1
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
3
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Since the discovery of PCSK9 in 2003, this proprotein convertase was shown to target specific receptors for degradation in endosomes/lysosomes, including LDLR and other family members and hence to enhance the levels of circulating LDL-cholesterol (LDLc). Accordingly, inhibitors of PCSK9, including monoclonal antibodies blocking its circulating activity and siRNA silencers of its hepatic expression, are now used in clinics worldwide to treat hypercholesterolemia patients effectively and safely in combination with statins and/or ezetimibe. These powerful treatments reduce the incidence of atherosclerosis by at least 20%. Since 2008, novel targets of PCSK9 began to be defined, thereby expanding its roles beyond LDLc regulation into the realm of inflammation, pathogen infections and cellular proliferation in various cancers and associated metastases. RECENT FINDINGS Some pathogens such as dengue virus exploit the ability of PCSK9 to target the LDLR for degradation to enhance their ability to infect cells. Aside from increasing the degradation of the LDLR and its family members VLDLR, ApoER2 and LRP1, circulating PCSK9 also reduces the levels of other receptors such as CD36 (implicated in fatty acid uptake), oxidized LDLR receptor (that clears oxidized LDLc) as well as major histocompatibility class-I (MHC-I) receptors (implicated in the immune response to antigens). Thus, these novel targets provided links between PCSK9 and inflammation/atherosclerosis, viral infections and cancer/metastasis. The functional activities of PCSK9, accelerated the development of novel therapies to inhibit PCSK9 functions, including small molecular inhibitors, long-term vaccines, and possibly CRISPR-based silencing of hepatic expression of PCSK9. The future of inhibitors/silencers of PCSK9 function or expression looks bright, as these are expected to provide a modern armamentarium to treat various pathologies beyond hypercholesterolemia and its effects on atherosclerosis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| | - Damien Garçon
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
5
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
6
|
Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis. Sci Rep 2022; 12:5562. [PMID: 35365728 PMCID: PMC8975940 DOI: 10.1038/s41598-022-09588-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV infection display disordered lipid metabolism which resolves following successful anti-viral therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in hepatocarcinogenesis. We aimed to characterise variation in host lipid metabolism between participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely genotype-specific differences in lipid metabolism. We combined several lipidomic approaches: analysis was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry (MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve patients and 100 non-viraemic patients post-SVR. HCV-G3 patients had significantly decreased serum apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport pathway in HCV-G3. We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3.
Collapse
|
7
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
8
|
Joshita S, Yamashita Y, Okamoto T, Usami Y, Sugiura A, Yamazaki T, Kakino A, Ota M, Sawamura T, Umemura T. Quantitative and qualitative lipid improvement with chronic hepatitis C virus eradication using direct-acting antivirals. Hepatol Res 2021; 51:758-766. [PMID: 33982310 DOI: 10.1111/hepr.13666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
AIM Direct-acting antivirals have revolutionized hepatitis C virus (HCV) therapy by providing a high sustained virological response (SVR) rate and subsequent favorable lipid increases. Proprotein convertase subtilisin-kexin like-9 (PCSK9) plays an important role in regulating quantitative lipid levels. This study examined the interactions between quantitative PCSK9 and lipid changes, as well as qualitative lipid changes in terms of lectin-like oxidized low-density lipoprotein (LDL) receptor-1 ligand containing apolipoprotein B (LAB) and high-density lipoprotein (HDL) cholesterol uptake capacity (HDL-CUC). METHODS Patients with chronic HCV infection (N = 231) who achieved an SVR by direct-acting antivirals without lipid-lowering therapy were included for comparisons of PCSK9, LAB, HDL-CUC, and other clinical indices between pretreatment and SVR12 time points. RESULTS LDL (LDL) cholesterol and HDL cholesterol levels were quantitatively increased at SVR12, along with higher PCSK9 (all p < 0.0001). PCSK9 was significantly correlated with LDL cholesterol (r = 0.244, p = 0.0003) and apolipoprotein B (r = 0.222, p = 0.0009) at SVR12. Regarding qualitative LDL changes, LAB was significantly decreased and LAB/LDL cholesterol and LAB/apolipoprotein B proportions were improved at SVR12 (all p < 0.0001). In terms of qualitative HDL changes, HDL-CUC was significantly ameliorated, along with HDL-CUC/HDL cholesterol, HDL-CUC/ apolipoprotein A1, and HDL-CUC/ apolipoprotein A2 at SVR12 (all p < 0.0001). CONCLUSIONS HCV eradication by direct-acting antivirals may produce quantitative lipid profile changes, along with PCSK9 production recovery in addition to qualitative lipid improvement, which possibly confers the additional secondary benefits of atherosclerosis improvement and cardiovascular disease event reduction.
Collapse
Affiliation(s)
- Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
9
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
10
|
Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K, Buechler C. Rapid Decline of Serum Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) in Non-Cirrhotic Patients with Chronic Hepatitis C Infection Receiving Direct-Acting Antiviral Therapy. J Clin Med 2021; 10:1621. [PMID: 33920491 PMCID: PMC8069657 DOI: 10.3390/jcm10081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Direct-acting antivirals (DAAs) efficiently eradicate the hepatitis C virus (HCV). Low-density lipoprotein (LDL) levels increase rapidly upon DAA treatment. Proprotein convertase subtilisin/kexin 9 (PCSK9) induces degradation of the hepatic LDL receptor and thereby elevates serum LDL. The aim of this study was to determine serum PCSK9 concentrations during and after DAA therapy to identify associations with LDL levels. Serum PCSK9 was increased in 82 chronic HCV-infected patients compared to 55 patients not infected with HCV. Serum PCSK9 was low in HCV patients with liver cirrhosis, but patients with HCV-induced liver cirrhosis still exhibited higher serum PCSK9 than patients with non-viral liver cirrhosis. Serum PCSK9 correlated with measures of liver injury and inflammation in cirrhotic HCV patients. In patients without liver cirrhosis, a positive association of serum PCSK9 with viral load existed. Serum PCSK9 was not different between viral genotypes. Serum PCSK9 did not correlate with LDL levels in HCV patients irrespective of cirrhotic status. Serum PCSK9 was reduced, and LDL was increased at four weeks after DAA therapy start in non-cirrhotic HCV patients. Serum PCSK9 and LDL did not change upon DAA treatment in the cirrhotic group. The rapid decline of PCSK9 after the start of DAA therapy in conjunction with raised LDL levels in non-cirrhotic HCV patients shows that these changes are not functionally related.
Collapse
Affiliation(s)
- Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Doris Schacherer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010 Bern, Switzerland;
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| |
Collapse
|
11
|
Liu X, Suo R, Chan CZY, Liu T, Tse G, Li G. The immune functions of PCSK9: Local and systemic perspectives. J Cell Physiol 2019; 234:19180-19188. [PMID: 30950043 DOI: 10.1002/jcp.28612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR) to trigger endocytosis and lysosome degradation in hepatocytes, regulating intracellular and plasma cholesterol levels. The discovery of PCSK9 has provided a new target for the management of hypercholesterolemia and cardiovascular risk reduction. There is emerging evidence that shows that PCSK9 may influence the activity of various cell types through either LDLR-dependent or LDLR-independent mechanisms. Changes in the circulating PCSK9 levels have been observed during infection and proinflammatory conditions. Furthermore, PCSK9 as a secreted protein has both local and systemic effects on cellular function. In this review, we summarize the roles of PCSK9 in inflammation.
Collapse
Affiliation(s)
- Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Rong Suo
- Department of Cardiology, Tianjin Hospital, Tianjin, People's Republic of China
| | - Calista Zhuo Yi Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - GuangPing Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Ichikawa T, Miyaaki H, Miuma S, Taura N, Motoyoshi Y, Akahoshi H, Nakamura J, Takahashi Y, Honda T, Yajima H, Uehara R, Hino N, Narita S, Tanaka H, Sasaki S, Nakao K. Changes in serum LDL, PCSK9 and microRNA-122 in patients with chronic HCV infection receiving Daclatasvir/Asunaprevir. Biomed Rep 2019; 10:156-164. [PMID: 30906544 DOI: 10.3892/br.2019.1189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
The present study evaluated the changes in lipid profile, and the associations between serum protein convertase subtilisin/kexin 9 (PCSK9), microRNA (miR)122 and low-density lipoprotein variation following treatment of hepatitis C virus (HCV) genotype 1b infection with Daclatasvir/Asunaprevir. A total of 39 patients with HCV genotype 1b infection with chronic hepatitis received a 24-week treatment regimen of Daclatasvir/Asunaprevir. Laboratory data were obtained for each subject every 4 weeks during treatment and every 12 weeks after treatment. Serum miR122 and PCSK9 were measured at the start of treatment (week 0), end of treatment (week 24), 4 weeks after the end of treatment (week 28), 12 weeks after the end of treatment (week 36) and 28 weeks after the end of treatment (week 52). LDL was increased at week 4 after the start of treatment to week 52. The increased LDL/HDL ratio at week 52 compared with week 4 was also associated with relative miR122 at week 52. At week 4, PCSK9-active form (A) was lower than that at other time points, and PCSK9-inactive form (I) exhibited the greatest increase. At week 52, PCSK9-A was higher than that during treatment, but PCSK9-I level at week 52 did not markedly differ from that any time point except for week 4. Relative miR122 at week 4 was associated with increased PCSK9-A at weeks 36 and 52 from the start of DAA. In summary, treatment of HCV with Daclatasvir/Asunaprevir resulted in elevated LDL, and relative miR122 and PCSK9-A levels in serum appeared to have some association with LDL increase.
Collapse
Affiliation(s)
- Tatsuki Ichikawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan.,Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan.,Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yasuhide Motoyoshi
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Hiroshi Akahoshi
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Junpei Nakamura
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Youichi Takahashi
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Tetsurou Honda
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Hiroyuki Yajima
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Ryouhei Uehara
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Naoyuki Hino
- Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Syouhei Narita
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Hisaya Tanaka
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Seina Sasaki
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
13
|
Abstract
Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.
Collapse
Affiliation(s)
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, Université de Nantes, CHU Nantes, Nantes, France
| | - G Kees Hovingh
- Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Filippatos TD, Christopoulou EC, Elisaf MS. Pleiotropic effects of proprotein convertase subtilisin/kexin type 9 inhibitors? Curr Opin Lipidol 2018; 29:333-339. [PMID: 29994840 DOI: 10.1097/mol.0000000000000523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Current data suggest that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors may affect many metabolic pathways beyond lowering LDL cholesterol. The aim of the present manuscript is to present these so-called pleiotropic effects of PCSK9 inhibitors. RECENT FINDINGS PCSK9 may affect the activity of other receptors beyond LDL receptors (LDLR), such as cluster of differentiation 36 (CD36), very-low-density-lipoprotein (VLDL) receptors, apolipoprotein (Apo) E receptors, LDLR-related protein 1 (LRP-1) and ATP-Binding Cassette Transporter (ABCA1). Thus, a role of PCSK9 in the development of atherosclerosis, in vascular wall inflammation and in platelet function has been suggested. Additionally, PCSK9 inhibitors may affect lipid variables beyond LDL cholesterol, carbohydrate variables, as well as they may affect brain and kidney function. Additionally, a controversial role of PCSK9 in sepsis, hepatitis C infection and Alzheimer's disease has been suggested. SUMMARY These possible pleiotropic effects of PCSK9 inhibitors need further research, as they may affect cardiovascular risk and provide further insights in the development of atherosclerosis and other diseases such as Alzheimer's disease or chronic viral infection and sepsis.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Crete
| | - Eliza C Christopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
15
|
Chang SW, Cheng ML, Shiao MS, Yeh CT, Wang CH, Fan CM, Chiu CT, Chang ML. Recovery of lipid metabolic alterations in hepatitis C patients after viral clearance: Incomplete restoration with accelerated ω-oxidation. J Clin Lipidol 2018; 12:756-766. [PMID: 29574072 DOI: 10.1016/j.jacl.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/31/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND How hepatitis C virus (HCV)-associated lipid metabolic alterations recover after sustained virological response (SVR) remains elusive. OBJECTIVE The aforementioned recovery pattern was investigated. METHODS In a prospective cohort study of 438 chronic hepatitis C (CHC) patients with SVR after anti-HCV therapy, 164 sex- and age-matched genotype I (G1) and G2 patients underwent paired-serum liquid chromatography-tandem mass spectrometry analyses before and 24 weeks after therapy. Subjects without CHC served as controls (n = 100). RESULTS CHC patients had lower baseline lipid levels than controls. Among CHC patients, pre-therapy total cholesterol levels were positively associated with HCV RNA levels; G1 patients had higher pre-therapy HCV RNA levels than G2 patients. Repeated measures analysis of variance of CHC patients showed that lathosterol, lanosterol, total hydroxysphingomyelin, and total phosphatidylcholines levels, and total dicarboxyacylcarnitine/total acylcarnitine (indicators of ω-oxidation) and pre-β-lipoprotein ratios elevated 24 weeks after therapy compared with the levels before therapy. Levels of total lysophosphatidylcholines and α- and β-lipoprotein ratios decreased. Subgroup analyses showed elevated 7-dehydrocholesterol and lanosterol levels, particularly in G2 and male patients, who had broader spectra of altered phosphatidylcholines and acylcarnitines than G1 and female patients, respectively. Compared with controls, CHC patients had higher post-therapy levels of total lysophosphatidylcholines and hydroxysphingomyelins and ratios of total dicarboxyacylcarnitines/total acylcarnitines but lower cholesterol levels. CONCLUSIONS At 24 weeks after therapy, accelerated cholesterol biosynthesis, hepatic lipid export, ω-oxidation, and decreased systemic inflammation were noted in CHC patients with SVR, with greater efficiency in G2 and male patients. Regardless, HCV-associated lipid metabolic alterations required >24 weeks for restoration or were incompletely reversible after SVR.
Collapse
Affiliation(s)
- Su-Wei Chang
- Liver Research Centre, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Clinical Informatics and Medical Statistics Research Centre, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Metabolomics Core Laboratory, Healthy Aging Research Centre, Chang Gung University, Taoyuan, Taiwan; Clinical Phenome Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Shi Shiao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Centre, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Department of Internal Medicine, Division of Cardiology, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ming Fan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Liver Research Centre, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Chang
- Liver Research Centre, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Bridge SH, Pagano S, Jones M, Foster GR, Neely D, Vuilleumier N, Bassendine MF. Autoantibody to apolipoprotein A-1 in hepatitis C virus infection: a role in atherosclerosis? Hepatol Int 2018; 12:17-25. [PMID: 29423541 PMCID: PMC5814532 DOI: 10.1007/s12072-018-9842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Background/purpose One to three per cent of the world’s population has hepatitis C virus (HCV) infection, which is not only a major cause of liver disease and cancer but also associated with an increased risk of atherosclerosis, despite an ostensibly favourable lipid profile. Autoantibodies are frequent in HCV infection and emerging evidence shows that autoantibodies could be valuable for cardiovascular disease (CVD) risk stratification. This study investigated a novel independent biomarker of CVD, autoantibodies to apolipoprotein A-1 (anti-apoA-1 IgG) and lipids in patients with chronic HCV before, during and after direct-acting anti-viral (DAA) therapy. Methods Eighty-nine blinded serum samples from 27 patients with advanced chronic HCV were assayed for lipids and anti-apoA-1 IgG by ELISA. Results Pre-treatment HCV viral load correlated with high-density lipoprotein cholesterol (HDL-C, r = 0.417; p = 0.042) and negatively with apolipoprotein (apo)B (r = − 0.497; p = 0.013) and markers of CVD risk, the apoB/apoA-1 ratio (r = − 0.490; p = 0.015) and triglyceride level (TG)/HDL-C ratio (r = − 0.450; p = 0.031). Fourteen (52%) of 27 patients had detectable anti-apoA-1 IgG autoantibodies pre-treatment; only two became undetectable with virological cure. Autoantibody-positive sera had lower apoA-1 (p = 0.012), HDL-C (p = 0.009) and total cholesterol (p = 0.006) levels. Conclusions This is the first report of the presence of an emerging biomarker for atherosclerosis, anti-apoA-1 IgG, in some patients with HCV infection. It may be induced by apoA-1 on the surface of HCV lipoviral particles. The autoantibodies inversely correlate with apoA-1 and HDL levels and may render HDL dysfunctional. Whether these hypothesis-generating findings have clinical implications in HCV patients requires further study.
Collapse
Affiliation(s)
- Simon H Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Meleri Jones
- The Liver Unit, Blizard Institute, Queen Mary University of London, London, UK
| | - Graham R Foster
- The Liver Unit, Blizard Institute, Queen Mary University of London, London, UK
| | - Dermot Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Department of Hepatology and Gastroenterology, Imperial College London, 10th Floor QEQM Wing, St. Mary's Hospital Campus, South Wharf Street, London, W2 1NY, UK.
| |
Collapse
|
17
|
Li Z, Liu Q. Proprotein convertase subtilisin/kexin type 9 inhibits hepatitis C virus replication through interacting with NS5A. J Gen Virol 2017; 99:44-61. [PMID: 29235977 DOI: 10.1099/jgv.0.000987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease actively involved in regulating lipid homeostasis. Although PCSK9 has been shown to inhibit hepatitis C virus (HCV) entry and replication, the underlying mechanisms have not been thoroughly characterized. Moreover, whether PCSK9 regulates HCV translation and assembly/secretion has not been determined. We therefore further studied the effects of PCSK9 on the HCV life cycle. We showed that PCSK9 did not affect HCV translation or assembly/secretion. Overexpression of PCSK9 inhibited HCV replication in HCV genomic replicon cells in a dose-dependent manner and after cell culture-derived HCV (HCVcc) infection. Knocking down PCSK9 increased HCV replication. The gain-of-function (D374Y) or loss-of-function (Δaa. 31-52) PCSK9 mutants for low-density lipoprotein receptor (LDLR) degradation had no effect on HCV replication, suggesting that HCV replication inhibition by PCSK9 was not due to LDLR degradation. The uncleaved ProPCSK9, but not cleaved PCSK9, down-regulated HCV replication, suggesting that the auto-cleavage of PCSK9 affected HCV replication. We also found that PCSK9 interacted with NS5A through NS5A aa. 95-215, and this region played an important role in NS5A dimerization, NS5A-RNA binding and was essential for HCV replication. More importantly, NS5A dimerization and NS5A-RNA binding were suppressed by PCSK9 upon interaction. These results suggested that PCSK9 inhibited HCV replication through interaction with NS5A. Our study should help optimize anti-HCV treatment regimen in patients with abnormal lipid profiles.
Collapse
Affiliation(s)
- Zhubing Li
- VIDO-InterVac, School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,VIDO-InterVac, School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
Recent Advances in the Pathogenesis of Hepatitis C Virus-Related Non-Alcoholic Fatty Liver Disease and Its Impact on Patients Cured of Hepatitis C. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11901-017-0370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Zanni MV, Stone LA, Toribio M, Rimmelin DE, Robinson J, Burdo TH, Williams K, Fitch KV, Lo J, Grinspoon SK. Proprotein Convertase Subtilisin/Kexin 9 Levels in Relation to Systemic Immune Activation and Subclinical Coronary Plaque in HIV. Open Forum Infect Dis 2017; 4:ofx227. [PMID: 29226174 PMCID: PMC5714125 DOI: 10.1093/ofid/ofx227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background Proprotein convertase subtilisin/kexin 9 (PCSK9) is known to mediate homeostasis of low-density lipoprotein cholesterol (LDL-c), but it may also participate in immune reactivity and atherogenesis. Methods We compared circulating PCSK9 levels among asymptomatic individuals with and without HIV. Further, within each group, we assessed the relationship between PCSK9 levels, traditional cardiovascular disease risk factors, immune activation, and subclinical coronary atherosclerotic plaque. Results PCSK9 levels were higher among HIV-infected (n = 149) vs matched non-HIV-infected subjects (n = 69; 332 [272, 412] ng/mL vs 304 [257, 375] ng/mL; P = .047). Among HIV-infected subjects, significant albeit modest positive associations were noted between PCSK9 levels and markers of systemic monocyte activation including sCD14 (rho = 0.22; P = .009) and sCD163 (rho = 0.23; P = .006). In this group, PCSK9 levels related weakly to LDL-c (rho = 0.16; P = .05) and also to Framingham Point Score but did not relate to subclinical coronary atherosclerotic plaque parameters. Conclusions Among HIV-infected individuals, circulating PCSK9 levels are elevated and related to systemic markers of monocyte activation but not to coronary plaque parameters. Additional studies are needed to determine the effects of PCSK9 on immune activation and atherogenesis in HIV and to assess whether PCSK9 inhibition reduces immune activation and coronary atherosclerotic plaque burden. Clinical Trial Registration NCT00455793.
Collapse
Affiliation(s)
- Markella V Zanni
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren A Stone
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mabel Toribio
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dodie E Rimmelin
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jake Robinson
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Tricia H Burdo
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Janet Lo
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence: S. K. Grinspoon, MD, Program in Nutritional Metabolism, Massachusetts General Hospital, 55 Fruit Street, LON207, Boston, MA 02114 ()
| |
Collapse
|
20
|
Pirro M, Bianconi V, Francisci D, Schiaroli E, Bagaglia F, Sahebkar A, Baldelli F. Hepatitis C virus and proprotein convertase subtilisin/kexin type 9: a detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J Cell Mol Med 2017; 21:3150-3161. [PMID: 28722331 PMCID: PMC5706572 DOI: 10.1111/jcmm.13273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
From viral binding to the hepatocyte surface to extracellular virion release, the replication cycle of the hepatitis C virus (HCV) intersects at various levels with lipid metabolism; this leads to a derangement of the lipid profile and to increased viral infectivity. Accumulating evidence supports the crucial regulatory role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipoprotein metabolism. Notably, a complex interaction between HCV and PCSK9 has been documented. Indeed, either increased or reduced circulating PCSK9 levels have been observed in HCV patients; this discrepancy might be related to several confounders, including HCV genotype, human immunodeficiency virus (HIV) coinfection and the ambiguous HCV‐mediated influence on PCSK9 transcription factors. On the other hand, PCSK9 may itself influence HCV infectivity, inasmuch as the expression of different hepatocyte surface entry proteins and receptors is regulated by PCSK9. The aim of this review is to summarize the current evidence about the complex interaction between HCV and liver lipoprotein metabolism, with a specific focus on PCSK9. The underlying assumption of this review is that the interconnections between HCV and PCSK9 may be central to explain viral infectivity.
Collapse
Affiliation(s)
- Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Bagaglia
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Franco Baldelli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Khademi F, Momtazi-Borojeni AA, Reiner Ž, Banach M, Al-Rasadi KA, Sahebkar A. PCSK9 and infection: A potentially useful or dangerous association? J Cell Physiol 2017; 233:2920-2927. [PMID: 28574577 DOI: 10.1002/jcp.26040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Elevated plasma low-density lipoprotein-cholesterol (LDL-C) concentration is the most important risk factor for atherosclerotic cardiovascular diseases (CVDs). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a ubiquitously expressed serine proteinase which plays a key role in cholesterol metabolism, but has been found to be implicated in some other lipid-independent physiological processes. In this review, the role of PCSK9 was evaluated not only concerning lipid metabolism but also hepatitis C virus (HCV) infection, bacterial infections/sepsis, and septic shock. Collected data from clinical trials revealed that treatment with PCSK9 inhibitors has beneficial effects in lowering LDL-C via inhibition of LDL-receptors (LDL-R), an antiviral effect on HCV infection via down-regulating the surface expression of LDL-R and CD81 on hepatic cells, and a positive association with increased inflammatory responses, as well as with septic shock by down-regulation of hepatocyte LDL-R. On the other hand, PCSK9 inhibition by therapeutic fully humanized antibodies has positive effects in reducing elevated LDL-C. However, their safety and tolerability is an important issue which has to be taken into consideration.
Collapse
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Medical Biotechnology, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Khalid Al Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
23
|
Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The Proprotein Convertases in Hypercholesterolemia and Cardiovascular Diseases: Emphasis on Proprotein Convertase Subtilisin/Kexin 9. Pharmacol Rev 2016; 69:33-52. [DOI: 10.1124/pr.116.012989] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Sheridan DA, Hajarizadeh B, Fenwick FI, Matthews GV, Applegate T, Douglas M, Neely D, Askew B, Dore GJ, Lloyd AR, George J, Bassendine MF, Grebely J. Maximum levels of hepatitis C virus lipoviral particles are associated with early and persistent infection. Liver Int 2016; 36:1774-1782. [PMID: 27224844 DOI: 10.1111/liv.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/21/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is bound to plasma lipoproteins and circulates as an infectious lipoviral particle (LVP). Experimental evidence indicates that LVPs have decreased susceptibility to antibody-mediated neutralisation and higher infectivity. This study tested the hypothesis that LVPs are required to establish persistent infection, and conversely, low levels of LVP in recent HCV infection increase the probability of spontaneous HCV clearance. METHODS LVP in non-fasting plasma was measured using the concentration of HCV RNA bound to large >100 nm sized lipoproteins after ex vivo addition of a lipid emulsion, that represented the maximum concentration of LVP (maxi-LVP). This method correlated with LVP in fasting plasma measured using iodixanol density gradient ultracentrifugation. Maxi-LVP was measured in a cohort of 180 HCV participants with recent HCV infection and detectable HCV RNA from the Australian Trial in Acute Hepatitis C (ATAHC) and Hepatitis C Incidence and Transmission Study in prison (HITS-p) cohorts. RESULTS Spontaneous clearance occurred in 15% (27 of 180) of individuals. In adjusted analyses, low plasma maxi-LVP level was independently associated with spontaneous HCV clearance (≤827 IU/ml; adjusted odds ratio 3.98, 95% CI: 1.02, 15.51, P = 0.047), after adjusting for interferon lambda-3 rs8099917 genotype, estimated duration of HCV infection and total HCV RNA level. CONCLUSIONS Maxi-LVP is a biomarker for the maximum concentration of LVP in non-fasting samples. Low maxi-LVP level is an independent predictor of spontaneous clearance of acute HCV.
Collapse
Affiliation(s)
- David A Sheridan
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine & Dentistry, Plymouth, UK
| | | | - Fiona I Fenwick
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Gail V Matthews
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Tanya Applegate
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Mark Douglas
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Dermot Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bev Askew
- HB Innovations Ltd, Newcastle upon Tyne, UK
| | - Gregory J Dore
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| | - Andrew R Lloyd
- Inflammation and Infection Research Centre, School of Medical Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Medicine, Imperial College London, London, UK
| | - Jason Grebely
- The Kirby Institute, UNSW Australia, Kensington, NSW, Australia
| |
Collapse
|
25
|
Abstract
Reducing plasma levels of low-density lipoprotein cholesterol (LDL-C) remains the cornerstone in the primary and secondary prevention of cardiovascular disease. However, lack of efficacy and adverse effects mean that a substantial proportion of patients fail to achieve acceptable LDL-C levels with currently available lipid-lowering drugs. Over the last decade, inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic strategy to reduce residual cardiovascular disease risk. Binding of PCSK9 to the LDL receptor targets the receptor for lysosomal degradation. The recognition that inhibition of PCSK9 increases LDL receptor activity has led to the development of a number of approaches to directly target PCSK9. Numerous monoclonal antibodies against PCSK9 are currently being evaluated in phase 3 trials, involving various patient categories on different background lipid-lowering therapies. Current evidence shows reductions in LDL-C levels of up to 70 % may be achieved with PCSK9 inhibition, independent of background statin therapy. This review examines the most recent evidence and future prospects for the use of PCSK9 inhibitors in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- James Latimer
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, M3.131, 3rd Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Jonathan A Batty
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, M3.131, 3rd Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK
- Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - R Dermot G Neely
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, M3.131, 3rd Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Vijay Kunadian
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, M3.131, 3rd Floor William Leech Building, Newcastle upon Tyne, NE2 4HH, UK.
- Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW High levels of LDL-cholesterol (LDL-C) are directly associated with devastating cardiovascular complications. Statins downregulate cholesterol synthesis and upregulate hepatic mRNA levels of LDL receptor (LDLR) and proprotein convertase subtilisin-kexin 9 (PCSK9), a validated enhancer of LDLR protein degradation. Herein, we summarize recent discoveries of the biological properties of PCSK9 in both health and disease states. RECENT FINDINGS PCSK9 downregulation of the LDLR protein likely explains the observed protective effect of the loss of PCSK9 in reducing lipoprotein(a) and incidence of septic shock. Injectable inhibitory PCSK9 monoclonal antibodies are now prescribed to hypercholesterolemic patients that do not reach target levels of LDL-C with available drugs. PCSK9 also reduces the levels of other receptors, for example, VLDL receptor (VLDLR), ApoER2, CD36, and CD81. The efficacy of the upregulation of LDLR and VLDLR cell surface levels in the absence of PCSK9 is both tissue and sex dependent. As LDLR, CD81, and VLDLR are hepatitis C receptors, PCSK9 may protect against certain viral infections. SUMMARY New functions of PCSK9 and other receptor targets are beginning to emerge to explain the observed changes in LDL-C and triglycerides. The effect of PCSK9 loss-of-function on glucose metabolism, factors that regulate the expression of PCSK9, and the roles of PCSK9 in other tissues, for example, intestine, kidney, and brain require further investigations.
Collapse
Affiliation(s)
- Nabil G Seidah
- Institut de Recherches Cliniques de Montréal (IRCM), Affiliated with the Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
27
|
Kohli P, Ganz P, Ma Y, Scherzer R, Hur S, Weigel B, Grunfeld C, Deeks S, Wasserman S, Scott R, Hsue PY. HIV and Hepatitis C-Coinfected Patients Have Lower Low-Density Lipoprotein Cholesterol Despite Higher Proprotein Convertase Subtilisin Kexin 9 (PCSK9): An Apparent "PCSK9-Lipid Paradox". J Am Heart Assoc 2016; 5:JAHA.115.002683. [PMID: 27130349 PMCID: PMC4889164 DOI: 10.1161/jaha.115.002683] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors reduce low‐density lipoprotein cholesterol (LDL‐C) and improve outcomes in the general population. HIV‐infected individuals are at increased risk for cardiovascular events and have high rates of dyslipidemia and hepatitis C virus (HCV) coinfection, making PCSK9 inhibition a potentially attractive therapy. Methods and Results We studied 567 participants from a clinic‐based cohort to compare PCSK9 levels in patients with HIV/HCV coinfection (n=110) with those with HIV infection alone (n=385) and with uninfected controls (n=72). The mean age was 49 years, and the median LDL‐C level was 100 mg/dL (IQR 77–124 mg/dL); 21% were taking statins. The 3 groups had similar rates of traditional risk factors. Total cholesterol, LDL‐C, and high‐density lipoprotein cholesterol levels were lower in coinfected patients compared with controls (P<0.001). PCSK9 was 21% higher in HIV/HCV‐coinfected patients versus controls (95% CI 9–34%, P<0.001) and 11% higher in coinfected individuals versus those with HIV infection alone (95% CI 3–20%, P=0.008). After adjustment for cardiovascular risk factors, HIV/HCV coinfection remained significantly associated with 20% higher PCSK9 levels versus controls (95% CI 8–33%, P=0.001). Interleukin‐6 levels increased in a stepwise fashion from controls (lowest) to HIV‐infected to HIV/HCV‐coinfected individuals (highest) and correlated with PCSK9 (r=0.11, P=0.018). Conclusions Despite having lower LDL‐C, circulating PCSK9 levels were increased in patients coinfected with HIV and HCV in parallel with elevations in the inflammatory, proatherogenic cytokine interleukin‐6. Clinical trials should be conducted to determine the efficacy of targeted PCSK9 inhibition in the setting of HIV/HCV coinfection.
Collapse
Affiliation(s)
- Payal Kohli
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Peter Ganz
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Yifei Ma
- Department of Medicine UCSF, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA
| | - Rebecca Scherzer
- Department of Medicine UCSF, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA
| | - Sophia Hur
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Bernard Weigel
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Carl Grunfeld
- Department of Medicine UCSF, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA
| | - Steven Deeks
- The Positive Health Program, San Francisco General Hospital, San Francisco, CA
| | | | | | - Priscilla Y Hsue
- Division of Cardiology, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
28
|
Grassi G, Di Caprio G, Fimia GM, Ippolito G, Tripodi M, Alonzi T. Hepatitis C virus relies on lipoproteins for its life cycle. World J Gastroenterol 2016; 22:1953-1965. [PMID: 26877603 PMCID: PMC4726671 DOI: 10.3748/wjg.v22.i6.1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.
Collapse
|
29
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
30
|
Haga Y, Kanda T, Sasaki R, Nakamura M, Nakamoto S, Yokosuka O. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis. World J Gastroenterol 2015; 21:12989-12995. [PMID: 26675364 PMCID: PMC4674717 DOI: 10.3748/wjg.v21.i46.12989] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) is globally increasing and has become a world-wide health problem. Chronic infection with hepatitis B virus or hepatitis C virus (HCV) is associated with hepatic steatosis. Viral hepatitis-associated hepatic steatosis is often caused by metabolic syndrome including obesity, type 2 diabetes mellitus and/or dyslipidemia. It has been reported that HCV genotype 3 exerts direct metabolic effects that lead to hepatic steatosis. In this review, the differences between NAFLD/NASH and viral hepatitis-associated steatosis are discussed.
Collapse
|
31
|
Gbandi E, Goulas A, Sevastianos V, Hadziyannis S, Panderi A, Koskinas J, Papatheodoridis G, Vasiliadis T, Agapakis D, Protopapas A, Ioannidou P, Zacharakis G, Sinakos E, Koutsounas S, Germanidis G. Common ABCB1 polymorphisms in Greek patients with chronic hepatitis C infection: A comparison with hyperlipidemic patients and the general population. Pharmacol Rep 2015; 68:476-82. [PMID: 26922556 DOI: 10.1016/j.pharep.2015.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatitis C virus infectivity and replication efficiency appears to be dependent on the lipid content and organization of the plasma membrane of the host cell, as well as of the intracellular membranous web. As there is increasing awareness of a role played by the efflux pump ABCB1 (p-glycoprotein, P-gp) in lipid homeostasis, its function could be a determinant of chronic HCV infection. The aim of the present study was to examine and compare the distribution of common ABCB1 genotypes in patients with chronic HCV infection (n=168), hyperlipidemic patients (n=168) and a control group (n=173), all from Greece. METHODS Participants were genotyped for the ABCB12677G>T/A and 3435C>T polymorphisms with previously reported PCR-RFLP methods. Genotype and allele frequency distributions were compared between the three groups with the χ(2) test of independence. RESULTS The ABCB1 2677GG (ancestral) genotypes were significantly over-represented in patients with chronic hepatitis C compared to controls (39.3% vs. 26.6%, p=0.015 according to the dominant model). A similar result was obtained when hyperlipidemic patients were compared to controls (45.2% vs. 26.6%, p<0.001 according to the dominant model). Comparison of ABCB1 3435C>T genotype and allele distributions provided similar but not as significant differences. Genotype and allele distributions for both ABCB12677G>T/A and 3435C>T were very similar between HCV patients and hyperlipidemic patients. CONCLUSION Our findings imply an influence of ABCB1 polymorphisms on HCV infectivity, possibly through an effect on lipid homeostasis.
Collapse
Affiliation(s)
- Emma Gbandi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Athanasia Panderi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Koskinas
- 2nd Academic Department of Internal Medicine, Hippokration Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - Themistoklis Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Agapakis
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Protopapas
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Ioannidou
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - George Zacharakis
- 2nd Department of Gastroenterology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Emmanuil Sinakos
- 4th Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Hippokration General Hospital, Thessaloniki, Greece
| | | | - Georgios Germanidis
- 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| |
Collapse
|
32
|
Aizawa Y, Seki N, Nagano T, Abe H. Chronic hepatitis C virus infection and lipoprotein metabolism. World J Gastroenterol 2015; 21:10299-10313. [PMID: 26420957 PMCID: PMC4579877 DOI: 10.3748/wjg.v21.i36.10299] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a hepatotrophic virus and a major cause of chronic liver disease, including hepatocellular carcinoma, worldwide. The life cycle of HCV is closely associated with the metabolism of lipids and lipoproteins. The main function of lipoproteins is transporting lipids throughout the body. Triglycerides, free cholesterol, cholesteryl esters, and phospholipids are the major components of the transported lipids. The pathway of HCV assembly and secretion is closely linked to lipoprotein production and secretion, and the infectivity of HCV particles largely depends on the interaction of lipoproteins. Moreover, HCV entry into hepatocytes is strongly influenced by lipoproteins. The key lipoprotein molecules mediating these interactions are apolipoproteins. Apolipoproteins are amphipathic proteins on the surface of a lipoprotein particle, which help stabilize lipoprotein structure. They perform a key role in lipoprotein metabolism by serving as receptor ligands, enzyme co-factors, and lipid transport carriers. Understanding the association between the life cycle of HCV and lipoprotein metabolism is important because each step of the life cycle of HCV that is associated with lipoprotein metabolism is a potential target for anti-HCV therapy. In this article, we first concisely review the nature of lipoprotein and its metabolism to better understand the complicated interaction of HCV with lipoprotein. Then, we review the outline of the processes of HCV assembly, secretion, and entry into hepatocytes, focusing on the association with lipoproteins. Finally, we discuss the clinical aspects of disturbed lipid/lipoprotein metabolism and the significance of dyslipoproteinemia in chronic HCV infection with regard to abnormal apolipoproteins.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Lipoprotein metabolism and the role of apolipoprotein E in the pathogenesis of dysbetalipoproteinemia. RECENT FINDINGS Remnant lipoproteins, modulated by lifestyle and genetic factors, are atherogenic. Dysbetalipoproteinemia could be viewed as a monogenic disorder of remnant metabolism. SUMMARY Elevated plasma triglyceride and cholesterol concentrations (mixed hyperlipidemias) are commonly encountered and dysbetaliproteinemia should be considered in this setting. Dysbetalipoproteinemia (remnant clearance disease, Fredrickson type III hyperlipidemia) is an uncommon dyslipoproteinemia related to mutations in apolipoprotein E that disrupt the clearance of remnants of triglyceride-rich lipoproteins; it may be overlooked because xanthomata of the skin and/or tendons occur in a minority of patients. The diagnosis ideally requires the demonstration of remnant lipoprotein accumulation and a genetic cause. Genotyping for apolipoprotein E2 may not prove the diagnosis as it may be associated with low plasma lipid values. The recent association of remnant lipoproteins with atherosclerosis along with many factors that modulate remnant lipoprotein metabolism underscores the importance of recognising dysbetalipoproteinemia as an extreme state of remnant lipoprotein accumulation. Although there may be some differences between remnants in the general population and dysbetalipoproteinemia, it is clear that remnants promote atherosclerosis. Current treatment strategies are adequate but new strategies could also be of benefit in dysbetalipoproteinemia.
Collapse
Affiliation(s)
- David Marais
- Chemical Pathology, University of Cape Town Health Science Faculty, National Health Laboratory Service and Medical Research Council Cape Heart Group, Cape Town, South Africa
| |
Collapse
|