1
|
Watanabe M, Salvadori A, Markovic M, Sudo R, Ovsianikov A. Advanced liver-on-chip model mimicking hepatic lobule with continuous microvascular network via high-definition laser patterning. Mater Today Bio 2025; 32:101643. [PMID: 40206147 PMCID: PMC11979415 DOI: 10.1016/j.mtbio.2025.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
There is a great demand for development of advanced in vitro liver models to predict the efficacy and safety of drug candidates accurately in the preclinical drug development. Despite the great efforts to develop biomimetic models, it remains challenging to precisely mimic a functional unit of the liver (i.e., hepatic lobule) with a continuous microvascular network. Recent progress in laser patterning has allowed us to create arbitrary biomimetic structures with high resolution. Here, we propose an advanced liver-on-chip model mimicking the hepatic lobule with a continuous microvascular network, ranging from the microvessels to the central vein of the liver, utilizing femtosecond laser patterning. Firstly, we optimize the laser power to pattern microchannels mimicking the microvessel and central vein of the hepatic lobule by using a femtosecond laser within a collagen-based hydrogel containing hepatic cells. Secondly, we construct continuous microvessels with luminal structures by comparing different microchannel sizes in diameter. Finally, we assemble a millimeter-scale hepatic lobule-like structure with multiple layers of microvascular networks in the liver-on-chip. Furthermore, our liver-on-chip model exhibits major liver functions and drug-induced hepatotoxicity, as evidenced by albumin and urea productions and by a toxic response to acetaminophen, respectively. Our approach provides valuable strategies for the development of advanced physiological and pathological liver-on-chip models for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Masafumi Watanabe
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
- Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow, Japan
| | - Alice Salvadori
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Marica Markovic
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, 223-8522 Yokohama, Japan
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| |
Collapse
|
2
|
Reghelin CK, Bastos MS, de Souza Basso B, Costa BP, Cruz de Sousa A, Martha BA, Antunes GL, Nassr MT, Rosa Garcia MC, Matzenbacher LS, Schneider Levorse VG, Costa Rodrigues Guma FT, Donadio MVF, Rodrigues de Oliveira J, Alberto da Silva Melo D. Hepatic antifibrotic effects of bezafibrate in vitro and in vivo models of liver fibrosis. Food Chem Toxicol 2025; 200:115351. [PMID: 40024562 DOI: 10.1016/j.fct.2025.115351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Bezafibrate (BZF) is a drug that reduces cholesterol and triglyceride levels in the blood. Research indicates that BZF, through activation of PPAR receptors, regulates the expression of genes involved in lipid homeostasis, inflammation, cell differentiation, and proliferation. This study investigated the in vitro and in vivo effects of BZF on activated hepatic stellate cells (HSCs) and on carbon tetrachloride-induced liver fibrosis in mice. After 72 h of treatment in vitro, BZF decreased cell proliferation, reversed the phenotype, decreased cell contraction, and induced autophagy. In addition, BZF promoted a protective effect on tetrachloride-induced liver fibrosis in mice, through antifibrotic actions. These findings suggest that BZF may have a potential antifibrotic effect, which could emerge as a possible new therapy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Camille Kirinus Reghelin
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil.
| | - Bruno de Souza Basso
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Arieli Cruz de Sousa
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Bianca Andrade Martha
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Géssica Luana Antunes
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Marcella Tornquist Nassr
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Fatima Theresinha Costa Rodrigues Guma
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre - RS, Brazil
| |
Collapse
|
3
|
Li Y, Lyu L, Ding H. The potential roles of gut microbiome in porto-sinusoidal vascular disease: an under-researched crossroad. Front Microbiol 2025; 16:1556667. [PMID: 40099185 PMCID: PMC11911366 DOI: 10.3389/fmicb.2025.1556667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Accumulating evidence indicates that patients with liver diseases exhibit distinct microbiological profiles, which can be attributed to the bidirectional relationship of the gut-liver axis. Porto-sinusoidal vascular disease (PSVD) has recently been introduced to describe a group of vascular diseases of the liver, involving the portal venules and sinusoids. Although the pathophysiology of PSVD is not yet fully understood, several predisposing conditions, including immunodeficiency, inflammatory bowel disease, abdominal bacterial infections are associated with the increasing in intestinal permeability and microbial translocation, supporting the role of altered gut microbiota and gut-derived endotoxins in PSVD etiopathogenesis. Recent studies have proposed that the gut microbiome may play a crucial role in the pathophysiology of intrahepatic vascular lesions, potentially influencing the onset and progression of PSVD in this context. This review aims to summarize the current understanding of the gut microbiome's potential role in the pathogenesis of hepatic microvascular abnormalities and thrombosis, and to briefly describe their interactions with PSVD. The insights into gut microbiota and their potential influence on the onset and progression of PSVD may pave the way for new diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital Affiliated with Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sabini JH, Timotius KH. Hepatoprotective and Fat-Accumulation-Reductive Effects of Curcumin on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr Issues Mol Biol 2025; 47:159. [PMID: 40136412 PMCID: PMC11940900 DOI: 10.3390/cimb47030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Fat accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD). Given the intimidating nature of its treatment, curcumin (CUR) emerges as a potential therapeutic agent due to its proven effectiveness in managing MASLD. This review aimed to evaluate previous reports on the hepatoprotective and fat-accumulation-reductive effects of CUR administration in preventing or treating MASLD. CUR administration can modulate serum liver enzymes and lipid profiles. The fat accumulation of MASLD is the primary cause of oxidative stress and inflammation. By reducing fat accumulation, CUR may attenuate the inflammation and oxidative stress in MASLD. In addition, CUR has been proven to restore the dysfunctional cellular energy metabolism capacity and attenuate fibrogenesis (antifibrotic agent). Their hepatoprotective effects are associated with fat accumulation in MASLD. Lipid metabolism (lipogenesis, lipolysis, and lipophagy) is correlated with their hepatoprotective effects. CUR has prophylactic and therapeutic effects, particularly in early-stage MASLD, primarily when it is used as a fat reducer. It can be considered an excellent natural therapeutic drug for MASLD because it protects the liver and attenuates fat accumulation, especially in the early stage of MASLD development.
Collapse
Affiliation(s)
| | - Kris Herawan Timotius
- Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia;
| |
Collapse
|
5
|
Bao Z, Xu M, Kan Y, Guo X, Li M, Wang J, Zhou Y, Zhang Z, Shao J, Zhang F, Chen L, Zheng S, Xuan J. Dihydroartemisinin requires NR1D1 mediated Rab7 ubiquitination to regulate hepatic stellate cells lipophagy in liver fibrosis. Int J Biol Macromol 2025; 305:141055. [PMID: 39956231 DOI: 10.1016/j.ijbiomac.2025.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The activation of hepatic stellate cells (HSCs) is a core event in the pathogenesis of liver fibrosis, typically accompanied by the disappearance of lipid droplets (LDs). Reversing the disappearance of HSCs LDs is a strategy to inhibit HSCs activation and alleviate liver fibrosis. Previous studies have shown that nuclear receptor subfamily 1 group d member 1 (NR1D1), as an important component of the biological clock system, is closely related to lipid metabolism. Our previous evidence indicated that Dihydroartemisinin (DHA) can regulate the lipid droplet metabolism of activated HSCs. Moreover, in CCl4 induced liver fibrosis mice, the liver clock gene NR1D1 is dysregulated. On this basis we explored the potential molecular mechanism of DHA inhibiting liver fibrosis through NR1D1. We found that DHA can inhibit liver fibrosis by restoring activated LDs of HSCs through inhibiting HSCs lipophagy. In summary, our study emphasizes the importance of NR1D1 in liver fibrosis and the potential of DHA to regulate NR1D1 in the treatment of liver fibrosis, providing a new direction for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zhengyang Bao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Xu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Kan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohan Guo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengran Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junrui Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya Zhou
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ji Xuan
- Department of Gastroenterology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 Zhongshan East Road, Xuanwu Avenue, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
6
|
Zhou Y, Wang F, Hu M, Xia S, Li Y, Zheng S, Zhang F. Acetoacetate Ameliorates Hepatic Fibrosis by Targeting Peroxisome Proliferator-Activated Receptor Gamma to Restore Lipid Droplets in Activated Hepatic Stellate Cells. Pharmaceuticals (Basel) 2025; 18:219. [PMID: 40006033 PMCID: PMC11859973 DOI: 10.3390/ph18020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Hepatic fibrosis (HF) is a progressive liver disease characterized by the activation of hepatic stellate cells (HSCs) and changes in lipid metabolism. Abnormal ketone body (KD) levels, including acetoacetate (AcAc) and beta-hydroxybutyrate (BHB), have been observed in patients with HF, but the mechanisms linking ketone metabolism to fibrosis progression remain unclear. Objectives: This study aimed to investigate the role of AcAc in modulating HSCs activation and its potential mechanisms in HF. Methods: We examined the effects of AcAc on HSCs activation by Western blot analysis and RT-PCR both in vivo and in vitro. The impact of AcAc on lipid droplet accumulation in HSCs was assessed using total cholesterol (TC), triglyceride (TG), and Retinol (RET) kits, along with Nile Red and Oil Red O staining. RT-PCR screening was performed to analyze the expression of genes involved in lipid droplet formation and lipid metabolism. Results: Our findings show that AcAc inhibited HSCs activation by restoring LD levels. Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) was identified as a key regulator through gene screening. AcAc primarily regulated PPARγ expression, and knocking down PPARγ significantly aggravated HF progression. Conclusions: The ability of AcAc to restore LD levels and regulate PPARγ suggests that it may represent a promising therapeutic strategy for HF by inhibiting HSCs activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (F.W.); (M.H.); (S.X.); (Y.L.)
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.Z.); (F.W.); (M.H.); (S.X.); (Y.L.)
| |
Collapse
|
7
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Yousefi Z, Nourbakhsh M, Sahebghadam Lotfi A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol 2025; 44:109-124. [PMID: 39681345 DOI: 10.1089/dna.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.
Collapse
Affiliation(s)
- Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Li Q, Zhang T, Yao S, Gao F, Nie L, Tang H, Song B, Wei Y. Preoperative assessment of liver regeneration using T1 mapping and the functional liver imaging score derived from Gd-EOB-DTPA-enhanced magnetic resonance for patient with hepatocellular carcinoma after hepatectomy. Front Immunol 2025; 16:1516848. [PMID: 39949770 PMCID: PMC11821634 DOI: 10.3389/fimmu.2025.1516848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives To explore whether T1 mapping parameters and the functional liver imaging score (FLIS) based on Gd-EOB-DTPA MRI could evaluate liver regeneration after hepatectomy for HCC patient. Methods This retrospective study finally included 60 HCC patients (48 men and 12 women, with a median age of 53 years). T1 relaxation time of liver before gadoxetic acid injection (T1pre) and during the hepatobiliary phase (T1HBP), reduction rate (Δ%) and FLIS were calculated, their correlations with liver fibrosis stage, hepatic steatosis, and liver regeneration, quantified as regeneration index (RI), were assessed by Kendall's tau-b correlation test or Spearman's correlation test. Multivariate linear regression analyses were used to explore the indicator of RI. Results T1pre, T1HBP, Δ%, and FLIS manifested significant correlation with fibrosis stage (r = 0.434, P =0.001; r = 0.546, P < 0.001; r = -0.356, P =0.005; r = -0.653, P <0.001, respectively). T1pre showed significant correction with steatosis grade (r = 0.415, P =0.001). Fibrosis stage and steatosis grade were associated with RI (r = -0.436, P<0.001; r = -0.338, P =0.008). Accordingly, T1pre, T1HBP and FLIS were the significant predictors (P<0.05) of RI in multivariate analysis. Similarly, in the patients undergoing minor hepatectomy (n=35), T1HBP, Δ% and FLIS were related to RI (P<0.05) in multivariate analysis. Nevertheless, in the patients undergoing major hepatectomy (n=25), no T1 mapping parameter and FLIS was the independent predictor of RI. Conclusions T1 mapping parameters and FLIS were the potential noninvasive indicators of liver regeneration, except for HCC patients undergoing major hepatectomy. Clinical relevance statement The value of T1 mapping and FLIS with Gd-EOB-DTPA MRI for accurate preoperative evaluation of liver regeneration is critical to prevent liver failure and improve prognosis of HCC patients.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lisha Nie
- MRI Research, GE Healthcare (China), Beijing, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Fujita N, Ushijima Y, Itoyama M, Okamoto D, Ishimatsu K, Tabata K, Itoh S, Ishigami K. Value of gadoxetic acid-enhanced MR imaging for preoperative prediction of future liver regeneration after hemihepatectomy. Jpn J Radiol 2024; 42:1439-1447. [PMID: 39150642 PMCID: PMC11588868 DOI: 10.1007/s11604-024-01629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Liver resection is currently considered the most effective treatment for patients with liver cancer. To the best of our knowledge, no study has investigated the association between gadoxetic acid-enhanced magnetic resonance imaging (MRI) findings and liver regeneration in patients who underwent hemihepatectomy. We aimed to clarify the relationship between the signal intensity (SI) of the liver parenchyma on gadoxetic acid-enhanced MRI and the degree of liver regeneration in patients who underwent hemihepatectomy. MATERIALS AND METHODS Forty-one patients who underwent gadoxetic acid-enhanced MRI before hemihepatectomy were enrolled. We calculated the liver-to-erector spinae muscle SI ratio (LMR) in the hepatobiliary phase and the precontrast images. ΔLMR was calculated using the following equation: ΔLMR = (LMR in the hepatobiliary phase-LMR in the precontrast image)/LMR in the precontrast image. The preoperative and postoperative remnant liver volumes (LVs) were calculated using CT volumetry. We calculated the resection rate (RR) and liver regeneration index (LRI) using the following formulas: RR = Resected LV/Total LV × 100 and LRI = (postoperative remnant LV-preoperative remnant LV)/preoperative remnant LV × 100. The relationships among LRI, imaging, and clinicopathological factors were analyzed. RESULTS Univariate analysis showed RR and ΔLMR showed a positive correlation with LRI (ρ = 0.4133, p = 0.0072 and ρ = 0.7773, p < 0.001, respectively). Spleen volume showed a negative correlation with LRI (ρ = -0.3138, p = 0.0486). Stepwise multiple regression analysis showed ΔLMR and RR were independently correlated with LRI (β coefficient = 44.8771, p = 0.0198 and β coefficient = 1.9653, p < 0.001, respectively). CONCLUSION ΔLMR may serve as a preoperative predictor of liver regeneration in patients undergoing hemihepatectomy.
Collapse
Affiliation(s)
- Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masahiro Itoyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Okamoto
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Ishimatsu
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Tabata
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
12
|
Pereyra D, Dingfelder J, Riha M, Kacar S, Rauter L, Becker N, Saffarian Zadeh T, Tortopis C, Starlinger P, Ristl R, Silberhumer G, Salat A, Soliman T, Berlakovich G, Gyoeri G. Dual hypothermic oxygenated machine perfusion of the liver reduces post-transplant biliary complications: a retrospective cohort study. Int J Surg 2024; 110:7909-7918. [PMID: 39422535 PMCID: PMC11634107 DOI: 10.1097/js9.0000000000002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Corroborating evidence for the use of hypothermic oxygenated machine perfusion (HOPE) prior to orthotopic liver transplantation (OLT) suggests a beneficial effect in regard to biliary complications. Here, the authors aim to evaluate whether perfusion via portal vein alone (sHOPE) or via additional perfusion of the hepatic artery (dHOPE) have diverging impact on outcomes after OLT when compared to the use of static cold storage (SCS). METHODS Consecutive patients undergoing OLT at the Medical University of Vienna (2018-2023) were retrospectively analyzed. Donor organs were procured using SCS, or subjected to end-ischemic sHOPE or dHOPE. The severity of biliary complications was classified according to the degree of therapeutic intervention (endoscopic retrograde cholangiopancreatography or surgical revision). RESULTS Two hundred forty-seven patients were included (69 SCS, 76 sHOPE, and 102 dHOPE). Hospitalization was shorter for patients after HOPE (median in days: SCS=25 vs HOPE=20, P =0.019). Biliary complications were less frequent in patients after HOPE (SCS=37.7% vs HOPE=22.5%, P =0.015). A significantly lower incidence of surgical revisions for biliary complications was observed in the HOPE cohort (24.6% vs 11.8%, P =0.012). When evaluating outcome according to HOPE-modality, a significant reduction in biliary complications ( P =0.006) and surgical revisions ( P =0.002) was only observed in dHOPE patients in comparison to SCS. Further, only dHOPE was significantly associated with a reduced need for surgical revision for biliary complications upon univariable and multivariable logistic regression (odds ratio=0.336, P =0.011). CONCLUSION HOPE leads to a reduction of biliary complications and associated surgical revisions. This effect seems to be primarily associated with use of dHOPE, while both methods appear as feasible options for preconditioning of donor grafts prior to OLT.
Collapse
Affiliation(s)
- David Pereyra
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Jule Dingfelder
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Moriz Riha
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Sertac Kacar
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Laurin Rauter
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Nikolaus Becker
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Tina Saffarian Zadeh
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Chiara Tortopis
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Patrick Starlinger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Ristl
- Center for Medical Data Science, Institute of Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Gerd Silberhumer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria
| | - Andreas Salat
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Thomas Soliman
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Gabriela Berlakovich
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| | - Georg Gyoeri
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, General Hospital of Vienna
| |
Collapse
|
13
|
Catalano G, Chatzipanagiotou OP, Kawashima J, Pawlik TM. Metabolic-associated steatotic liver disease and hepatocellular carcinoma. Expert Opin Pharmacother 2024; 25:2283-2291. [PMID: 39503379 DOI: 10.1080/14656566.2024.2426680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has been introduced as a superior term to describe steatosis on a background of metabolic dysregulation and is slated to become the leading cause of HCC worldwide, as the incidence of metabolic comorbidities is increasing. As such, MASLD has evolved into an important public health issue, potentially leading to higher rates of liver mortality and end-stage liver disease. To this end, understanding the association between MASLD and HCC may allow for the identification of better interventions and novel therapeutic strategies. AREAS COVERED The authors provide a review of current knowledge on HCC development among patients with MASLD, with insights into molecular pathways and current and future therapeutic strategies. EXPERT OPINION MASLD has a strong association with the risk of HCC development, as metabolic comorbidities induce dysregulation in molecular pathways, leading to insulin-resistance, oxidative stress, and chronic inflammation, thus causing progression to cirrhosis and eventually to HCC. Therapeutic strategies focused on reducing diabetes-associated complications, as well as the prevalence of obesity and smoking can improve patient outcomes and reduce HCC incidence. Future studies on the molecular background of metabolic alterations may help devise new therapeutic approaches aiming to improve the current management of MASLD-HCC.
Collapse
Affiliation(s)
- Giovanni Catalano
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Surgery, University of Verona, Verona, Italy
| | - Odysseas P Chatzipanagiotou
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
14
|
Piano S, Reiberger T, Bosch J. Mechanisms and implications of recompensation in cirrhosis. JHEP Rep 2024; 6:101233. [PMID: 39640222 PMCID: PMC11617229 DOI: 10.1016/j.jhepr.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Decompensated cirrhosis has long been considered the irreversible end stage of liver disease, characterised by further decompensating events until death or liver transplantation. However, the observed clinical improvements after effective antiviral treatments for HBV and HCV and after sustained alcohol abstinence have changed this paradigm, leading to the concept of "recompensation" of cirrhosis. Recompensation of cirrhosis was recently defined by Baveno VII as (i) cure of the primary liver disease aetiology; (ii) disappearance of signs of decompensation (ascites, encephalopathy and portal hypertensive bleeding) off therapy; and (iii) stable improvement of liver function tests (bilirubin, international normalised ratio and albumin). Achieving these recompensation criteria is linked to a significant survival benefit. However, apart from aetiological therapies, no interventions/treatments that facilitate recompensation are available, the molecular mechanisms underlying recompensation remain incompletely understood, and early predictors of recompensation are lacking. Moreover, current recompensation criteria are based on expert opinion and may be refined in the future. Herein, we review the available evidence on cirrhosis recompensation, provide guidance on the clinical management of recompensated patients and discuss future challenges related to cirrhosis recompensation.
Collapse
Affiliation(s)
- Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine – DIMED, University and Hospital of Padova, Italy
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna Austria
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
15
|
Nesci A, Ruggieri V, Manilla V, Spinelli I, Santoro L, Di Giorgio A, Santoliquido A, Ponziani FR. Endothelial Dysfunction and Liver Cirrhosis: Unraveling of a Complex Relationship. Int J Mol Sci 2024; 25:12859. [PMID: 39684569 DOI: 10.3390/ijms252312859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Endothelial dysfunction (ED) is the in the background of multiple metabolic diseases and a key process in liver disease progression and cirrhosis decompensation. ED affects liver sinusoidal endothelial cells (LSECs) in response to different damaging agents, causing their progressive dedifferentiation, unavoidably associated with an increase in intrahepatic resistance that leads to portal hypertension and hyperdynamic circulation with increased cardiac output and low peripheral artery resistance. These changes are driven by a continuous interplay between different hepatic cell types, invariably leading to increased reactive oxygen species (ROS) formation, increased release of pro-inflammatory cytokines and chemokines, and reduced nitric oxide (NO) bioavailability, with a subsequent loss of proper vascular tone regulation and fibrosis development. ED evaluation is often accomplished by serum markers and the flow-mediated dilation (FMD) measurement of the brachial artery to assess its NO-dependent response to shear stress, which usually decreases in ED. In the context of liver cirrhosis, the ED assessment could help understand the complex hemodynamic changes occurring in the early and late stages of the disease. However, the instauration of a hyperdynamic state and the different NO bioavailability in intrahepatic and systemic circulation-often defined as the NO paradox-must be considered confounding factors during FMD analysis. The primary purpose of this review is to describe the main features of ED and highlight the key findings of the dynamic and intriguing relationship between ED and liver disease. We will also focus on the significance of FMD evaluation in this setting, pointing out its key role as a therapeutic target in the never-ending battle against liver cirrhosis progression.
Collapse
Affiliation(s)
- Antonio Nesci
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittorio Ruggieri
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Spinelli
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Santoro
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angela Di Giorgio
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Santoliquido
- Angiology and Noninvasive Vascular Diagnostics Unit, Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, CEMAD-Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
16
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
17
|
Lu C, Li X, Fang C, Li C, Xu Y, Guo Y. Pretreatment of artesunate promoted hepatocyte proliferation by activating the PI3K/Akt/mTOR signaling pathway in mice. Acta Cir Bras 2024; 39:e394324. [PMID: 39476067 PMCID: PMC11506702 DOI: 10.1590/acb394324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Artesunate (ART) has been implicated in regulating the many processes of liver injury, but its roles in liver regeneration still need to be illustrated. METHODS In the present study, ART was used to pretreat hepatocyte cell line NCTC1469 to study the effect of ART on hepatocyte proliferation in vitro. Furthermore, the potency of ART as a regimen to promote liver regeneration and restore liver function was evaluated following partial hepatectomy (PH) on C57BL/6 mice. RESULTS ART concentration-dependently promoted hepatocyte proliferation and reduced apoptosis. Cell cycle and Ki-67 immunohistochemical analyses demonstrated that ART supplementation promoted the proliferation of hepatocytes and accelerated liver regeneration. Our results provided evidence that ART improved liver function in a dose-dependent manner, as indicated by decreased serum alanine aminotransferase, aspartate aminotransferase, and increased albumin, and hepatocyte growth factor levels in PH mice. Meanwhile, ART promoted the PI3K/Akt/mTOR signaling in NCTC1469 cells and liver tissue of PH mice. In addition, PI3K inhibitor LY294002 blocked the promotion effect of ART on hepatocyte proliferation and cell cycle progression. CONCLUSION ART promoted hepatocyte proliferation via activation of the PI3K/Akt/mTOR pathway, which was beneficial to liver regeneration of PH-induced liver injury.
Collapse
Affiliation(s)
- Changyou Lu
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Xinkai Li
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Chao Fang
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Chuntao Li
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Yunke Xu
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| | - Yong Guo
- The Affliated Traditional Chinese Medicine Hospital, Southwest Medical University – Department of Hepatobiliary and Pancreatic Surgery – Luzhou (Sichuan) – China
| |
Collapse
|
18
|
Zhang Y, Qu J, Luo R, Jia K, Fan G, Li F, Wu R, Li J, Li X. Radix rehmanniae praeparata extracts ameliorate hepatic ischemia-reperfusion injury by reversing LRP1-NOTCH1-C/EBPβ axis-mediated senescence fate of LSECs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155923. [PMID: 39094438 DOI: 10.1016/j.phymed.2024.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is commonly observed in cases of extensive hepatic resection and involves complex mechanisms. Cell senescence has been recognized as a factor in liver injury including HIRI, where it presents as a pro-inflammatory phenotype called senescence-associated secretory phenotype (SASP). Radix Rehmanniae Praeparata (RRP) is a commonly utilized traditional Chinese medicine known for its hepatoprotective, anti-aging and antioxidant qualities. Despite its recognized benefits, the specific mechanisms by which RRP may impede the progression of HIRI through the regulation of cell senescence and the identification of the most potent anti-aging extracts from RRP remain unclear. MATERIALS AND METHODS Here, we first applied different chemical analysis methods to identify the RRP aqueous extract (RRPAE) and active fractions of RRP. Next, we constructed a surgically established mouse model and a hypoxia-reoxygenation (HR)-stimulated liver sinusoidal endothelial cells (LSECs) model to explore the underlying mechanism of RRP against HIRI through transcriptomics and multiple molecular biology experiments. RESULTS After identifying active ingredients in RRP, we observed that RRP and its factions effectively restored LSECs fenestration and improved inflammation, cellular swelling and vascular continuity in the hepatic sinusoidal region during HIRI. Transcriptomic results revealed that RRP might reverse HIRI-induced senescence through the NOTCH signaling pathway and cell categorization further showed that the senescent cell population in HIRI liver was primarily LSECs rather than other cell types. Different RRPAE, especially RRP glucoside (RRPGLY), improved LSECs senescence and suppressed the expression of pro-inflammatory SASP genes either induced by HR insult or NOTCH1 activator, which was accompanied with the inhibition of LRP1-NOTCH1-C/EBPβ pathways. Additionally, the specific inhibition of NOTCH1 by siRNA synergistically enhanced the hepatoprotective effect of RRPGLY. The ChIP-qPCR results further showed that C/EBPβ was enriched at the promoter of a representative SASP, Il-1β, in hypoxic LSECs but was significantly inhibited by RRPGLY. CONCLUSION Our study not only clarified the potential mechanism of RRP active extractions in alleviating HIRI, but also highlighted RRPGLY was the main component of RRP that exerted anti-aging and anti-HIRI effects, providing a fresh perspective on the use of RRP to improve HIRI.
Collapse
Affiliation(s)
- Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
19
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 PMCID: PMC11906189 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Khan MA, Fischer J, Harrer L, Schwiering F, Groneberg D, Friebe A. Hepatic stellate cells in zone 1 engage in capillarization rather than myofibroblast formation in murine liver fibrosis. Sci Rep 2024; 14:18840. [PMID: 39138336 PMCID: PMC11322391 DOI: 10.1038/s41598-024-69898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The combination of lineage tracing and immunohistochemistry has helped to identify subpopulations and fate of hepatic stellate cells (HSC) in murine liver. HSC are sinusoidal pericytes that act as myofibroblast precursors after liver injury. Single cell RNA sequencing approaches have recently helped to differentiate central and portal HSC. A specific Cre line to lineage trace portal HSC has not yet been described. We used three Cre lines (Lrat-Cre, PDGFRβ-CreERT2 and SMMHC-CreERT2) known to label mesenchymal cells including HSC in combination with a tdTomato-expressing reporter. All three Cre lines labeled populations of HSC as well as smooth muscle cells (SMC). Using the SMMHC-CreERT2, we identified a subtype of HSC in the periportal area of the hepatic lobule (termed zone 1-HSC). We lineage traced tdTomato-expressing zone 1-HSC over 1 year, described fibrotic behavior in two fibrosis models and investigated their possible role during fibrosis. This HSC subtype resides in zone 1 under healthy conditions; however, zonation is disrupted in preclinical models of liver fibrosis (CCl4 and MASH). Zone 1-HSC do not transform into αSMA-expressing myofibroblasts. Rather, they participate in sinusoidal capillarization. We describe a novel subtype of HSC restricted to zone 1 under physiological conditions and its possible function after liver injury. In contrast to the accepted notion, this HSC subtype does not transform into αSMA-positive myofibroblasts; rather, zone 1-HSC adopt properties of capillary pericytes, thereby participating in sinusoidal capillarization.
Collapse
Affiliation(s)
- Muhammad Ashfaq Khan
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Julian Fischer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Leon Harrer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Fabian Schwiering
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Dieter Groneberg
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany.
| |
Collapse
|
21
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
22
|
Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: An important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024; 30:303-325. [PMID: 38414375 PMCID: PMC11261236 DOI: 10.3350/cmh.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and the lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal LSEC activation not only changes their own physicochemical properties but also interrupts their communication with hepatic stellate cells and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and aggravation of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Cools L, Dastjerd MK, Smout A, Merens V, Yang Y, Reynaert H, Messaoudi N, Smet VD, Kumar M, Verhulst S, Verfaillie C, van Grunsven LA. Human iPSC-derived liver co-culture spheroids to model liver fibrosis. Biofabrication 2024; 16:035032. [PMID: 38865994 DOI: 10.1088/1758-5090/ad5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The lack of adequate humanin vitromodels that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (CYP3A4, PDGFRβ, CD31andCD68) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosisin vitroas a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.
Collapse
Affiliation(s)
- Laura Cools
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mina Kazemzadeh Dastjerd
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ayla Smout
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vincent Merens
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yuwei Yang
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hendrik Reynaert
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Nouredin Messaoudi
- Department of Hepatobiliary Surgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Vincent De Smet
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Manoj Kumar
- Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
24
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Cheng C, Hsu SK, Chen YC, Liu W, Shu ED, Chien CM, Chiu CC, Chang WT. Burning down the house: Pyroptosis in the tumor microenvironment of hepatocellular carcinoma. Life Sci 2024; 347:122627. [PMID: 38614301 DOI: 10.1016/j.lfs.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A high mortality rate makes hepatocellular carcinoma (HCC) a difficult cancer to treat. When surgery is not possible, liver cancer patients are treated with chemotherapy. However, HCC management and treatment are difficult. Sorafenib, which is a first-line treatment for hepatocellular carcinoma, initially slows disease progression. However, sorafenib resistance limits patient survival. Recent studies have linked HCC to programmed cell death, which has increased researcher interest in therapies targeting cell death. Pyroptosis, which is an inflammatory mode of programmed cell death, may be targeted to treat HCC. Pyroptosis pathways, executors, and effects are examined in this paper. This review summarizes how pyroptosis affects the tumor microenvironment (TME) in HCC, including the role of cytokines such as IL-1β and IL-18 in regulating immune responses. The use of chemotherapies and their ability to induce cancer cell pyroptosis as alternative treatments and combining them with other drugs to reduce side effects is also discussed. In conclusion, we highlight the potential of inducing pyroptosis to treat HCC and suggest ways to improve patient outcomes. Studies on cancer cell pyroptosis may lead to new HCC treatments.
Collapse
Affiliation(s)
- Chi Cheng
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Ming Chien
- Department of Medical Sciences Industry, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
26
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
27
|
Ding X, Pang Y, Liu Q, Zhang H, Wu J, Lei J, Zhang T. GO-PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306483. [PMID: 38229561 DOI: 10.1002/smll.202306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/03/2024] [Indexed: 01/18/2024]
Abstract
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaomeng Ding
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanting Pang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haopeng Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jialin Lei
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
28
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
29
|
Gan C, Yaqoob U, Lu J, Xie M, Anwar A, Jalan-Sakrikar N, Jerez S, Sehrawat TS, Navarro-Corcuera A, Kostallari E, Habash NW, Cao S, Shah VH. Liver sinusoidal endothelial cells contribute to portal hypertension through collagen type IV-driven sinusoidal remodeling. JCI Insight 2024; 9:e174775. [PMID: 38713515 PMCID: PMC11382879 DOI: 10.1172/jci.insight.174775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianwen Lu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Man Xie
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Abid Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sofia Jerez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nawras W Habash
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Macías-Rodríguez RU, Ruiz-Margáin A, Román-Calleja B, Cantú-Brito C, Flores-Silva F, Gabutti-Thomas A, Aguilar-Nájera O, Cruz-Contreras M, Weber-Sangri L, Ríos-Torres S, Delgadillo AT, Aguilar-Salinas CA, Kershenobich-Stalnikowitz D. Effect of a monitored exercise protocol in cerebral and hepatic hemodynamics in patients with cirrhosis and portal hypertension. Dig Liver Dis 2024; 56:827-835. [PMID: 38008698 DOI: 10.1016/j.dld.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Physical exercise (PE) has been proven to be beneficial in patients with cirrhosis; effects in cognitive function and cerebral hemodynamics, are yet to be explored. AIM To evaluate the effects of a PE program (LFN-exercise protocol) in hepatic/cerebral hemodynamics. METHODS Randomized open clinical trial in patients with cirrhosis; Control: Diet(n = 13),Intervention: Diet + exercise(n = 14) for 12 weeks. Patients received an educational session, mental exercises (printed book and sudoku), and high-protein diet. Exercise intervention consisted of walking 4 times/week with an intensity rated between 12 and 14 on the Borg scale, monitored through bracelet accelerometers. Patients received weekly text messages to encourage adherence and had monthly in-person visits. RESULTS Patients were mainly Child-Pugh A(88.9 %), median MELD 8(8-10), mean age 53±8 years. In the exercise group the number of steps increased from 9667±3008 to 11,931±4463 (p = 0.002), vs 8004±3224 to 8903±3504 (p = 0.053) in controls. Exercise decreased HVPG from 11(8-14) to 8(6-11)mmHg (p = 0.032) vs no change in the control group from 14(12-16) to 15(11-17)mmHg (p = 0.959). Intervention group showed better cerebral hemodynamics, cognitive function, nutritional status and quality of life after the intervention. Adherence was >90 %, with no adverse events. CONCLUSION The LFN-exercise protocol improves portal hypertension, cerebral hemodynamics and cognitive function, as well as nutritional status and quality of life. CLINICALTRIALS GOV NUMBER NCT03932552.
Collapse
Affiliation(s)
- Ricardo U Macías-Rodríguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Liver fibrosis and Nutrition Lab (LFN-Lab), Mexico City, Mexico; MICTLAN-Network, Mexico City, Mexico.
| | - Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Liver fibrosis and Nutrition Lab (LFN-Lab), Mexico City, Mexico; MICTLAN-Network, Mexico City, Mexico
| | - Berenice Román-Calleja
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Cantú-Brito
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Flores-Silva
- Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alejandro Gabutti-Thomas
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Octavio Aguilar-Nájera
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mariana Cruz-Contreras
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Weber-Sangri
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Silvia Ríos-Torres
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Aldo Torre Delgadillo
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Research Director, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
31
|
Hazari Y, Chevet E, Bailly-Maitre B, Hetz C. ER stress signaling at the interphase between MASH and HCC. Hepatology 2024:01515467-990000000-00844. [PMID: 38626349 DOI: 10.1097/hep.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.
Collapse
Affiliation(s)
- Younis Hazari
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1065, Université Côte d'Azur (UCA), Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Team "Metainflammation and Hematometabolism", Metabolism Department, France
- Université Côte d'Azur, INSERM, U1065, C3M, 06200 Nice, France
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
32
|
Hordeaux J, Lamontagne RJ, Song C, Buchlis G, Dyer C, Buza EL, Ramezani A, Wielechowski E, Greig JA, Chichester JA, Bell P, Wilson JM. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther 2024; 32:952-968. [PMID: 38327046 PMCID: PMC11163197 DOI: 10.1016/j.ymthe.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Jason Lamontagne
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunjuan Song
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George Buchlis
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cecilia Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Ramezani
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik Wielechowski
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny A Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Zhang LF, Deng WQ, Huang QW, Zhang JJ, Wang Y, Zhou TJ, Xing L, Jiang HL. Vicious Cycle-Breaking Lipid Nanoparticles Remodeling Multicellular Crosstalk to Reverse Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311474. [PMID: 38194906 DOI: 10.1002/adma.202311474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Indexed: 01/11/2024]
Abstract
During liver fibrogenesis, the reciprocal crosstalk among capillarized liver sinusoidal endothelial cells (LSECs), activated hepatic stellate cells (HSCs), and dysfunctional hepatocytes constructs a self-amplifying vicious cycle, greatly exacerbating the disease condition and weakening therapeutic effect. Limited by the malignant cellular interactions, the previous single-cell centric treatment approaches show unsatisfactory efficacy and fail to meet clinical demand. Herein, a vicious cycle-breaking strategy is proposed to target and repair pathological cells separately to terminate the malignant progression of liver fibrosis. Chondroitin sulfate-modified and vismodegib-loaded nanoparticles (CS-NPs/VDG) are designed to efficiently normalize the fenestrae phenotype of LSECs and restore HSCs to quiescent state by inhibiting Hedgehog signaling pathway. In addition, glycyrrhetinic acid-modified and silybin-loaded nanoparticles (GA-NPs/SIB) are prepared to restore hepatocytes function by relieving oxidative stress. The results show successful interruption of vicious cycle as well as distinct fibrosis resolution in two animal models through multiregulation of the pathological cells. This work not only highlights the significance of modulating cellular crosstalk but also provides a promising avenue for developing antifibrotic regimens.
Collapse
Affiliation(s)
- Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Qi Deng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Qing-Wen Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiao-Jiao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- College of Pharmacy, Yanbian University, Yanji, 133002, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
34
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Lin Y, Li Y, Liang G, Yang X, Yang J, Hu Q, Sun J, Zhang C, Fang H, Liu A. Single-cell transcriptome analysis of aging mouse liver. FASEB J 2024; 38:e23473. [PMID: 38334462 DOI: 10.1096/fj.202302282r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-β, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Sun
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
36
|
Yinzhi D, Jianhua H, Hesheng L. The roles of liver sinusoidal endothelial cells in liver ischemia/reperfusion injury. J Gastroenterol Hepatol 2024; 39:224-230. [PMID: 37939704 DOI: 10.1111/jgh.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Liver ischemia/reperfusion injury (IRI) is a major complication after partial hepatectomy and liver transplantation and during hypovolemic shock and hypoxia-related diseases. Liver IRI is a current research hotspot. The early stage of liver IRI is characterized by injury and dysfunction of liver sinusoidal endothelial cells (LSECs), which, along with hepatocytes, are the major cells involved in liver injury. In this review, we elaborate on the roles played by LSECs in liver IRI, including the pathological features of LSECs, LSECs exacerbation of the sterile inflammatory response, LSECs interactions with platelets and the promotion of liver regeneration, and the activation of LSECs autophagy. In addition, we discuss the study of LSECs as therapeutic targets for the treatment of liver IRI and the existing problems when applying LSECs in liver IRI research.
Collapse
Affiliation(s)
- Deng Yinzhi
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - He Jianhua
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Luo Hesheng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Chen T, Zhang Y, Zhang Y, Ning Z, Xu Q, Lin Y, Gong J, Li J, Chen Z, Meng Y, Li Y, Li X. Autophagic degradation of MVBs in LSECs promotes Aldosterone induced-HSCs activation. Hepatol Int 2024; 18:273-288. [PMID: 37330971 DOI: 10.1007/s12072-023-10559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND AND AIMS The important role of extracellular vesicles (EVs) in liver fibrosis has been confirmed. However, EVs derived from liver sinusoidal endothelial cells (LSECs) in the activation of hepatic stellate cells (HSCs) and liver fibrosis is still unclear. Our previous work demonstrated that Aldosterone (Aldo) may have the potential to regulate EVs from LSECs via autophagy pathway. Thus, we aim to investigate the role of Aldo in the regulation of EVs derived from LSECs. APPROACH AND RESULTS Using an Aldo-continuous pumping rat model, we observed that Aldo-induced liver fibrosis and capillarization of LSECs. In vitro, transmission electron microscopy (TEM) revealed that stimulation of Aldo led to the upregulation of autophagy and degradation of multivesicular bodies (MVBs) in LSECs. Mechanistically, Aldo upregulated ATP6V0A2, which promoted lysosomal acidification and subsequent autophagy in LSECs. Inhibiting autophagy with si-ATG5 adeno-associated virus (AAV) in LSECs effectively mitigated Aldo-induced liver fibrosis in rats. RNA sequencing and nanoparticle tracking (NTA) analyses of EVs derived from LSECs indicated that Aldo result in a decrease in both the quantity and quality of EVs. We also observed a reduction in the protective miRNA-342-5P in EVs derived from Aldo-treated LSECs, which may play a critical role in HSCs activation. Target knockdown of EV secretion with si-RAB27a AAV in LSECs led to the development of liver fibrosis and HSC activation in rats. CONCLUSION Aldo-induced Autophagic degradation of MVBs in LSECs promotes a decrease in the quantity and quality of EVs derived from LSECs, resulting in the activation of HSCs and liver fibrosis under hyperaldosteronism. Modulating the autophagy level of LSECs and their EV secretion may represent a promising therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zuowei Ning
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Xu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiacheng Gong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jierui Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhuoer Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
38
|
de Souza Basso B, Bastos MS, Antunes GL, Matzenbacher LS, Rodrigues KF, Garcia MCR, de Sousa AC, Levorse VG, Luft C, Tonial GV, Pavanato GM, Astarita LV, da Silva Melo DA, Donadio MVF, Santarém ER, de Oliveira JR. Baccharis anomala DC. extract reduces inflammation and attenuates hepatic fibrosis in vivo by decreasing NF-kB and extracellular matrix compounds. Toxicon 2024; 237:107560. [PMID: 38092194 DOI: 10.1016/j.toxicon.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Baccharis anomala DC. (BA) is a plant species found in the tropical regions of South America and is widely used for its hepatoprotective effects, as well as for the treatment of gastrointestinal diseases. Studies have recently reported its antioxidant and anti-inflammatory potential. BA extract can reverse the activated phenotype of hepatic stellate cells (HSC), which plays a central role in extracellular matrix (ECM) deposition in the development of liver fibrosis. Thus, this study aimed to evaluate the effects of the treatment with BA extract on liver fibrosis in a CCl4-induced liver fibrosis model in BALB/c mice. Methanolic extract was obtained from BA leaves, a gas chromatography/mass spectrometry (GC/MS) to detect the compounds present was performed, and then administered by intraperitoneal injection in Balb/C mice at a concentration of 50 and 100 mg/kg together with the administration of CCl4 for inducing liver fibrosis. After 10 weeks, blood analysis, histopathology, oxidative stress, as well as protein and gene expression in the hepatic tissue were performed. Treatment with BA extract was able to reduce profibrotic markers by reducing the expression of α-SMA and Col-1 proteins, as well as reducing the formation of free radicals and lipid peroxidation. (BA extract showed anti-inflammatory effects in the liver by suppressing NF-kB activation and reducing gene expression of signaling targets (IL-6 and iNOS). The data obtained showed that BA extract has antifibrotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Bruno de Souza Basso
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Scherer Bastos
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arieli Cruz de Sousa
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, 3, Brazil
| | - Vitor Giancarlo Levorse
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana Vivan Tonial
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovanna Mezzomo Pavanato
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leandro Vieira Astarita
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Eliane Romanato Santarém
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
39
|
Nazeer B, Khawar MB, Khalid MU, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Ali A, Fatima H, Ahmad S. Emerging role of lipophagy in liver disorders. Mol Cell Biochem 2024; 479:1-11. [PMID: 36943663 DOI: 10.1007/s11010-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Lipophagy is a selective degradation of lipids by a lysosomal-mediated pathway, and dysregulation of lipophagy is linked with the pathological hallmark of many liver diseases. Downregulation of lipophagy in liver cells results in abnormal accumulation of LDs (Lipid droplets) in hepatocytes which is a characteristic feature of several liver pathologies such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Contrarily, upregulation of lipophagy in activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and cirrhosis. Lipid metabolism reprogramming in violent cancer cells contributes to the progression of liver cancer. In this review, we have summarized the recent studies focusing on various components of the lipophagic machinery that can be modulated for their potential role as therapeutic agents against a wide range of liver diseases.
Collapse
Affiliation(s)
- Bismillah Nazeer
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Muhammad Usman Khalid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hooriya Fatima
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sadia Ahmad
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
40
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
41
|
Ortega-Ribera M, Babuta M, Szabo G. Sinusoidal cell interactions—From soluble factors to exosomes. SINUSOIDAL CELLS IN LIVER DISEASES 2024:23-52. [DOI: 10.1016/b978-0-323-95262-0.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Lin Y, Li Q, Liang G, Xiao N, Yang J, Yang X, Zhang H, Zhang C, Liu A. Overview of Innate Immune Cell Landscape in Liver Aging. Int J Mol Sci 2023; 25:181. [PMID: 38203352 PMCID: PMC10778796 DOI: 10.3390/ijms25010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Aging is a biological process with a gradual decline in functional capacity, and this process often enhances the risk of chronic disease morbidity and mortality. With advanced age, the immune system undergoes a process of remodeling that can lead to a chronic inflammatory state, termed immunosenescence and inflammaging, respectively. Immunosenescence is accompanied by changes in the number, proportion, and functional capacity of the innate immune cells. The accumulation of dysfunctional immune cells and the presence of low-grade inflammation can lead to organ damage and expedite the aging process. The liver, crucial in regulating the body's metabolism and immune function, is not exempt from these effects. Age-related modifications affect its immune function and regenerative abilities, potentially increasing the prevalence of age-related liver diseases. While aging's impact on the liver is relatively less severe compared to other organ systems, it still experiences an infiltration of innate immune cells and heightened inflammation levels. This review will elaborate on how aging affects the liver's innate immune cells, such as neutrophils, macrophages, dendritic cells, mast cells, and innate lymphoid cells. It will also explore potential strategies for delaying immunosenescence to alleviate these age-related changes.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
43
|
Liang W, Huang X, Shi J. Macrophages Serve as Bidirectional Regulators and Potential Therapeutic Targets for Liver Fibrosis. Cell Biochem Biophys 2023; 81:659-671. [PMID: 37695501 DOI: 10.1007/s12013-023-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Liver fibrosis is a dynamic pathological process in which the structure and function of the liver abnormally change due to long-term complex inflammatory reactions and chronic liver injury caused by multiple internal and external factors. Previous studies believed that the activation of hepatic stellate cells is a critical part of the occurrence and development of liver fibrosis. However, an increasing number of studies have indicated that the macrophage plays an important role as a central regulator in liver fibrosis, and it directly affects the development and recovery of liver fibrosis. Studies of macrophages and liver fibrosis in the recent 10 years will be reviewed in this paper. This review will not only clarify the molecular mechanism of liver fibrosis regulated by macrophages but also provide new strategies and methods for ameliorating and treating liver fibrosis.
Collapse
Affiliation(s)
- Wei Liang
- Clinical Medical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Xianing Huang
- Guangxi International Travel Healthcare Centre (Port Clinic of Nanning Customs District), Nanning, 530021, Guangxi, China
| | - Jingjing Shi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
44
|
Zhang Y, Zhang L, Zhao Y, He J, Zhang Y, Zhang X. PGC-1α inhibits M2 macrophage polarization and alleviates liver fibrosis following hepatic ischemia reperfusion injury. Cell Death Discov 2023; 9:337. [PMID: 37679346 PMCID: PMC10484946 DOI: 10.1038/s41420-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative stress can induce inflammation, promoting macrophage polarization and liver fibrosis following hepatic ischemia-reperfusion (I/R). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has anti-oxidant and anti-inflammatory activity. However, how PGC-1α regulates macrophage polarization following hepatic I/R remains largely unknown. Male C57BL/6 wild-type mice were pre-treated with vehicle or trichostatin A (TSA) for 2 days and subjected to surgical induction of I/R. Liver injury and fibrosis in individual mice were examined longitudinally and the expression levels of IL-6, STAT3, M2-type macrophage markers, Collagen I and α-SMA in the liver of mice were analyzed by immunohistochemistry, RT-qPCR and Western blot. The potential interaction of PGC-1α with phosphorylated NF-kBp65 was determined by immunoprecipitation. The impacts of PGC-1α deficiency in hepatocytes on their IL-6 production and macrophage polarization were tested in a Transwell co-culture system. Moreover, the M2-type macrophage polarization and liver fibrosis were examined in hepatocyte-specific PGC-1α knockout mice and AAV8-mediated PGC-1α over-expressing mice following liver I/R. The down-regulated PGC-1α expression by I/R was negatively correlated with IL-6 levels in the liver of I/R mice and PGC-1α deficiency enhanced IL-6 expression, STAT3 activation and M2-type macrophage polarization in the I/R mice, which were abrogated by TSA treatment. In addition, PGC-1α directly interacted with phosphorylated NF-kBp65 in I/R livers. Hepatocyte-specific PGC-1α deficiency increased IL-6 production and promoted macrophage polarization toward M2 type when co-culture. More importantly, administration with AAV8-PGC-1α rescued the I/R-induced liver fibrosis by inhibiting the IL-6/JAK2/STAT3 signaling and M2-type macrophage polarization in the liver. These results suggest that PGC-1α may alleviate the I/R-induced liver fibrosis by attenuating the IL-6/JAK2/STAT3 signaling to limit M2-type macrophage polarization. PGC-1α may be a therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linzhong Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing He
- Department of Internal Medicine, School Hospital, Communication University of China, Beijing, China
| | - Yanghao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
45
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
46
|
Ohtani N, Kamiya T, Kawada N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol Commun 2023; 7:e0241. [PMID: 37639702 PMCID: PMC10462074 DOI: 10.1097/hc9.0000000000000241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this connection is called the "gut-liver axis," which exerts various influences on liver physiology and pathology. The gut microbiota has been recognized to trigger innate immunity and modulate the liver immune microenvironment. Gut microbiota influences the physiological processes in the host, such as metabolism, by acting on various signaling receptors and transcription factors through their metabolites and related molecules. The gut microbiota has also been increasingly recognized to modulate the efficacy of immune checkpoint inhibitors. In this review, we discuss recent updates on gut microbiota-associated mechanisms in the pathogenesis of chronic liver diseases such as NAFLD and NASH, as well as liver cancer, in light of the gut-liver axis. We particularly focus on gut microbial metabolites and components that are associated with these liver diseases. We also discuss the role of gut microbiota in modulating the response to immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Liu Y, Lyu Y, Zhu L, Wang H. Role of TRP Channels in Liver-Related Diseases. Int J Mol Sci 2023; 24:12509. [PMID: 37569884 PMCID: PMC10420300 DOI: 10.3390/ijms241512509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The liver plays a crucial role in preserving the homeostasis of an entire organism by metabolizing both endogenous and exogenous substances, a process that relies on the harmonious interactions of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs), and vascular endothelial cells (ECs). The disruption of the liver's normal structure and function by diverse pathogenic factors imposes a significant healthcare burden. At present, most of the treatments for liver disease are palliative in nature, rather than curative or restorative. Transient receptor potential (TRP) channels, which are extensively expressed in the liver, play a crucial role in regulating intracellular cation concentration and serve as the origin or intermediary stage of certain signaling pathways that contribute to liver diseases. This review provides an overview of recent developments in liver disease research, as well as an examination of the expression and function of TRP channels in various liver cell types. Furthermore, we elucidate the molecular mechanism by which TRP channels mediate liver injury, liver fibrosis, and hepatocellular carcinoma (HCC). Ultimately, the present discourse delves into the current state of research and extant issues pertaining to the targeting of TRP channels in the treatment of liver diseases and other ailments. Despite the numerous obstacles encountered, TRP channels persist as an extremely important target for forthcoming clinical interventions aimed at treating liver diseases.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Yihan Lyu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| | - Lijuan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China; (Y.L.); (Y.L.)
| |
Collapse
|
48
|
Li Q, Zhang T, Che F, Yao S, Gao F, Nie L, Tang H, Wei Y, Song B. Intravoxel incoherent motion diffusion weighted imaging for preoperative evaluation of liver regeneration after hepatectomy in hepatocellular carcinoma. Eur Radiol 2023; 33:5222-5235. [PMID: 36892648 DOI: 10.1007/s00330-023-09496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES To explore whether intravoxel incoherent motion (IVIM) parameters could evaluate liver regeneration preoperatively. METHODS A total of 175 HCC patients were initially recruited. The apparent diffusion coefficient, true diffusion coefficient (D), pseudodiffusion coefficient (D*), pseudodiffusion fraction (f), diffusion distribution coefficient, and diffusion heterogeneity index (Alpha) were measured by two independent radiologists. Spearman's correlation test was used to assess correlations between IVIM parameters and the regeneration index (RI), calculated as 100% × (the volume of the postoperative remnant liver - the volume of the preoperative remnant liver) / the volume of the preoperative remnant liver. Multivariate linear regression analyses were used to identify the factors for RI. RESULTS Finally, 54 HCC patients (45 men and 9 women, mean age 51.26 ± 10.41 years) were retrospectively analyzed. The intraclass correlation coefficient ranged from 0.842 to 0.918. In all patients, fibrosis stage was reclassified as F0-1 (n = 10), F2-3 (n = 26), and F4 (n = 18) using the METAVIR system. Spearman correlation test showed D* (r = 0.303, p = 0.026) was associated with RI; however, multivariate analysis showed that only D value was a significant predictor (p < 0.05) of RI. D and D*showed moderate correlations with fibrosis stage (r = -0.361, p = 0.007; r = -0.457, p = 0.001). Fibrosis stage showed a negative correlation with RI (r = -0.263, p = 0.015). In the 29 patients who underwent minor hepatectomy, only the D value showed a positive association (p < 0.05) with RI, and a negative correlation with fibrosis stage (r = -0.360, p = 0.018). However, in the 25 patients who underwent major hepatectomy, no IVIM parameters were associated with RI (p > 0.05). CONCLUSIONS The D and D* values, especially the D value, may be reliable preoperative predictors of liver regeneration. KEY POINTS • The D and D* values, especially the D value, derived from IVIM diffusion-weighted imaging may be useful markers for the preoperative prediction of liver regeneration in patients with HCC. • The D and D* values derived from IVIM diffusion-weighted imaging show significant negative correlations with fibrosis, an important predictor of liver regeneration. • No IVIM parameters were associated with liver regeneration in patients who underwent major hepatectomy, but the D value was a significant predictor of liver regeneration in patients who underwent minor hepatectomy.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, 572000, China.
| |
Collapse
|
49
|
Zhou C, Shen Z, Shen B, Dai W, Sun Z, Guo Y, Xu X, Wang J, Lu J, Zhang Q, Luo X, Qu Y, Dong H, Lu L. FABP4 in LSECs promotes CXCL10-mediated macrophage recruitment and M1 polarization during NAFLD progression. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166810. [PMID: 37487374 DOI: 10.1016/j.bbadis.2023.166810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND AND AIMS Non-alcoholic liver disease (NAFLD) is emerging as the leading cause of end-stage liver disease with a serious threat to global health burden. Fatty acid-binding protein 4 (FABP4) is closely associated with metabolic syndromes. We aimed to explore the potential mechanisms of FABP4 in NAFLD progression. MATERIALS AND METHODS For NAFLD mice, animals were fed with high fat diet (HFD) for 20 weeks. The assays of hematoxylin and eosin, Sirius Red, oil red O staining and immunohistology were performed to evaluate hepatic pathology. Flow cytometric analysis was used to distinguish macrophage subtypes. RESULTS Serum FABP4 level was positively correlate with the severity of hepatic steatosis in NAFLD patients. FABP4 expression was mainly distributed in liver sinusoidal endothelial cells (LSECs), which was significantly increased in HFD mice. The level of CXCL10 was positively correlated with FABP4 at mRNA and serum level. FABP4 inhibition resulted in decreased expression of CXCL10. The percentage of M1 macrophage and CXCR3+ cells in infiltrated macrophage was increased in liver of HFD mice. Inhibition of FABP4 ameliorated HFD-induced M1 macrophage polarization as well as CXCR3+ macrophages recruitment. Recombinant CXCL10 and co-culturing with TMNK-1 stimulated macrophage toward M1 polarization, which could be reversed by CXCR3 inhibitor. Palmitic acid treatment resulted in increased nuclear P65 expression, which could be reversed by inhibiting FABP4. Cxcl10 expression was dramatically suppressed by NF-κB inhibitor. CONCLUSIONS FABP4 in LSECs may play a pathogenic role in NAFLD course by promoting CXCL10-mediated macrophage M1 polarization and CXCR3+ macrophage infiltration via activating NF-κB/p65 signaling.
Collapse
Affiliation(s)
- Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongsang Sun
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|