5 also inhibited epithelial-mesenchymal transition (EMT) through regulating actin reorganization. Thus, epigenetic inactivation of RASA5 contributing to hyperactive RAS signaling is involved in Ras-driven human oncogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; School of Medicine and Institute of Molecular Medicine, Shenzhen University, Shenzhen, China
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Winnie Yeo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of CAS and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
33
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Thaker YR, Raab M, Strebhardt K, Rudd CE. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat Commun 2019; 10:4804. [PMID: 31641113 PMCID: PMC6805919 DOI: 10.1038/s41467-019-12544-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity. Activation of T cells in the tumor microenvironment can be inhibited through a variety of mechanisms. Here, the authors show that Rasal1, a GTPase-activating protein, binds and inhibits signaling downstream of the T Cell Receptor complex and that consistently, its reduced expression enhances anti-tumor T-cell responses in two syngeneic cancer mouse models.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,School of Biological Science, Protein Structure and Disease Mechanisms, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Département de Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC, H1T 2M4, Canada. .,Département de Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
35
|
Zheng JF, He S, Zeng Z, Gu X, Cai L, Qi G. PMPCB Silencing Sensitizes HCC Tumor Cells to Sorafenib Therapy. Mol Ther 2019; 27:1784-1795. [PMID: 31337603 PMCID: PMC6822227 DOI: 10.1016/j.ymthe.2019.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) tumors invariably develop resistance to cytotoxic and targeted agents, resulting in failed treatment and tumor recurrence. Previous in vivo short hairpin RNA (shRNA) screening evidence revealed mitochondrial-processing peptidase (PMPC) as a leading gene contributing to tumor cell resistance against sorafenib, a multikinase inhibitor used to treat advanced HCC. Here, we investigated the contributory role of the β subunit of PMPC (PMPCB) in sorafenib resistance. Silencing PMPCB increased HCC tumor cell susceptibility to sorafenib therapy, decreased liver tumor burden, and improved survival of tumor-bearing mice receiving sorafenib. Moreover, sorafenib + PMPCB shRNA combination therapy led to attenuated liver tumor burden and improved survival outcome for tumor-bearing mice, and it reduced colony formation in murine and human HCC cell lines in vitro. Additionally, PMPCB silencing enhanced PINK1-Parkin signaling and downregulated the anti-apoptotic protein MCL-1 in sorafenib-treated HCC cells, which is indicative of a healthier pro-apoptotic phenotype. Higher pre-treatment MCL-1 expression was associated with inferior survival outcomes in sorafenib-treated HCC patients. Elevated MCL-1 expression was present in sorafenib-resistant murine HCC cells, while MCL-1 knockdown sensitized these cells to sorafenib. In conclusion, our findings advocate combination regimens employing sorafenib with PMPCB knockdown or MCL-1 knockdown to circumvent sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Jian-Feng Zheng
- Department of Laboratory Medicine, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen 518102, Guangdong, P.R. China.
| | - Shaozhong He
- Department of Oncology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen 518102, Guangdong, P.R. China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xinqi Gu
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Lei Cai
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, P.R. China.
| |
Collapse
|
36
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Shen X, Gu Y, Yu S, Gong P, Mao Y, Li Y, Zheng Y, Qiao F, Zhao Z, Fan H. Silenced PITX1 promotes chemotherapeutic resistance to 5-fluorocytosine and cisplatin in gastric cancer cells. Exp Ther Med 2019; 17:4046-4054. [PMID: 31007741 PMCID: PMC6468935 DOI: 10.3892/etm.2019.7459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to chemotherapeutic drugs leads to a poor prognosis in gastric cancer (GC). The present study aimed to assess the association between pituitary homeobox paired homeodomain transcription 1 (PITX1) expression and the sensitivity of GC cells to the chemotherapeutic drugs 5-fluorouracil (5-FU) and cisplatin (CDDP). In the present study, the gastric cancer cell lines GES-1, AGS, BGC-823, MCG-803 and SGC-7901 were used. The expression of PITX1 was determined via reverse transcription-quantitative polymerase chain reaction in GC cell lines. AGS and BGC-823 cells, which exhibit a decreased PITX1 expression, were transfected with a PITX1 cDNA construct and its control vector. MCG-803 and SGC-7901 cells, which exhibit an increased PITX1 expression, were transfected with siRNA against PITX1 and its control scramble sequence. A Cell Counting kit-8 assay was performed to determine the impact of PITX1 expression on the sensitivity of GC cells to 5-FU and CDDP. The Cancer Genome Atlas database was used to analyze the expression of PITX1 with GC prognosis in the Asian population and to assess the potential mechanism of PITX1 in 5-FU and CDDP resistance. The results revealed that the overexpression of PIXT1 increased the sensitivity of GC cells to 5-FU/CDDP. The combination of 5-FU/CDDP and PITX1 overexpression also reduced the proliferation of GC cells. Additionally, PIXT1 knockdown decreased the sensitivity of GC cells to 5-FU/CDDP. TCGA data revealed that a lower expression of PITX1 is exhibited in Asian GC patients than in normal individuals. GC patients with a lower expression of PITX1 had a poor prognosis. The expression of PITX1 affected the sensitivity of GC cells to 5-FU/CDDP, indicating that PITX1 may increase the efficacy of treatment in GC patients.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuejun Gu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shengling Yu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Pihai Gong
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuhang Mao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiping Li
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ying Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengchang Qiao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhujiang Zhao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
38
|
Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL, Snippert HJG. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget 2019; 10:1440-1457. [PMID: 30858928 PMCID: PMC6402720 DOI: 10.18632/oncotarget.26677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-EGFR therapy is used to treat metastatic colorectal cancer (CRC) patients, for which initial response rates of 10-20% have been achieved. Although the presence of HER2 amplifications and oncogenic mutations in KRAS, NRAS, and BRAF are associated with EGFR-targeted therapy resistance, for a large population of CRC patients the underlying mechanism of RAS-MEK-ERK hyperactivation is not clear. Loss-of-function mutations in RASGAPs are often speculated in literature to promote CRC growth as being negative regulators of RAS, but direct experimental evidence is lacking. We generated a CRISPR-mediated knock out panel of all RASGAPs in patient-derived CRC organoids and found that only loss of NF1, but no other RASGAPs e.g. RASA1, results in enhanced RAS-ERK signal amplification and improved tolerance towards limited EGF stimulation. Our data suggests that NF1-deficient CRCs are likely not responsive to anti-EGFR monotherapy and can potentially function as a biomarker for CRC progression.
Collapse
Affiliation(s)
- Jasmin B Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Nizar Hami
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Alexander E E Mertens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Suraya Elfrink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Johannes L Bos
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Hugo J G Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| |
Collapse
|
39
|
Sastre-Perona A, Hoang-Phou S, Leitner MC, Okuniewska M, Meehan S, Schober M. De Novo PITX1 Expression Controls Bi-Stable Transcriptional Circuits to Govern Self-Renewal and Differentiation in Squamous Cell Carcinoma. Cell Stem Cell 2019; 24:390-404.e8. [PMID: 30713093 DOI: 10.1016/j.stem.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Basal tumor propagating cells (TPCs) control squamous cell carcinoma (SCC) growth by self-renewing and differentiating into supra-basal SCC cells, which lack proliferative potential. While transcription factors such as SOX2 and KLF4 can drive these behaviors, their molecular roles and regulatory interactions with each other have remained elusive. Here, we show that PITX1 is specifically expressed in TPCs, where it co-localizes with SOX2 and TRP63 and determines cell fate in mouse and human SCC. Combining gene targeting with chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses reveals that PITX1 cooperates with SOX2 and TRP63 to sustain an SCC-specific transcriptional feed-forward circuit that maintains TPC-renewal, while inhibiting KLF4 expression and preventing KLF4-dependent differentiation. Conversely, KLF4 represses PITX1, SOX2, and TRP63 expression to prevent TPC expansion. This bi-stable, multi-input network reveals a molecular framework that explains self-renewal, aberrant differentiation, and SCC growth in mice and humans, providing clues for developing differentiation-inducing therapeutic strategies.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Steven Hoang-Phou
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Marie-Christin Leitner
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | | | - Shane Meehan
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA
| | - Markus Schober
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA; New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun 2019; 10:295. [PMID: 30655611 PMCID: PMC6336889 DOI: 10.1038/s41467-018-08230-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Stability regulation of RAS that can affect its activity, in addition to the oncogenic mutations, occurs in human cancer. However, the mechanisms for stability regulation of RAS involved in their activity and its roles in tumorigenesis are poorly explored. Here, we identify WD40-repeat protein 76 (WDR76) as one of the HRAS binding proteins using proteomic analyses of hepatocellular carcinomas (HCC) tissue. WDR76 plays a role as an E3 linker protein and mediates the polyubiquitination-dependent degradation of RAS. WDR76-mediated RAS destabilization results in the inhibition of proliferation, transformation, and invasion of liver cancer cells. WDR76-/- mice are more susceptible to diethylnitrosamine-induced liver carcinogenesis. Liver-specific WDR76 induction destabilizes Ras and markedly reduces tumorigenesis in HRasG12V mouse livers. The clinical relevance of RAS regulation by WDR76 is indicated by the inverse correlation of their expressions in HCC tissues. Our study demonstrates that WDR76 functions as a tumor suppressor via RAS degradation.
Collapse
|
41
|
Xu A, Wang B, Fu J, Qin W, Yu T, Yang Z, Lu Q, Chen J, Chen Y, Wang H. Diet-induced hepatic steatosis activates Ras to promote hepatocarcinogenesis via CPT1α. Cancer Lett 2018; 442:40-52. [PMID: 30401637 DOI: 10.1016/j.canlet.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 01/22/2023]
Abstract
Aberrant activation of the RAS cascade ubiquitously occurs in human hepatocellular carcinomas (HCC), regardless of rare mutations of RAS. However, the association between the Ras cascade and hepatic steatosis during hepatocarcinogenesis remains under-investigated. Here, the variation in the constitutive activity of Ras signaling and HCC incidence was found in a nonalcoholic fatty liver disease (NAFLD)-HCC mouse model, and Ras activity was induced by hepatic steatosis. Even in hepatocyte-specific expression of KrasG12D (Alb-Cre/KrasG12D, Krashep) mice, mutagenic activation of Ras signaling was still significantly enhanced by NAFLD, with downregulation of negative regulators. Interestingly, hepatic steatosis could be alleviated by persistent activation of Ras, whereas Ras accelerated DNA damage and HCC progression through Carnitine palmitoyltransferase 1A (CPT1α). A close correlation between active Ras and CPT1α was also shown in clinical steatosis peri-tumor tissues of HCC samples and experimental models. CPT1α inhibitor etomoxir (ETO) largely ameliorated active Ras-drived HCC. These findings can provide a novel link between steatosis and Ras activity in liver cancer.
Collapse
Affiliation(s)
- An Xu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Bibo Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Wenhao Qin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ting Yu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Zhishi Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qingjun Lu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China; Fuling Central Hospital of Chongqing City, Chongqing, China.
| |
Collapse
|
42
|
Chen X, Li WX, Chen Y, Li XF, Li HD, Huang HM, Bu FT, Pan XY, Yang Y, Huang C, Meng XM, Li J. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis 2018; 9:1021. [PMID: 30282980 PMCID: PMC6170444 DOI: 10.1038/s41419-018-1032-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Hepatic myofibroblasts, activated hepatic stellate cells (HSCs), are the main cell type of extracellular matrix (ECM) deposition during hepatic fibrosis. Aberrant DNA methylation-regulated HSCs activation in liver fibrogenesis has been reported, but the functional roles and mechanisms of DNA methylation in hepatic fibrosis remain to be elucidated. In the present study, reduced representation bisulfite sequencing (RRBS) analysis of primary HSCs revealed hypermethylation patterns in hepatic fibrosis. Interestingly, we found SAD1/UNC84 domain protein-2 (SUN2) gene hypermethylation at CpG sites during liver fibrogenesis in mice with CCl4-induced hepatic fibrosis, which was accompanied by low expression of SUN2. In vivo overexpression of SUN2 following adeno-associated virus-9 (AAV9) administration inhibited CCl4-induced liver injury and reduced fibrogenesis marker expression. Consistently, in vitro experiments showed that enforced expression of SUN2 suppressed HSCs activation and exerted anti-fibrogenesis effects in TGF-β1-activated HSC-T6 cells. In addition, the signaling mechanisms related to SUN2 expression were investigated in vivo and in vitro. Methyltransferase-3b (DNMT3b) is the principal regulator of SUN2 expression. Mechanistically, inhibition of protein kinase B (AKT) phosphorylation may be a crucial pathway for SUN2-mediated HSCs activation. In conclusion, these findings provide substantial new insights into SUN2 in hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Wan-Xia Li
- Dept of Pharmacy, Anqing Municipal Hospital, Anqing, 246000, China
| | - Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Hui-Min Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
43
|
PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis. Oncogene 2018; 37:6119-6135. [PMID: 29993036 DOI: 10.1038/s41388-018-0383-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 02/25/2018] [Indexed: 12/22/2022]
Abstract
Macrophages play a crucial role in the progression of hepatic fibrosis (HF). In macrophages, epigenetic mechanisms are increasingly being recognized as crucial controllers of their phenotype. However, the functions of macrophage DNA methylation in experimental models of hepatic fibrosis have not been fully addressed. Here, we analyzed isolated hepatic macrophages DNA methylation from CCL4-induced (4 weeks) mice using reduced representation bisulfite sequencing (RRBS). We identified and validated the methylation status of 26 gene promoter regions associated with CpG islands. We further investigated the function of PSTPIP2 in HF by hepatic-adeno-associated virus (AAV9)-PSTPIP2 overexpression. The molecular mechanisms underlying PSTPIPS2-regulated HF were further explored in mice and RAW264.7 cell line. RRBS results show hypermethylation of PSTPIP2 (chr18: 77,843,840-77,843,968) in the 5'-UTR region. PSTPIP2 expression was significantly decreased in isolated hepatic macrophages from CCL4-induced mice. PSTPIP2 hypermethylation is mediated by the methyltransferases DNMT3a and DNMT3b in LPS-induced RAW264.7 cell line. Further investigation indicated that specific overexpression of PSTPIP2 in C57BL/6 mice reduced the inflammatory response and ameliorated liver fibrosis. These data indicated that hypermethylation of PSTPIP2 caused a mixed induction of hepatic classical macrophage (M1) and alternative macrophage (M2) biomarkers in CCL4-induced HF mice. Furthermore, overexpression of PSTPIP2 inhibited the expression of M1 markers by suppressing STAT1 activity, and enhanced the expression of M2 markers by promoting STAT6 activity. In contrast, knockdown of PSTPIP2 promoted M1 polarization and suppressed M2 polarization in vitro. Adding PSTPIP2 expression alleviates liver fibrosis and hepatic inflammation in mice by regulating macrophage polarization.
Collapse
|
44
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
45
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
46
|
Kopanja D, Pandey A, Huang S, Al Raheed MRH, Guzman G, Raychaudhuri P. p19Arf inhibits aggressive progression of H-ras-driven hepatocellular carcinoma. Carcinogenesis 2018; 39:318-326. [PMID: 29228217 PMCID: PMC5862269 DOI: 10.1093/carcin/bgx140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/15/2017] [Indexed: 11/14/2022] Open
Abstract
Arf, a well-established tumor suppressor, is either mutated or downregulated in a wide array of cancers. However, its role in hepatocellular carcinoma (HCC) progression is controversial. Conflicting observations have been published regarding its expression in HCC. In this study, we provide clear genetic evidence demonstrating a protective role of p19Arf in hepatocarcinogenesis. Using Ras-induced mouse model, we show that p19Arf deficiency accelerates progression of aggressive HCC in vivo. To investigate the role of p14ARF in human liver cancers, we analyzed its expression in human HCC using immunohistochemistry (IHC). We observe lack of nucleolar p14ARF in 43.02% of human HCC samples and that low expression of p14ARF strongly correlates with the early onset of HCC. Importantly, cirrhotic livers that did not progress to HCC harbor higher expression of the p14ARF protein in hepatocytes compared with that in cirrhotic livers with HCC. These results are significant because they suggest that nucleolar p14ARF can be used as early prognostic marker in chronic liver disease to reliably identify patients with high risk for developing liver cancer. Currently, there is no effective systemic therapy for advanced liver cancer; hence, more efficient patient screening and early detection of HCC would significantly contribute to the eradication of this devastating disease.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, USA
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, USA
| | - Shuo Huang
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, USA
| | | | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, USA
- Department of Research, Jesse Brown VA Medical Center, USA
| |
Collapse
|
47
|
Chen H, Yang Y, Wang J, Shen D, Zhao J, Yu Q. miR-130b-5p promotes proliferation, migration and invasion of gastric cancer cells via targeting RASAL1. Oncol Lett 2018; 15:6361-6367. [PMID: 29731849 PMCID: PMC5921226 DOI: 10.3892/ol.2018.8174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the targeted interaction between microRNA (miR)-130b-5p and RAS protein activator like 1 (RASAL1) gene and elucidate the function of miR-130b-5p in cell proliferation, migration and invasion in gastric cancer. Expression of miR-130b-5p and RASAL1 in seven gastric cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). MGC803 cells were selected for further study since they exhibited a marked increase in expression of miR-130b-5p accompanied by decreased expression of RASAL1. MGC803 cells were transfected with miR-130b-5p mimics and miR-130b-5p inhibitor using Lipofectamine 2000 for over- and underexpression, respectively, with cells transfected with negative control (NC) sequence as the control. In addition, a luciferase reporter gene assay was performed to evaluate the targeted interaction between miR-130b-5p and RASAL1. Then, alterations in RASAL1 expression were detected by RT-qPCR and western blot analysis following transfection with miR-130b-5p mimics and miR-130b-5p inhibitor. Cell proliferation, colony formation, and migration and invasion ability were detected by MTT, colony formation and Transwell assays, respectively. RASAL1 was demonstrated to be a target gene of miR-130b-5p by luciferase reporter gene assay. In addition, the expression of RASAL1 was significantly lower in MGC803 cells that were transfected with miR-130b-5p mimics and significantly higher in cells transfected with miR-130b-5p inhibitor in comparison with cells transfected with NC (P<0.05). Furthermore, the experimental group transfected with miR-130b-5p mimics manifested significantly higher cell proliferation, increased colony formation and increased migratory and invasive capacities (P<0.05). By contrast, cells transfected with miR-130b-5p inhibitor exhibited significantly lower cell proliferation, decreased colony formation and decreased migratory and invasive capacities, compared with cells transfected with NC (P<0.05). In conclusion, RASAL1 was demonstrated to be a target gene of miR-130b-5p. Overexpression of miR-130b-5p results in promoted proliferation, colony formation and migration and invasion abilities through targeted modulation of RASAL1.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Yiqiong Yang
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Duo Shen
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiyi Zhao
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
48
|
Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget 2018; 7:47720-47737. [PMID: 27351226 PMCID: PMC5216974 DOI: 10.18632/oncotarget.10279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022] Open
Abstract
The link between oncogenic RAS expression and the acquisition of the invasive phenotype has been attributed to alterations in cellular activities that control degradation of the extracellular matrix. Oncogenic RAS-mediated upregulation of matrix metalloproteinase 2 (MMP-2), MMP-9 and urokinase-type plasminogen activator (uPA) is critical for invasion through the basement membrane and extracellular matrix. The uPA converts cell surface-bound plasminogen to plasmin, a process that is regulated by the binding of plasminogen to specific receptors on the cell surface, however, the identity of the plasminogen receptors that function in this capacity is unclear. We have observed that transformation of cancer cells with oncogenic forms of RAS increases plasmin proteolytic activity by 2- to 4-fold concomitant with a 3-fold increase in cell invasion. Plasminogen receptor profiling revealed RAS-dependent increases in both S100A10 and cytokeratin 8. Oncogenic RAS expression increased S100A10 gene expression which resulted in an increase in S100A10 protein levels. Analysis with the RAS effector-loop mutants that interact specifically with Raf, Ral GDS pathways highlighted the importance of the RalGDS pathways in the regulation of S100A10 gene expression. Depletion of S100A10 from RAS-transformed cells resulted in a loss of both cellular plasmin generation and invasiveness. These results strongly suggest that increases in cell surface levels of S100A10, by oncogenic RAS, plays a critical role in RAS-stimulated plasmin generation, and subsequently, in the invasiveness of oncogenic RAS expressing cancer cells.
Collapse
|
49
|
Sanford T, Meng MV, Railkar R, Agarwal PK, Porten SP. Integrative analysis of the epigenetic basis of muscle-invasive urothelial carcinoma. Clin Epigenetics 2018; 10:19. [PMID: 29456764 PMCID: PMC5809922 DOI: 10.1186/s13148-018-0451-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elucidation of epigenetic alterations in bladder cancer will lead to further understanding of the biology of the disease and hopefully improved therapies. Our aim was to perform an integrative epigenetic analysis of invasive urothelial carcinoma of the bladder to identify the epigenetic abnormalities involved in the development and progression of this cancer. Methods Pre-processed methylation data and RNA-seq data were downloaded from The Cancer Genome Atlas (TCGA) and processed using the R package TCGA-Assembler. An R package MethylMix was used to perform an analysis incorporating both methylation and gene expression data on all samples, as well as a subset analysis comparing patients surviving less than 2 years and patients surviving more than 2 years. Genes associated with poor prognosis were individually queried. Pathway analysis was performed on statistically significant genes identified by MethylMix criteria using ConsensusPathDB. Validation was performed using flow cytometry on bladder cancer cell lines. Results A total of 408 patients met all inclusion criteria. There were a total of 240 genes differentially methylated by MethylMix criteria. Review of individual genes specific to poor-prognosis patients revealed the majority to be candidate tumor suppressors in other cancer types. Pathway analysis showed increase in methylation of genes involved in antioxidant pathways including glutathione and NRF2. Genes involved in estrogen metabolism were also hypermethylated while genes involved in the EGFR pathway were found to be hypomethylated. EGFR expression was confirmed to be elevated in six bladder cancer cell lines. Conclusions In patients with invasive urothelial carcinoma, we found differential methylation in patients with better and worse prognosis after cystectomy. Differentially methylated genes are involved in many relevant oncologic pathways, including EGFR and antioxidant pathways, that may be a target for therapy or chemoprevention.
Collapse
Affiliation(s)
- Thomas Sanford
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Maxwell V. Meng
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| | - Reema Railkar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Piyush K. Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10—Hatfield CRC, Room 2-5952, Bethesda, MD 20892-1210 USA
| | - Sima P. Porten
- Department of Urology, University of California, Mail code 1695, 550 16th Street, 6th Floor, San Francisco, CA 94143 USA
| |
Collapse
|
50
|
Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas. PLoS One 2018; 13:e0192742. [PMID: 29425237 PMCID: PMC5806891 DOI: 10.1371/journal.pone.0192742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Patients with squamous cell cancer of the head and neck region (HNSCC) are at risk for disease recurrence and metastases, even after initial successful therapy. A tissue-based biomarker could be beneficial to guide treatment as well as post-treatment surveillance. Gene methylation status has been recently identified as powerful prognostic biomarker in HNSCC. We therefore evaluated the methylation status of the homeobox gene PITX1 and the adjacent long intergenic non-coding RNA (lincRNA) C5orf66-AS1 in publicly available datasets. Methods Gene methylation and expression data from 528 patients with HNSCC included in The Cancer Genome Atlas (TCGA, there obtained by using the Infinium HumanMethylation450 BeadChip Kit) were evaluated and methylation and expression levels of PITX1 and lincRNA C5orf66-AS1 was correlated with overall survival and other parameters. Thus, ten beads targeting PITX1 exon 3 and three beads targeting lincRNA C5orf66-AS1 were identified as significant candidates. The mean methylation of these beads was used for further correlation and the median was employed for dichotomization. Results Both PITX1 exon 3 and lincRNA C5orf66-AS1 were significantly higher methylated in tumor tissue than in normal adjacent tissue (NAT) (PITX1 exon 3: tumor tissue 58.1%, NAT: 31.7%, p<0.001; lincRNA C5orf66-AS1: tumor tissue: 27.4%, NAT: 18.9%, p<0.001). In a univariate analysis, hypermethylation of both loci was significantly associated with the risk of death (univariate: exon 3: Hazard ratio (HR): 4.97 [1.78–16.71], p = 0.010, lincRNA C5orf66-AS1: Hazard ratio (HR): 12.23 [3.01–49.74], p<0.001). PITX1 exon 3 and lincRNA C5orf66-AS1 methylation was also significantly correlated with tumor localization, T category, human papilloma virus (HPV)-negative and p16-negative tumors and tumor grade. Kaplan-Meier analysis showed, that lincRNA C5orf66-AS1 hypomethylation was significantly associated with overall survival (p = 0.001) in the entire cohort as well in a subgroup of HPV-negative tumors (p = 0.003) and in patients with laryngeal tumors (p = 0.022). Conclusion Methylation status of PITX1 and even more so of lincRNA C5orf66-AS1 is a promising prognostic biomarker in HNSCC, in particular for HPV-negative patients. Further prospective evaluation is warranted.
Collapse
|