1
|
Sawadpanich K, Promasen P, Mairiang P, Sukeepaisarnjareon W, Sangchan A, Suttichaimongkol T, Tangvoraphonkchai K, Foocharoen C. Incidence and Predictors of an Abnormal Liver Function Test Among 674 Systemic Sclerosis Patients: A Cohort Study. Open Access Rheumatol 2023; 15:81-92. [PMID: 37214354 PMCID: PMC10199701 DOI: 10.2147/oarrr.s410165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Background Abnormal liver function tests (LFTs) can indicate cirrhosis or liver cancer leading to mortality among systemic sclerosis (SSc) patients. No recent studies have investigated the clinical predictors of an abnormal LFT in SSc. We aimed to determine the incidence of abnormal LFT (including from hepatitis and cholestasis) and to identify its clinical predictors in SSc patients. Methods An historical cohort was conducted on 674 adult SSc patients who attended the Scleroderma Clinic, Khon Kaen University, between January 2012 and November 2019 and who underwent routine screening for LFT. A Cox regression was used to analyze the clinical predictors of abnormal LFT. Results Four hundred and thirty cases, representing 4190 person-years, had abnormal LFTs (viz, from hepatitis, cholestasis, and cholestatic hepatitis) for an incidence rate of 10.2 per 100 person-years. The respective incidence of hepatitis, cholestasis, and cholestatic hepatitis was 20.5, 12.9, and 20.4 per 100 person-years. The respective median first-time detection of hepatitis, cholestasis, and cholestatic hepatitis was 3.0, 5.9, and 2.8 years, and none had signs or symptoms suggestive of liver disease. According to the Cox regression analysis, the predictors of an abnormal LFT in SSc were elderly onset of SSc (hazard ratio (HR) 1.02), alcoholic drinking (HR 1.74), high modified Rodnan Skin Score (mRSS) (HR 1.03), edematous skin (HR 2.94), Raynaud's phenomenon (HR 1.39), hyperCKaemia (HR 1.88), and methotrexate use (HR 1.55). In contrast, current sildenafil treatment (HR 0.63) and high serum albumin (HR 0.70) were protective factors. Conclusion Occult hepatitis, cholestasis, and cholestatic hepatitis can be detected in SSc patients using LFT screening, especially in cases of early disease onset. The long-term outcome is uncertain, and more longitudinal research is required.
Collapse
Affiliation(s)
- Kookwan Sawadpanich
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Palinee Promasen
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pisaln Mairiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wattana Sukeepaisarnjareon
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apichat Sangchan
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanita Suttichaimongkol
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawin Tangvoraphonkchai
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chingching Foocharoen
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
2
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
3
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
4
|
Fujiwara S, Izawa T, Mori M, Atarashi M, Yamate J, Kuwamura M. Dietary iron overload enhances Western diet induced hepatic inflammation and alters lipid metabolism in rats sharing similarity with human DIOS. Sci Rep 2022; 12:21414. [PMID: 36496443 PMCID: PMC9741655 DOI: 10.1038/s41598-022-25838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatic iron overload is often concurrent with nonalcoholic fatty liver disease (NAFLD). Dysmetabolic iron overload syndrome (DIOS) is characterized by an increase in the liver and body iron stores and metabolic syndrome components. Increasing evidences suggest an overlap between NAFLD with iron overload and DIOS; however, the mechanism how iron is involved in their pathogenesis remains unclear. Here we investigated the role of iron in the pathology of a rat model of NAFLD with iron overload. Rats fed a Western (high-fat and high-fructose) diet for 26 weeks represented hepatic steatosis with an increased body weight and dyslipidemia. Addition of dietary iron overload to the Western diet feeding further increased serum triglyceride and cholesterol, and enhanced hepatic inflammation; the affected liver had intense iron deposition in the sinusoidal macrophages/Kupffer cells, associated with nuclear translocation of NFκB and upregulation of Th1/M1-related cytokines. The present model would be useful to investigate the mechanism underlying the development and progression of NAFLD as well as DIOS, and to elucidate an important role of iron as one of the "multiple hits" factors.
Collapse
Affiliation(s)
- Sakura Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mutsuki Mori
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531 Japan
| |
Collapse
|
5
|
Liu C, Chen Y, Zhang Z, Xie J, Yu C, Xu L, Li Y. Iron Status and NAFLD among European Populations: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2022; 14:nu14245237. [PMID: 36558395 PMCID: PMC9788387 DOI: 10.3390/nu14245237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background and aim: Previous observational studies have suggested a paradoxical relationship between iron status and the risk of non-alcoholic fatty liver disease (NAFLD). Observed associations in these epidemiological studies fail to show sequential temporality and suffer from problems of confounding. Therefore, we performed a bidirectional two-sample Mendelian randomization (MR) to evaluate the relationship between serum iron status and NAFLD. Methods: The inverse weighted method (IVW) meta-analysis with the fixed-effect model was the main method to estimate the relationship between iron status, including serum ferritin, iron, transferrin saturation (TSAT) and total iron-binding capacity (TIBC), and NAFLD. Weighted median, penalized weighted median, and MR Robust Adjusted Profile Score (MR RAPS) methods were used as additional analyses. Sensitivity analyses were performed with Cochran's Q test, MR-Egger regression, Steiger filtering, and the MR PRESSO test. Results: Iron status, including serum ferritin, iron, and TSAT, was associated with an increased risk of NAFLD (odds ratio (OR) (95% confidence interval (CI)): 1.25 (1.06, 1.48); 1.24 (1.05, 1.46), 1.16 (1.02, 1.31), respectively). In contrast, minimal effects of NAFLD on serum ferritin, iron, TSAT, and TIBC were observed (OR (95% CI): 1.01 (1.00, 1.02), 1.01 (1.00, 1.02), 1.03 (1.01, 1.05), 1.03 (1.01, 1.05), respectively). Conclusions: Our findings corroborated the causal associations between serum ferritin, iron, TSAT, and NAFLD, which might suggest the potential benefits of iron-related therapy. In addition, NAFLD might, in turn, slightly affect iron homeostasis indicated as serum ferritin, iron, TSAT, and TIBC, but this needs to be further confirmed.
Collapse
Affiliation(s)
- Cenqin Liu
- Department of Gastroenterology, Ningbo Hospital, Zhejiang University, Ningbo 315010, China
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhixin Zhang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
- School of Medicine, Ningbo University, Ningbo 315010, China
| | - Jiarong Xie
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
- School of Medicine, Ningbo University, Ningbo 315010, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo Hospital, Zhejiang University, Ningbo 315010, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315010, China
- Correspondence: (L.X.); (Y.L.); Tel.: +86-13486659126 (L.X.); +86-571-87236863 (Y.L.)
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Correspondence: (L.X.); (Y.L.); Tel.: +86-13486659126 (L.X.); +86-571-87236863 (Y.L.)
| |
Collapse
|
6
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
7
|
Giannini C, Polidori N, Saltarelli MA, Chiarelli F, Basilico R, Mohn A. Increased hepcidin levels and non-alcoholic fatty liver disease in obese prepubertal children: a further piece to the complex puzzle of metabolic derangements. J Pediatr Endocrinol Metab 2022; 35:39-47. [PMID: 34726357 DOI: 10.1515/jpem-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Several studies on obese youths and adults have reported increased hepcidin levels, which seems to be related to metabolic and iron metabolism alterations. The complete mechanisms involved in hepcidin increase remain to be elucidated, and particularly its role in the development of other known complications such as Nonalcoholic Fatty Liver Disease (NAFLD). NAFLD in prepubertal children might be of special interest in understanding the underlying mechanisms. METHODS Anthropometric measurements, liver ultrasonography, lipid profile, liver function, oxidative stress, inflammatory state, and iron metabolism were studied in 42 obese prepubertal children and 33 healthy controls. We, therefore, evaluated the presence of possible correlations between Hepcidin and the other metabolic variables, and the possible association between NAFLD and iron metabolism. RESULTS Hepcidin levels were significantly increased in the obese prepubertal children (p=0.001) with significant differences between obese children with and without NAFLD (p=0.01). Blood iron was lower in obese children (p=0.009). In the obese group, a negative correlation between hepcidin and both blood iron levels (p=0.01) and LagPHASE (p=0.02) was found. In addition, a positive association between hepcidin and NAFLD (p=0.03) was detected. CONCLUSIONS We suggest that an increase in hepcidin levels may represent an early step in iron metabolism derangements and metabolic alterations, including NAFLD, in prepubertal obese children.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| | - Nella Polidori
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| | - Raffaella Basilico
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy.,Clinical Research Center, "G. d'Annunzio" Foundation, University of Chieti, Chieti, Italy
| |
Collapse
|
8
|
Zou ZQ, Liu M, Zhong HQ, Guan GY. Association of previous schistosome infection with fatty liver and coronary heart disease: A cross-sectional study in china. Parasite Immunol 2021; 43:e12822. [PMID: 33454990 DOI: 10.1111/pim.12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/05/2020] [Accepted: 01/08/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND More than 11 million people were estimated to have been infected by Schistosoma japonicum in China before the 1950s. However, few studies have been conducted to evaluate the longitudinal effects of previous schistosome infection (PSI). OBJECTIVE We aimed to evaluate the association of PSI with fatty liver and coronary heart disease in China. METHODS A cross-sectional study was conducted in regions which were all reportedly heavily endemic for S japonicum in China. All data were collected using a questionnaire administered and health examinations by well-trained medical professionals. 2867 participants aged 40 years and older were enrolled. Among these, 731 patients with PSI were selected as study subjects and 2136 subjects served as controls. Comparisons between groups were performed with or without an adjustment for a covariate, using Student's t tests for continuous variables and chi-square testing for categorical variables. Multivariable logistic models were used to estimate the associations between PSI and fatty liver or coronary heart disease. RESULTS The PSI participants had significantly lower levels of triglyceride, low-density lipoprotein cholesterol, fasting blood glucose, uric acid, serum creatinine, urea nitrogen, platelet, total protein and globulin as well as a lower prevalence of fatty liver (13.3% vs 53.6%, P < .001) and coronary heart disease (3.4% vs 6.0%, P < .05) compared with the uninfected, contemporaneous controls (without PSI), whereas the PSI participants had higher levels of high-density lipoprotein cholesterol, direct bilirubin and a higher prevalence of hepatic dysfunction compared with those without PSI (P < .05). CONCLUSION We found PSI significantly negatively associated with fatty liver and coronary heart disease. However, further studies on schistosomiasis may provide new directions for prevention and treatment of fatty liver and coronary heart disease.
Collapse
Affiliation(s)
- Zhuo-Qun Zou
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| | - Mei Liu
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| | | | - Guo-Yue Guan
- Gerontology Department, Huadong Sanatorium, Wuxi, China
| |
Collapse
|
9
|
Lee EH, Kim JY, Yang HR. Relationship Between Histological Features of Non-alcoholic Fatty Liver Disease and Ectopic Fat on Magnetic Resonance Imaging in Children and Adolescents. Front Pediatr 2021; 9:685795. [PMID: 34178902 PMCID: PMC8222518 DOI: 10.3389/fped.2021.685795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives: To investigate the association between ectopic fat content in the liver and pancreas, obesity-related metabolic components, and histological findings of non-alcoholic fatty liver disease (NAFLD) in children. Methods: This cross-sectional study investigated 63 children with biopsy-proven NAFLD who underwent magnetic resonance imaging (MRI), anthropometry, laboratory tests, and body composition analysis. Clinical and metabolic parameters, MRI-measured hepatic fat fraction (HFF) and pancreatic fat fraction (PFF), and histological findings were analyzed. Results: In a total of 63 children (48 boys, median age 12.6 years, median body mass index z-score 2.54), HFF was associated with histological steatosis [10.4, 23.7, and 31.1% in each steatosis grade, P < 0.001; Spearman's rho coefficient (rs) = 0.676; P < 0.001] and NAFLD activity score (rs = 0.470, P < 0.001), but not with lobular inflammation, hepatocyte ballooning, and hepatic fibrosis. PFF was not associated with any histological features of the liver. Waist circumference-to-height ratio and body fat percentage were associated with the steatosis grade (P = 0.006 and P = 0.004, respectively). Alanine aminotransferase was not associated with steatosis but was associated with lobular inflammation (P = 0.008). Lobular inflammation was also associated with high total cholesterol and low-density lipoprotein cholesterol and metabolic syndrome (P = 0.015, P = 0.036, and P = 0.038, respectively). Conclusions: Hepatic steatosis on MRI was only associated with the histological steatosis grade, while elevated serum levels of liver enzymes and lipids were related to the severity of lobular inflammation. Therefore, MRI should be interpreted in conjunction with the anthropometric and laboratory findings in pediatric patients.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Daejeon, South Korea
| | - Ji Young Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.,College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Mörwald K, Aigner E, Bergsten P, Brunner SM, Forslund A, Kullberg J, Ahlström H, Manell H, Roomp K, Schütz S, Zsoldos F, Renner W, Furthner D, Maruszczak K, Zandanell S, Weghuber D, Mangge H. Serum Ferritin Correlates With Liver Fat in Male Adolescents With Obesity. Front Endocrinol (Lausanne) 2020; 11:340. [PMID: 32625166 PMCID: PMC7314945 DOI: 10.3389/fendo.2020.00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) contributes essentially to the burden of obesity and can start in childhood. NAFLD can progress to cirrhosis and hepatocellular carcinoma. The early phase of NAFLD is crucial because during this time the disease is fully reversible. Pediatric NAFLD shows unique features of histology and pathophysiology compared to adults. Changes in serum iron parameters are common in adult NAFLD and have been termed dysmetabolic iron overload syndrome characterized by increased serum ferritin levels and normal transferrin saturation; however, the associations of serum ferritin, inflammation, and liver fat content have been incompletely investigated in children. As magnetic resonance imaging (MRI) is an excellent measure for the degree of liver steatosis, we applied this method herein to clarify the interaction between ferritin and fatty liver in male adolescents. For this study, one hundred fifty male pediatric patients with obesity and who are overweight were included. We studied a subgroup of male patients with (n = 44) and without (n = 18) NAFLD in whom we determined liver fat content, visceral adipose tissue, and subcutaneous adipose tissue extent with a 1.5T MRI (Philips NL). All patients underwent a standardized oral glucose tolerance test. We measured uric acid, triglycerides, HDL-, LDL-, total cholesterol, liver transaminases, high sensitive CRP (hsCRP), interleukin-6, HbA1c, and insulin. In univariate analysis, ferritin was associated with MRI liver fat, visceral adipose tissue content, hsCRP, AST, ALT, and GGT, while transferrin and soluble transferrin receptor were not associated with ferritin. Multivariate analysis identified hsCRP and liver fat content as independent predictors of serum ferritin in the pediatric male patients. Our data indicate that serum ferritin in male adolescents with obesity is mainly determined by liver fat content and inflammation but not by body iron status.
Collapse
Affiliation(s)
- Katharina Mörwald
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, University Uppsala, Uppsala, Sweden
| | - Susanne M Brunner
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women's and Children's Health, University Uppsala, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, University Uppsala, Uppsala, Sweden
| | - Hakan Ahlström
- Department of Surgical Sciences, Radiology, University Uppsala, Uppsala, Sweden
| | - Hannes Manell
- Department of Medical Cell Biology, University Uppsala, Uppsala, Sweden
| | - Kirsten Roomp
- Luxembourg Center for Systems Biomedicine, University Luxembourg, Luxembourg, Luxembourg
| | - Sebastian Schütz
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Fanni Zsoldos
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wilfried Renner
- Luxembourg Center for Systems Biomedicine, University Luxembourg, Luxembourg, Luxembourg
| | - Dieter Furthner
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics and Adolescent Medicine, Salzkammergut-Klinikum, Vöcklabruck, Austria
| | - Katharina Maruszczak
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Stephan Zandanell
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University Graz, Graz, Austria
| |
Collapse
|
11
|
Xie D, Xie H, Liu L, Feng G, Jiang W, Huang W, Xie D. Qizhufang (ZSF) Ameliorates Hepatic Iron Overload via Signal Transducer and Activator of Transcription 3 (STAT3) Pathway. Med Sci Monit 2019; 25:7836-7844. [PMID: 31628297 PMCID: PMC6820337 DOI: 10.12659/msm.916595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Iron overload is a prominent characteristic of liver injury, but there is no effective treatment at present. Qizhufang (ZSF) is a Chinese herbal formula showed anti-HBV activities, improved liver function, and anti-fibrosis effect. ZSF showed a series of liver-protection functions, but whether ZSF can relieve hepatic iron overload is still unclear. Material/Methods Ferric ammonium citrate (FAC) was used to construct iron-overloaded LO2 cells. The cell apoptosis and proliferation were measured by flow cytometry and CCK-8 assay, respectively. ROS level was analyzed by fluorescence probe. RNA and protein expressions were assessed by real-time PCR and Western blot. Results FAC upregulated apoptosis rate, ROS level, and expression of hepcidin and p-STAT3, but suppressed proliferation and expression of DMT1, FPN1, and CP in LO2 cells. However, Qizhufang (ZSF) reversed the effect of FAC. We also found that hepcidin overexpression suppressed the expressions of DMT1, FPN1, and CP, which were reversed by ZSF. Additionally, STAT3 inhibitor AG490 suppressed hepcidin expression. Moreover, exogenous IL-6 reversed the effect of ZSF on apoptosis rate, ROS level, and the expression of hepcidin, DMT1, FNP1, CP, and p-STAT3. Conclusions Qizhufang (ZSF) can ameliorate iron overload-induced injury by suppressing hepcidin via the STAT3 pathway in LO2 cells.
Collapse
Affiliation(s)
- Dongyu Xie
- Department of Spleen-Stomach, Zhenjiang Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China (mainland).,Department of Spleen-Stomach, Zhenjiang Hospital of Traditional Chinese Medicine, Zhenjiang, Jiangsu, China (mainland)
| | - Haina Xie
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Lin Liu
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Guangwei Feng
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Wenjing Jiang
- Department of Pharmacy, Dahua Hospital, Shanghai, China (mainland)
| | - Wei Huang
- Department of Traditional Chinese Medicine, Dahua Hospital, Shanghai, China (mainland)
| | - Donghao Xie
- Department of Pharmacy, Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China (mainland).,School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Martin-Rodriguez J, Gonzalez-Cantero J, Gonzalez-Cantero A, Martí-Bonmatí L, Alberich-Bayarri Á, Gonzalez-Cejudo T, Gonzalez-Calvin J. Insulin resistance and NAFLD: Relationship with intrahepatic iron and serum TNF-α using 1H MR spectroscopy and MRI. DIABETES & METABOLISM 2019; 45:473-479. [PMID: 30660761 DOI: 10.1016/j.diabet.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
|
13
|
Wang AY, Dhaliwal J, Mouzaki M. Lean non-alcoholic fatty liver disease. Clin Nutr 2018; 38:975-981. [PMID: 30466956 DOI: 10.1016/j.clnu.2018.08.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD), with its increasing prevalence and association with various co-morbidities, such as diabetes, cardiovascular disease and metabolic syndrome, is a growing concern. Previously thought to predominantly affect obese individuals, NAFLD has been shown to occur in non-obese subjects. This subset of individuals, known to have 'lean NAFLD' or 'non-obese NAFLD', is also growing increasingly prevalent. We summarize the clinical manifestations, pathophysiology and management of lean NAFLD in both adult and pediatric populations. METHODS Two reviewers performed an independent, formal review and analysis of the literature (PubMed and EMBASE search until April 2018). RESULTS AND CONCLUSIONS Patients with lean NAFLD share metabolic features of insulin resistance and dyslipidemia, similar to obese patients with NAFLD. Genetic predisposition, dietary and environmental factors may play a role in the pathogenesis of lean NAFLD. Genetic and metabolic conditions should be considered as well. Currently, there are no formal recommendations for the treatment of adult or pediatric lean NAFLD; however, lifestyle changes aimed at improving overall fitness are likely to have a favorable impact.
Collapse
Affiliation(s)
- Alice Yuxin Wang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jasbir Dhaliwal
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Marialena Mouzaki
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique. Pediatr Radiol 2018; 48:941-953. [PMID: 29728744 DOI: 10.1007/s00247-018-4127-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 03/25/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. OBJECTIVE This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. MATERIALS AND METHODS Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MDwithin). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρc) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. RESULTS In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρc=0.994, and r=0.997 and ρc=0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MDwithin=0.25% for PDFF. CONCLUSION In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.
Collapse
|
15
|
Prevalence of Suspected Nonalcoholic Fatty Liver Disease in Lean Adolescents in the United States. J Pediatr Gastroenterol Nutr 2018; 67:75-79. [PMID: 29570139 DOI: 10.1097/mpg.0000000000001974] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) can develop in lean subjects referred to as lean NAFLD. We aim to evaluate the prevalence and risk factors of NAFLD in lean adolescents in the United States (US). METHODS Cross sectional data from 1482 lean subjects (body mass index <85th percentile) ages between 12 and 18 years, who were enrolled in the National Health and Examination Survey during the 2005 to 2014 cycles were included. We defined suspected NAFLD as alanine aminotransferase >25.8 U/L for boys and >22.1 U/L for girls; hypertriglyceridemia as triglycerides ≥150 mg/dL; low HDL as HDL <40 mg/dL and insulin resistance (IR) as homeostatic model assessment of IR ≥3. RESULTS The mean weighted prevalence of suspected NAFLD among lean adolescents during 2005 to 2014 cycles was 8% (95% CI 6.2-9.9). Lean subjects with suspected NAFLD were significantly older compared with lean non-NAFLD subjects (15.5 vs 15 years, P value <0.05). Low HDL (15.5% vs 6.8%; P value 0.016) and hypertriglyceridemia (10% vs 3.9%; P value 0.028) were also found to be more common among lean NAFLD subjects compared with their non-NAFLD counterparts. Presence of IR increased the risk of having suspected NAFLD by 4-fold among lean adolescents. Non-Hispanic black lean adolescents were less likely to have suspected NAFLD compared with non-Hispanic white lean adolescents. CONCLUSIONS The estimated prevalence of suspected NAFLD among lean adolescents in the US was found to be 8% with evidence of metabolic derangements such as low HDL, hypertriglyceridemia, and IR.
Collapse
|
16
|
Zhang HX, Fu JF, Lai C, Tian FY, Su XL, Huang K. Feasibility of balanced steady-state free precession sequence at 1.5T for the evaluation of hepatic steatosis in obese children and adolescents. Eur Radiol 2018; 28:4479-4487. [DOI: 10.1007/s00330-018-5344-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
|
17
|
Kim D, Kim WR. Nonobese Fatty Liver Disease. Clin Gastroenterol Hepatol 2017; 15:474-485. [PMID: 27581063 DOI: 10.1016/j.cgh.2016.08.028] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a group of conditions characterized by hepatic steatosis in the absence of significant alcohol consumption. NAFLD is seen commonly in patients with metabolic abnormalities associated with obesity, such as type II diabetes, dyslipidemia, and metabolic syndrome. Evidently, however, not all obese subjects develop NAFLD and, more importantly, NAFLD can be found in nonobese individuals. Although NAFLD occurring in nonobese subjects has been reported in children and adults of all ethnicities, it appears to be recognized more frequently in Asians, even when strict ethnicity-specific body mass index criteria are used to define obesity. Studies based on liver biopsies suggest that the prevalence of nonalcoholic steatohepatitis and fibrosis does not differ significantly between nonobese NAFLD and NAFLD in obese patients. Visceral obesity as opposed to general obesity, high fructose and cholesterol intake, and genetic risk factors (eg, palatin-like phospholipase domain-containing 3) may be associated with nonobese NAFLD. In general, nonalcoholic steatohepatitis is associated with increased mortality, primarily from cardiovascular causes, independent of other metabolic factors. Although data regarding the mortality impact of nonobese NAFLD are not as mature, it may be important to identify high-risk nonobese NAFLD patients and manage their metabolic profile. Currently, lifestyle modification to reduce visceral adiposity, including dietary changes and physical activity, remains the standard of care in patients with nonobese NAFLD.
Collapse
Affiliation(s)
- Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - W Ray Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
18
|
Mann JP, Raponi M, Nobili V. Clinical implications of understanding the association between oxidative stress and pediatric NAFLD. Expert Rev Gastroenterol Hepatol 2017; 11:371-382. [PMID: 28162008 DOI: 10.1080/17474124.2017.1291340] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is central to the pathogenesis of non-alcoholic steatohepatitis. The reactive oxygen species (ROS) that characterise oxidative stress are generated in several cellular sites and their production is influence by multi-organ interactions. Areas covered: Mitochondrial dysfunction is the main source of ROS in fatty liver and is closely related to endoplasmic reticulum stress. Both are caused by lipotoxicity and together these three factors form a cycle of progressive organelle damage, resulting in sterile inflammation and apoptosis. Adipose tissue inflammation and intestinal dysbiosis provide substrates for ROS formation and trigger immune activation. Obstructive sleep apnea and abnormal divalent metal metabolism may also play a role. Expert commentary: The majority of available high-quality data originates from studies in adults and there are fewer therapeutic trials performed in pediatric cohorts, therefore conclusions are generalised to children. Establishing the role of organelle interactions, and its relationship with oxidative stress in steatohepatitis, is a rapidly evolving area of research.
Collapse
Affiliation(s)
- Jake P Mann
- a Metabolic Research Laboratories, Institute of Metabolic Science , University of Cambridge , Cambridge , UK.,b Department of paediatrics , University of Cambridge , Cambridge , UK
| | | | - Valerio Nobili
- d Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,e Liver Research Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy
| |
Collapse
|
19
|
Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, Kapovic M, Ristic S. The Role of Iron and Iron Overload in Chronic Liver Disease. Med Sci Monit 2016; 22:2144-51. [PMID: 27332079 PMCID: PMC4922827 DOI: 10.12659/msm.896494] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models.
Collapse
Affiliation(s)
- Sandra Milic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | | | - Lidija Orlic
- Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia
| | - Edita Devcic
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | | | - Davor Stimac
- Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia
| | - Miljenko Kapovic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| | - Smiljana Ristic
- Department of Biology and Medical Genetics, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
20
|
Ghamarchehreh ME, Jonaidi-Jafari N, Bigdeli M, Khedmat H, Saburi A. Iron Status and Metabolic Syndrome in Patients with Non-Alcoholic Fatty Liver Disease. Middle East J Dig Dis 2016; 8:31-8. [PMID: 26933479 PMCID: PMC4773080 DOI: 10.15171/mejdd.2016.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND
A hypothesis has been presented about the role of serum iron, ferritin and transferrin saturation among patients with non-alcoholic fatty liver disease (NAFLD) and resistance to insulin (metabolic syndrome [MetS]), but there is much controversy. This study aimed at investigating the level of serum iron and demographic characteristics in patients with NAFLD with or without MetS.
METHODS
A case-control study was conducted on patients with elevated liver enzymes referring to Baqiyatallah clinic, Tehran, Iran during 2010-2011. After ruling out other causes of increased aminotransferases and approving the diagnosis of NAFLD, the patients were divided into two groups of with or without MetS. Then, the individuals’ demographic, sonographic, and laboratory characteristics were recorded.
RESULTS
This research included 299 patients suffering from NAFLD who were divided into MetS (n=143; 47.8%) and non-MetS (n=156; 52.2%) groups. The age, systolic and diastolic blood pressure, body mass index, waist/hip ratio, glucose tolerance test, serum insulin, C. peptide, triglyceride, and HB A1c were different between MetS and non-MetS groups (p<0.05). There was no significant difference in serum iron and ferritin levels between the two groups, however, a significant correlation was found between serum ferritin and alanine transaminase (p=0.005) and also aspartate aminotransferase (p=0.032).
CONCLUSION
Our findings did not show a significant relationship between iron, in free or storage form, and the presence of MetS among patients with NAFLD, but serum ferritin can correlate with hepatocytes injuries indicated by raised aminotransferases. Nevertheless, to clarify this relationship further molecular, genomic, and histopathological studies are required.
Collapse
Affiliation(s)
- Mohammad Ebrahim Ghamarchehreh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Bigdeli
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Khedmat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amin Saburi
- Birjand Atherosclerosis and Coronary Artery Research Center, Birjand University of Medical Sciences, Birjand, Iran & Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Feldman A, Aigner E, Weghuber D, Paulmichl K. The Potential Role of Iron and Copper in Pediatric Obesity and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:287401. [PMID: 26273604 PMCID: PMC4529901 DOI: 10.1155/2015/287401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/11/2015] [Indexed: 02/06/2023]
Abstract
Obesity is a rapidly growing health problem and is paralleled by a multitude of comorbidities, including nonalcoholic fatty liver disease (NAFLD). NAFLD has become the most common chronic liver disease in both adults and children. The current understanding of NAFLD is still fragmentary. While simple steatosis is characterized by the interplay between excessive free fatty acid accumulation and hepatic insulin resistance, the progression to NASH has been related to oxidative stress and a proinflammatory state with dysbalanced adipokine, cytokine levels, and endotoxin-mediated immune response. In addition, oxidative stress has been suggested to play a central role for the sequelae leading to NASH. Trace elements are critical in regulatory, immunologic, and antioxidant functions resulting in protection against inflammation and peroxidation and consequently against the known comorbidities of obesity. Disruptions of the metal detoxification processes located in the liver are plausibly related to NAFLD development via oxidative stress. Perturbations of iron and copper (Cu) homeostasis have been shown to contribute to the pathogenesis of NAFLD. This review presents current data from pediatric studies. In addition, data from adult studies are summarized where clinical relevance may be extrapolated to pediatric obesity and NAFLD.
Collapse
Affiliation(s)
- Alexandra Feldman
- First Department of Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Katharina Paulmichl
- Obesity Research Unit, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Lange T, Buechert M, Baumstark MW, Deibert P, Gerner S, Rydén H, Seufert J, Korsten-Reck U. Value of MRI and MRS fat measurements to complement conventional screening methods for childhood obesity. J Magn Reson Imaging 2015; 42:1214-22. [DOI: 10.1002/jmri.24919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Thomas Lange
- Department of Radiology; Medical Physics, University Medical Center Freiburg; Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg; Freiburg Germany
| | - Martin Buechert
- Department of Radiology; Medical Physics, University Medical Center Freiburg; Freiburg Germany
| | - Manfred W. Baumstark
- Department of Rehabilitative and Preventive Sports Medicine; University Medical Center Freiburg; Freiburg Germany
| | - Peter Deibert
- Department of Rehabilitative and Preventive Sports Medicine; University Medical Center Freiburg; Freiburg Germany
| | - Sarah Gerner
- Department of Rehabilitative and Preventive Sports Medicine; University Medical Center Freiburg; Freiburg Germany
| | - Henric Rydén
- Department of Radiology; Medical Physics, University Medical Center Freiburg; Freiburg Germany
| | - Jochen Seufert
- Department of Endocrinology and Diabetology; University Medical Center Freiburg; Freiburg Germany
| | - Ulrike Korsten-Reck
- Department of Rehabilitative and Preventive Sports Medicine; University Medical Center Freiburg; Freiburg Germany
| |
Collapse
|
23
|
Moya D, Baker SS, Liu W, Garrick M, Kozielski R, Baker RD, Zhu L. Novel pathway for iron deficiency in pediatric non-alcoholic steatohepatitis. Clin Nutr 2014; 34:549-56. [PMID: 25000850 DOI: 10.1016/j.clnu.2014.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Iron may be an important factor in the pathogenesis of non-alcoholic steatohepatitis (NASH) as it catalyzes the production of potent reactive oxygen species. We aim to examine iron status in pediatric NASH. METHODS Serum indices of NASH patients (N = 36) were compared to those in the U.S. National Health and Nutrition Examination Survey database (N = 802). Iron related gene expression was examined in NASH livers and normal livers, using microarray and quantitative real-time PCR (10 NASH livers and 6 controls). Transferrin and catalase expression were also examined in hydrogen peroxide treated HepG2 cells. RESULTS Serum iron concentration (P < 0.01) and soluble transferrin receptor 1 (P < 0.0001) were decreased while serum ferritin was elevated in NASH patients (P < 0.01). No detectable iron was observed in NASH liver by Perls' Prussian blue staining. Transferrin (P < 0.01) and transferrin receptor 2 (P < 0.01) mRNA were elevated in NASH patients. Of particular interest, transferrin mRNA was positively correlated with catalase mRNA (r = 0.9338, P < 0.0001). H2O2 treatment of HepG2 cells induced mRNA expression of transferrin and catalase. CONCLUSIONS Pediatric NASH patients exhibited decreased serum iron concentration and no detectable iron was observed in any NASH liver by Perls' Prussian blue staining. These changes are consistent with the facts that most NASH patients are obese and exhibit chronic inflammation. In line with a status of iron deficiency, gene expression studies suggested decreased expression of transferrin and transferrin receptor 2 in NASH livers. Induction of transferrin by H2O2, and consequently, decreased iron absorption, suggests a novel mechanism for iron deficiency in NASH patients.
Collapse
Affiliation(s)
- Diana Moya
- Department of Pediatrics, SUNY at Buffalo, United States; Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, United States
| | - Susan S Baker
- Department of Pediatrics, SUNY at Buffalo, United States; Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, United States.
| | - Wensheng Liu
- Department of Pediatrics, SUNY at Buffalo, United States; Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, United States
| | - Michael Garrick
- Department of Pediatrics, SUNY at Buffalo, United States; Department of Biochemistry, SUNY at Buffalo, United States
| | - Rafal Kozielski
- Department of Pathology, SUNY at Buffalo, Women and Children's Hospital of Buffalo, Buffalo, NY 14214, United States
| | - Robert D Baker
- Department of Pediatrics, SUNY at Buffalo, United States; Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, United States
| | - Lixin Zhu
- Department of Pediatrics, SUNY at Buffalo, United States; Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, United States.
| |
Collapse
|
24
|
Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 2014; 19:5219-38. [PMID: 23394097 PMCID: PMC3850262 DOI: 10.2174/13816128113199990381] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 02/07/2023]
Abstract
Liver fat deposition related to systemic insulin resistance defines non-alcoholic fatty liver disease (NAFLD) which, when associated with oxidative hepatocellular damage, inflammation, and activation of fibrogenesis, i.e. non-alcoholic steatohepatitis (NASH), can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver disease and the leading cause of altered liver enzymes in Western countries. Epidemiological, familial, and twin studies provide evidence for an element of heritability of NAFLD. Genetic modifiers of disease severity and progression have been identified through genome-wide association studies. These include the Patatin-like phosholipase domain-containing 3 (PNPLA3) gene variant I148M as a major determinant of inter-individual and ethnicity-related differences in hepatic fat content independent of insulin resistance and serum lipid concentration. Association studies confirm that the I148M polymorphism is also a strong modifier of NASH and progressive hepatic injury. Furthermore, a few large multicentre case-control studies have demonstrated a role for genetic variants implicated in insulin signalling, oxidative stress, and fibrogenesis in the progression of NAFLD towards fibrosing NASH, and confirm that hepatocellular fat accumulation and insulin resistance are key operative mechanisms closely involved in the progression of liver damage. It is now important to explore the molecular mechanisms underlying these associations between gene variants and progressive liver disease, and to evaluate their impact on the response to available therapies. It is hoped that this knowledge will offer further insights into pathogenesis, suggest novel therapeutic targets, and could help guide physicians towards individualised therapy that improves clinical outcome.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Department of Pathophysiology and Transplantation, section Internal Medicine, Università degli Studi Milano, UO Medicina Interna1B, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | |
Collapse
|
25
|
Nobili V, Svegliati-Baroni G, Alisi A, Miele L, Valenti L, Vajro P. A 360-degree overview of paediatric NAFLD: recent insights. J Hepatol 2013; 58:1218-29. [PMID: 23238106 DOI: 10.1016/j.jhep.2012.12.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multi-faceted disorder, which ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) with/without fibrosis. The effects of specific risk factors, such as obesity and sedentary lifestyle, on predisposing genetic settings eventually lead to the development of NAFLD in children. The complex interplay between genes and environment in NAFLD pathogenesis is sustained by multiple mechanisms that involve liver crosstalk with other organs and tissues, especially gut and adipose tissue. Unfortunately, natural history of paediatric NAFLD is lacking, and the etiopathogenesis is still in the process of being defined. Potential early predictors and suitable non-invasive diagnostic tools can be discovered based on the pathogenetic mechanisms and histological patterns. This will also help design novel treatments and a comprehensive and successful management strategy for patients. In this review, we discuss the recent advances made in genetics, etiopathogenesis, diagnosis, and therapeutic management of NAFLD, focusing especially on the obesity-related steatotic liver condition.
Collapse
Affiliation(s)
- Valerio Nobili
- Hepato-metabolic Disease Unit and Liver Research Unit, "Bambino Gesù" Children's Hospital, IRCCS, P.le S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) in adolescents and children is rapidly becoming one of the most common causes of chronic liver disease worldwide. NAFLD varies from simple fatty liver to nonalcoholic steatohepatitis (NASH) with possible fibrosis. Several studies suggest that oxidative stress plays a central role in several metabolic abnormalities and cellular damage that characterize NAFLD. We investigated whether transition metals and their related proteins were related to NAFLD symptoms and their underlying processes. METHODS We measured copper, iron, ceruloplasmin (Cp) concentration and activity, transferrin (Tf), ferroxidase activity, and ferritin, and we calculated Tf saturation and Cp to Tf ratio (Cp/Tf) as an index of the activity of the antioxidant Cp-Tf system in 100 children with biopsy-proven NAFLD. Pediatric patients were grouped by nonalcoholic fatty liver disease score (NAS) ≥ 5 (30 subjects) and NAS < 5 (70). RESULTS Cp distinguished children with NAS ≥ 5 from those with NAS < 5 with an accuracy of 82%. Specifically, a receiver operator characteristics curve showed that a cutoff of 28.6 mg/dL separated NAS ≥ 5 from NAS < 5 with a specificity of 92% and a sensitivity of 76%. The Cp/Tf ratio, as well as copper concentration and Cp activity, decreased in the NAS ≥ 5 group, pointing out an imbalance in metal regulation. Either copper or Cp concentrations were lower in subjects having ballooning. CONCLUSIONS Serum antioxidant capacity owing to Cp failure is strongly associated with NAFLD-related damage. Further studies are, however, required to clarify the role of Cp in NAFLD pathogenesis and to evaluate its potential application as diagnostic marker.
Collapse
|
27
|
The severity of histologic liver lesions is independent of body mass index in patients with nonalcoholic fatty liver disease. J Clin Gastroenterol 2013; 47:280-6. [PMID: 23391869 DOI: 10.1097/mcg.0b013e31826be328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GOALS/BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, but it may also be present in lean individuals. We evaluated the characteristics of NAFLD patients, focusing on those with normal body mass index (BMI). STUDY One hundred and sixty-two of 185 consecutive NAFLD patients were included. Demographic, clinical, somatometric, and laboratory characteristics were recorded. BMI<25 kg/m2 was considered to be normal. RESULTS Of the 162 patients, 12% had normal BMI. Patients with normal compared with those with increased BMI fulfilled more frequently no criterion of metabolic syndrome (43% vs. 2%; P<0.001) and had higher median alanine aminotransferase (92 vs. 62 IU/L; P=0.032) and aspartate aminotransferase levels (45 vs. 37 IU/L; P=0.036). Liver stiffness values by transient elastography were significantly lower in patients with normal than in those with increased BMI (5.0 ± 1.6 vs. 9.5 ± 8.7 kPa; P=0.003). In the 56 patients with liver biopsy, the prevalence of nonalcoholic steatohepatitis (50% vs. 68.8%; P=0.423) and the severity of inflammation and fibrosis did not significantly differ between cases with normal and those with increased BMI. CONCLUSIONS Approximately 1 of 8 NAFLD patients coming to a Greek tertiary liver center has normal BMI. On liver biopsy, normal BMI patients often have nonalcoholic steatohepatitis and histologic liver lesions of similar severity to the overweight or obese patients.
Collapse
|
28
|
Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol 2011; 55:920-32. [PMID: 21718726 DOI: 10.1016/j.jhep.2011.05.008] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/29/2011] [Accepted: 05/31/2011] [Indexed: 12/17/2022]
Abstract
The dysmetabolic iron overload syndrome (DIOS) is now a frequent finding in the general population, as is detected in about one third of patients with nonalcoholic fatty liver disease (NAFLD) and the metabolic syndrome. The pathogenesis is related to altered regulation of iron transport associated with steatosis, insulin resistance, and subclinical inflammation, often in the presence of predisposing genetic factors. Evidence is accumulating that excessive body iron plays a causal role in insulin resistance through still undefined mechanisms that probably involve a reduced ability to burn carbohydrates and altered function of adipose tissue. Furthermore, DIOS may facilitate the evolution to type 2 diabetes by altering beta-cell function, the progression of cardiovascular disease by contributing to the recruitment and activation of macrophages within arterial lesions, and the natural history of liver disease by inducing oxidative stress in hepatocytes, activation of hepatic stellate cells, and malignant transformation by promotion of cell growth and DNA damage. Based on these premises, the association among DIOS, metabolic syndrome, and NAFLD is being investigated as a new risk factor to predict the development of overt cardiovascular and hepatic diseases, and possibly hepatocellular carcinoma, but most importantly, represents also a treatable condition. Indeed, iron depletion, most frequently achieved by phlebotomy, has been shown to decrease metabolic alterations and liver enzymes in controlled studies in NAFLD. Additional studies are warranted to evaluate the potential of iron reductive therapy on hard clinical outcomes in patients with DIOS.
Collapse
|