1
|
Xu Y, Chen L, Liu W, Chen L. Advances in inflammatory senescence in liver disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-9. [PMID: 39828280 DOI: 10.3724/zdxbyxb-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Inflammatory senescence is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases,and the research on its mechanisms becomes a hotspot currently. In viral hepatitis, the mechanisms of inflammatory senescence primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, the mechanisms of inflammatory senescence are more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and NAD+ metabolism abnormalities. In liver tumors, inflammatory senescence is characterized by the weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammatory senescence have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy emerging are important interventions for liver diseases. This review focuses on the mechanisms of inflammatory secescence in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Yanping Xu
- Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Luyi Chen
- Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weili Liu
- Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liying Chen
- Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
2
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
3
|
Xue XP, Sheng Y, Ren QQ, Xu SM, Li M, Liu ZX, Lu CH. Inhibition of ATP1V6G3 prompts hepatic stellate cell senescence with reducing ECM by activating Notch1 pathway to alleviate hepatic fibrosis. Tissue Cell 2024; 91:102554. [PMID: 39316936 DOI: 10.1016/j.tice.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Liver fibrosis is characterized by an excessive reparative response to various etiological factors, with the activated hepatic stellate cells (aHSCs) leading to extracellular matrix (ECM) accumulation. Senescence is a stable growth arrest, and the senescence of aHSCs is associated with the degradation of ECM and the regression of hepatic fibrosis, making it a promising approach for managing hepatic fibrosis. The role and specific mechanisms by which V-Type Proton ATPase Subunit G 3 (ATP6V1G3) influences senescence in activated HSCs during liver fibrosis remain unclear. Our preliminary results reveal upregulation of ATP6V1G3 in both human fibrotic livers and murine liver fibrosis models. Additionally, ATP6V1G3 inhibition induced senescence in aHSCs in vitro. Moreover, suppressing Notch1 reversed the senescence caused by ATP6V1G3 inhibition in HSCs. Thus, targeting ATP6V1G3, which appears to drive HSCs senescence through the Notch1 pathway, emerges as a potential therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Xiao-Pei Xue
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Department Gastroenterology, Rugao Hospital of traditional Chinese Medicine, Nantong 226500, China
| | - Yu Sheng
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qi-Qi Ren
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shi-Meng Xu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Min Li
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
4
|
Rodrigues AC, Heng YJ, Slack FJ. Extracellular vesicle-encapsulated miR-30c-5p reduces aging-related liver fibrosis. Aging Cell 2024; 23:e14310. [PMID: 39269881 PMCID: PMC11634720 DOI: 10.1111/acel.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is associated with decreased health span, and despite the recent advances made in understanding the mechanisms of aging, no antiaging drug has been approved for therapy. Therefore, strategies to promote a healthy life in aging are desirable. Previous work has shown that chronic treatment with extracellular vesicles (EVs) from young mice prolongs lifespan in old mice, but the mechanism of action of this effect on liver metabolism is not known. Here we investigated the role of treatment with EVs derived from young sedentary (EV-C) or exercised (EV-EX) mice in the metabolism of old mice and aimed to identify key youthful-associated microRNA (miRNA) cargos that could promote healthy liver function. We found that aged mice treated with either EV-C or EV-EX had higher insulin sensitivity, higher locomotor activity resulting in longer distance traveled in the cage, and a lower respiratory exchange ratio compared to mice treated with EVs from aged mice (EV-A). In the liver, treatment with young-derived EVs reduced aging-induced liver fibrosis. We identified miR-30c in the EVs as a possible youth-associated miRNA as its level was higher in circulating EVs of young mice. Treatment of aged mice with EVs transfected with miR-30c mimic reduced stellate cell activation in the liver and reduced fibrosis compared to EV-negative control by targeting Foxo3. Our results suggest that by delivering juvenile EVs to old mice, we can improve their liver health. Moreover, we identified miR-30c as a candidate for antiaging liver therapy.
Collapse
Affiliation(s)
- Alice C. Rodrigues
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of PharmacologyUniversidade de Sao Paulo Instituto de Ciencias BiomedicasSão PauloBrazil
| | - Yujing J. Heng
- Department of Pathology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Frank J. Slack
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Department of Pathology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Harvard Medical School Initiative for RNA MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Alarcón-Sánchez BR, Idelfonso-García OG, Guerrero-Escalera D, Piña-Vázquez C, de Anda-Jáuregui G, Pérez-Hernández JL, de la Garza M, García-Sierra F, Sánchez-Pérez Y, Baltiérrez-Hoyos R, Vásquez-Garzón VR, Muriel P, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. A model of alcoholic liver disease based on different hepatotoxics leading to liver cancer. Biochem Pharmacol 2024; 228:116209. [PMID: 38621424 DOI: 10.1016/j.bcp.2024.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders. We demonstrated that the MHT-ALD model induces ADH1A and NXN, an ethanol metabolizer and a redox-sensor enzyme, respectively; promotes steatosis associated with the induction of the lipid droplet forming FSP27, inflammation identified by the infiltration of hepatic neutrophils-positive to LY-6G marker, and the increase of MYD88 level, a protein involved in inflammatory response; and stimulates the early appearance of cellular senescence identified by the senescence markers SA-β-gal activity and p-H2A.XSer139. It also induces fibrosis associated with increased desmin, a marker of hepatic stellate cells whose activation leads to the deposition of collagen fibers, accompanied by cell death and compensatory proliferation revealed by increased CASP3-mediated apoptosis, and KI67- and PCNA-proliferation markers, respectively. It also induces histopathological traits of malignancy and the level of the HCC marker, GSTP1. In conclusion, we provide a useful model for exploring the chronological ALD-associated alterations and stages, and addressing therapeutic approaches.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico; Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico.
| | | | - Dafne Guerrero-Escalera
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico
| | - Carolina Piña-Vázquez
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico
| | - José Luis Pérez-Hernández
- Department of Gastroenterology and Hepatology, General Hospital of Mexico "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Francisco García-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología - INCan, Mexico City, Mexico
| | - Rafael Baltiérrez-Hoyos
- Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico; Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, 'Benito Juárez' Autonomous University of Oaxaca - UABJO, Oaxaca, Mexico
| | - Verónica Rocío Vásquez-Garzón
- Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico; Laboratory of Fibrosis and Cancer, Faculty of Medicine and Surgery, 'Benito Juárez' Autonomous University of Oaxaca - UABJO, Oaxaca, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | | | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico; Deputy Directorate of Humanistic and Scientific Research, National Council of Humanities, Sciences and Technologies - CONAHCYT, Mexico City, Mexico.
| |
Collapse
|
6
|
Ashmore-Harris C, Antonopoulou E, Aird RE, Man TY, Finney SM, Speel AM, Lu WY, Forbes SJ, Gadd VL, Waters SL. Utilising an in silico model to predict outcomes in senescence-driven acute liver injury. NPJ Regen Med 2024; 9:26. [PMID: 39349489 PMCID: PMC11442582 DOI: 10.1038/s41536-024-00371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/17/2024] [Indexed: 10/02/2024] Open
Abstract
Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo-in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Rhona E Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Annelijn M Speel
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration & Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Wang W, Qian J, Shang M, Qiao Y, Huang J, Gao X, Ye Z, Tong X, Xu K, Li X, Liu Z, Zhou L, Zheng S. Integrative analysis of the transcriptome and metabolome reveals the importance of hepatokine FGF21 in liver aging. Genes Dis 2024; 11:101161. [PMID: 39022127 PMCID: PMC11252782 DOI: 10.1016/j.gendis.2023.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 07/20/2024] Open
Abstract
Aging is a contributor to liver disease. Hence, the concept of liver aging has become prominent and has attracted considerable interest, but its underlying mechanism remains poorly understood. In our study, the internal mechanism of liver aging was explored via multi-omics analysis and molecular experiments to support future targeted therapy. An aged rat liver model was established with d-galactose, and two other senescent hepatocyte models were established by treating HepG2 cells with d-galactose and H2O2. We then performed transcriptomic and metabolomic assays of the aged liver model and transcriptome analyses of the senescent hepatocyte models. In livers, genes related to peroxisomes, fatty acid elongation, and fatty acid degradation exhibited down-regulated expression with aging, and the hepatokine Fgf21 expression was positively correlated with the down-regulation of these genes. In senescent hepatocytes, similar to the results found in aged livers, FGF21 expression was also decreased. Moreover, the expressions of cell cycle-related genes were significantly down-regulated, and the down-regulated gene E2F8 was the key cell cycle-regulating transcription factor. We then validated that FGF21 overexpression can protect against liver aging and that FGF21 can attenuate the declines in the antioxidant and regenerative capacities in the aging liver. We successfully validated the results from cellular and animal experiments using human liver and blood samples. Our study indicated that FGF21 is an important target for inhibiting liver aging and suggested that pharmacological prevention of the reduction in FGF21 expression due to aging may be used to treat liver aging-related diseases.
Collapse
Affiliation(s)
- Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Mingge Shang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinxin Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhou Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xinyu Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang 310003, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
8
|
Jun JH, Du K, Dutta RK, Maeso-Diaz R, Oh SH, Wang L, Gao G, Ferreira A, Hill J, Pullen SS, Diehl AM. The senescence-associated secretome of Hedgehog-deficient hepatocytes drives MASLD progression. J Clin Invest 2024; 134:e180310. [PMID: 39190624 PMCID: PMC11444248 DOI: 10.1172/jci180310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The burden of senescent hepatocytes correlates with the severity of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms driving senescence and how it exacerbates MASLD are poorly understood. Hepatocytes experience lipotoxicity and become senescent when Smoothened (Smo) is deleted to disrupt Hedgehog signaling. We aimed to determine whether the secretomes of Smo-deficient hepatocytes perpetuate senescence to drive MASLD progression. RNA-Seq analysis of liver samples from human and murine cohorts with MASLD confirmed that hepatocyte populations in MASLD livers were depleted of Smo+ cells and enriched with senescent cells. When fed a choline-deficient, amino acid-restricted high-fat diet (CDA-HFD) to induce MASLD, Smo- mice had lower antioxidant markers and developed worse DNA damage, senescence, steatohepatitis, and fibrosis than did Smo+ mice. Sera and hepatocyte-conditioned medium from Smo- mice were depleted of thymidine phosphorylase (TP), a protein that maintains mitochondrial fitness. Treating Smo- hepatocytes with TP reduced senescence and lipotoxicity, whereas inhibiting TP in Smo+ hepatocytes had the opposite effect and exacerbated hepatocyte senescence, steatohepatitis, and fibrosis in CDA-HFD-fed mice. We conclude that inhibition of Hedgehog signaling in hepatocytes promoted MASLD by suppressing hepatocyte production of proteins that prevent lipotoxicity and senescence.
Collapse
Affiliation(s)
- Ji Hye Jun
- Division of Gastroenterology, Department of Medicine and
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine and
| | | | | | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine and
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Guannan Gao
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Ana Ferreira
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine and
| |
Collapse
|
9
|
Dong W, Liu J, Zhang Y, Huang M, Lin M, Peng X. DNA damages in hepatocytes are amended by an inflammation-driven rescue repair mechanism in chronic hepatitis B. Pathol Res Pract 2024; 260:155391. [PMID: 38850878 DOI: 10.1016/j.prp.2024.155391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Infectious Diseases, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, China
| | - Jian Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yansong Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Mingxing Huang
- Department of Infectious Diseases, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, China
| | - Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
10
|
Leaker BD, Wang Y, Tam J, Anderson RR. Analysis of culture and RNA isolation methods for precision-cut liver slices from cirrhotic rats. Sci Rep 2024; 14:15349. [PMID: 38961190 PMCID: PMC11222550 DOI: 10.1038/s41598-024-66235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024] Open
Abstract
Precision-cut liver slices (PCLS) are increasingly used as a model to investigate anti-fibrotic therapies. However, many studies use PCLS from healthy animals treated with pro-fibrotic stimuli in culture, which reflects only the early stages of fibrosis. The effects of different culture conditions on PCLS from cirrhotic animals has not been well characterized and there is no consensus on optimal methods. In this study, we report a method for the collection and culture of cirrhotic PCLS and compare the effect of common culture conditions on viability, function, and gene expression. Additionally, we compared three methods of RNA isolation and identified a protocol with high yield and purity. We observed significantly increased albumin production when cultured with insulin-transferrin-selenium and dexamethasone, and when incubated on a rocking platform. Culturing with insulin-transferrin-selenium and dexamethasone maintained gene expression closer to the levels in fresh slices. However, despite stable viability and function up to 4 days, we found significant changes in expression of key genes by day 2. Interestingly, we also observed that cirrhotic PCLS maintain viability in culture longer than slices from healthy animals. Due to the influence of matrix stiffness on fibrosis and hepatocellular function, it is important to evaluate prospective anti-fibrotic therapies in a platform that preserves tissue biomechanics. PCLS from cirrhotic animals represent a promising tool for the development of treatments for chronic liver disease.
Collapse
Affiliation(s)
- Ben D Leaker
- Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Thier Research Building, MGH, 55 Blossom Street, Boston, MA, USA.
| | - Yongtao Wang
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Thier Research Building, MGH, 55 Blossom Street, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Thier Research Building, MGH, 55 Blossom Street, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024:AD.2024.0586. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
13
|
Wu B, Shentu X, Nan H, Guo P, Hao S, Xu J, Shangguan S, Cui L, Cen J, Deng Q, Wu Y, Liu C, Song Y, Lin X, Wang Z, Yuan Y, Ma W, Li R, Li Y, Qian Q, Du W, Lai T, Yang T, Liu C, Ma X, Chen A, Xu X, Lai Y, Liu L, Esteban MA, Hui L. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat Genet 2024; 56:938-952. [PMID: 38627596 DOI: 10.1038/s41588-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/09/2024] [Indexed: 05/09/2024]
Abstract
Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFβ in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.
Collapse
Affiliation(s)
- Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI Research, Shenzhen, China
| | - Lei Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yan Wu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chang Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xiumei Lin
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Wen Ma
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ao Chen
- BGI Research, Shenzhen, China
| | - Xun Xu
- BGI Research, Shenzhen, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- China National GeneBank, BGI Research, Shenzhen, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
14
|
Kumar P, Hassan M, Tacke F, Engelmann C. Delineating the heterogeneity of senescence-induced-functional alterations in hepatocytes. Cell Mol Life Sci 2024; 81:200. [PMID: 38684535 PMCID: PMC11058795 DOI: 10.1007/s00018-024-05230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIM Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-β galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-β galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.
Collapse
Affiliation(s)
- Pavitra Kumar
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Mohsin Hassan
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité, Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, Forum 4, Raum 2.0704a, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), 10178, Berlin, Germany.
| |
Collapse
|
15
|
Hopkins JW, Sulka KB, Sawden M, Carroll KA, Brown RD, Bunnell SC, Poltorak A, Tai A, Reed ER, Sharma S. STING promotes homeostatic maintenance of tissues and confers longevity with aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588107. [PMID: 38645182 PMCID: PMC11030237 DOI: 10.1101/2024.04.04.588107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.
Collapse
Affiliation(s)
- Jacob W. Hopkins
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Katherine B. Sulka
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Kimberly A. Carroll
- Department of Immunology, Tufts University, Boston, MA 02111
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111
| | - Ronald D. Brown
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 12853
| | | | | | - Albert Tai
- Department of Immunology, Tufts University, Boston, MA 02111
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Eric R. Reed
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155
| | - Shruti Sharma
- Department of Immunology, Tufts University, Boston, MA 02111
| |
Collapse
|
16
|
Denk H, Abuja PM, Zatloukal K. Mallory-Denk bodies and hepatocellular senescence: a causal relationship? Virchows Arch 2024; 484:637-644. [PMID: 38289501 PMCID: PMC11063002 DOI: 10.1007/s00428-024-03748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 05/02/2024]
Abstract
Mallory-Denk bodies (MDBs) are hepatocellular cytoplasmic inclusions, which occur in certain chronic liver diseases, such as alcohol-related (ASH) and metabolic dysfunction-associated (MASH) steatohepatitis, copper toxicosis, some drug-induced liver disorders, chronic cholangiopathies, and liver tumors. Our study focused on the expression of the senescence markers p21WAF1/cip1 and p16INK4a in hepatocytes containing MDBs in steatohepatitis, chronic cholangiopathies with fibrosis or cirrhosis, Wilson's disease, and hepatocellular carcinomas. Cytoplasm and nuclei of MDB-containing hepatocytes as well as MDB inclusions, except those associated with carcinoma cells, were strongly p16-positive, p21-positive, as well as p21-negative nuclei in MDB-containing hepatocytes which were observed whereas MDBs were p21-negative. Expression of the senescence marker p16 suggests that MDB formation reflects an adaptive response to chronic stress resembling senescence with its consequences, i.e., expression of inflammation- and fibrosis-prone secretome. Thus, senescence can be regarded as "double-edged sword" since, on the one hand, it may be an attempt of cellular defense, but, on the other, also causes further and sustained damage by inducing inflammation and fibrosis related to the senescence-associated secretory phenotype and thus progression of chronic liver disease.
Collapse
Affiliation(s)
- Helmut Denk
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Peter M Abuja
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Diagnostic & Research Center of Molecular Biomedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| |
Collapse
|
17
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
18
|
Pang X, Gao S, Liu T, Xu FX, Fan C, Zhang JF, Jiang H. Identification of STAT3 as a biomarker for cellular senescence in liver fibrosis: A bioinformatics and experimental validation study. Genomics 2024; 116:110800. [PMID: 38286349 DOI: 10.1016/j.ygeno.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1β, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.
Collapse
Affiliation(s)
- Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Shang Gao
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Feng Xia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Jia Fu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China.
| |
Collapse
|
19
|
Liu Y, Xiao J, Cai J, Li R, Sui X, Zhang J, Lu T, Chen H, Chen G, Li H, Jiang C, Zhao X, Xiao C, Lei Y, Yao J, Lv G, Liang J, Zhang Y, Yang JR, Zheng J, Yang Y. Single-cell immune profiling of mouse liver aging reveals Cxcl2+ macrophages recruit neutrophils to aggravate liver injury. Hepatology 2024; 79:589-605. [PMID: 37695548 PMCID: PMC10871588 DOI: 10.1097/hep.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Immune cells play a crucial role in liver aging. However, the impact of dynamic changes in the local immune microenvironment on age-related liver injury remains poorly understood. We aimed to characterize intrahepatic immune cells at different ages to investigate key mechanisms associated with liver aging. APPROACH AND RESULTS We carried out single-cell RNA sequencing on mouse liver tissues at 4 different ages, namely, the newborn, suckling, young, and aged stages. The transcriptomic landscape, cellular classification, and intercellular communication were analyzed. We confirmed the findings by multiplex immunofluorescence staining, flow cytometry, in vitro functional experiments, and chimeric animal models. Nine subsets of 89,542 immune cells with unique properties were identified, of which Cxcl2+ macrophages within the monocyte/macrophage subset were preferentially enriched in the aged liver. Cxcl2+ macrophages presented a senescence-associated secretory phenotype and recruited neutrophils to the aged liver through the CXCL2-CXCR2 axis. Through the secretion of IL-1β and TNF-α, Cxcl2+ macrophages stimulated neutrophil extracellular traps formation. Targeting the CXCL2-CXCR2 axis limited the neutrophils migration toward the liver and attenuated age-related liver injury. Moreover, the relationship between Cxcl2+ macrophages and neutrophils in age-related liver injury was further validated by human liver transplantation samples. CONCLUSIONS This in-depth study illustrates that the mechanism of Cxcl2+ macrophage-driven neutrophil activation involves the CXCL2-CXCR2 axis and provides a potential therapeutic strategy for age-related liver injury.
Collapse
Affiliation(s)
- Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Xuegang Zhao
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University; Guangzhou, China
| | - Yunguo Lei
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Guo Lv
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jinliang Liang
- Organ Transplantation Research Center of Guangdong Province Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Jian-Rong Yang
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University; Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine; Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University; Guangzhou, China
| |
Collapse
|
20
|
Damba T, Zhang M, Serna Salas SA, Wu Z, van Goor H, Arenas AF, Muñoz-Ortega MH, Ventura-Juárez J, Buist-Homan M, Moshage H. Inhibition of endogenous hydrogen sulfide production reduces activation of hepatic stellate cells via the induction of cellular senescence. Cell Cycle 2024; 23:629-644. [PMID: 38836592 PMCID: PMC11229775 DOI: 10.1080/15384101.2024.2345477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 06/06/2024] Open
Abstract
In chronic liver injury, quiescent hepatic stellate cells (HSCs) transdifferentiate into activated myofibroblast-like cells and produce large amounts of extracellular matrix components, e.g. collagen type 1. Cellular senescence is characterized by irreversible cell-cycle arrest, arrested cell proliferation and the acquisition of the senescence-associated secretory phenotype (SASP) and reversal of HSCs activation. Previous studies reported that H2S prevents induction of senescence via its antioxidant activity. We hypothesized that inhibition of endogenous H2S production induces cellular senescence and reduces activation of HSCs. Rat HSCs were isolated and culture-activated for 7 days. After activation, HSCs treated with H2S slow-releasing donor GYY4137 and/or DL-propargylglycine (DL-PAG), an inhibitor of the H2S-producing enzyme cystathionine γ-lyase (CTH), as well as the PI3K inhibitor LY294002. In our result, CTH expression was significantly increased in fully activated HSCs compared to quiescent HSCs and was also observed in activated stellate cells in a in vivo model of cirrhosis. Inhibition of CTH reduced proliferation and expression of fibrotic markers Col1a1 and Acta2 in HSCs. Concomitantly, DL-PAG increased the cell-cycle arrest markers Cdkn1a (p21), p53 and the SASP marker Il6. Additionally, the number of β-galactosidase positive senescent HSCs was increased. GYY4137 partially restored the proliferation of senescent HSCs and attenuated the DL-PAG-induced senescent phenotype. Inhibition of PI3K partially reversed the senescence phenotype of HSCs induced by DL-PAG. Inhibition of endogenous H2S production reduces HSCs activation via induction of cellular senescence in a PI3K-Akt dependent manner. Our results show that cell-specific inhibition of H2S could be a novel target for anti-fibrotic therapy via induced cell senescence.
Collapse
Affiliation(s)
- Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mengfan Zhang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Sandra A Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aaron Fierro Arenas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Javier Ventura-Juárez
- Chemistry Department, Basic Sciences Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Lin Y, Li Y, Liang G, Yang X, Yang J, Hu Q, Sun J, Zhang C, Fang H, Liu A. Single-cell transcriptome analysis of aging mouse liver. FASEB J 2024; 38:e23473. [PMID: 38334462 DOI: 10.1096/fj.202302282r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-β, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Sun
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
22
|
Duran I, Pombo J, Sun B, Gallage S, Kudo H, McHugh D, Bousset L, Barragan Avila JE, Forlano R, Manousou P, Heikenwalder M, Withers DJ, Vernia S, Goldin RD, Gil J. Detection of senescence using machine learning algorithms based on nuclear features. Nat Commun 2024; 15:1041. [PMID: 38310113 PMCID: PMC10838307 DOI: 10.1038/s41467-024-45421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies.
Collapse
Affiliation(s)
- Imanol Duran
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Joaquim Pombo
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bin Sun
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Suchira Gallage
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
| | - Hiromi Kudo
- Section for Pathology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Domhnall McHugh
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Laura Bousset
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Roberta Forlano
- Liver Unit, Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Pinelopi Manousou
- Liver Unit, Section of Hepatology and Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Robert D Goldin
- Section for Pathology, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W2 1NY, UK
| | - Jesús Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
23
|
Zheng Y, Wang L, Wang J, Zhao T, Wang J. Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol. Curr Med Chem 2024; 31:2821-2837. [PMID: 38351696 DOI: 10.2174/0109298673271261231213051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis. METHODS We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments. RESULT We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators. CONCLUSION Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiaru Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| |
Collapse
|
24
|
Hora S, Wuestefeld T. Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. Cells 2023; 12:2129. [PMID: 37681858 PMCID: PMC10486351 DOI: 10.3390/cells12172129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The liver is a complex organ with the ability to regenerate itself in response to injury. However, several factors can contribute to liver damage beyond repair. Liver injury can be caused by viral infections, alcoholic liver disease, non-alcoholic steatohepatitis, and drug-induced liver injury. Understanding the cellular and molecular mechanisms involved in liver injury and regeneration is critical to developing effective therapies for liver diseases. Liver regeneration is a complex process that involves the interplay of various signaling pathways, cell types, and extracellular matrix components. The activation of quiescent hepatocytes that proliferate and restore the liver mass by upregulating genes involved in cell-cycle progression, DNA repair, and mitochondrial function; the proliferation and differentiation of progenitor cells, also known as oval cells, into hepatocytes that contribute to liver regeneration; and the recruitment of immune cells to release cytokines and angiogenic factors that promote or inhibit cell proliferation are some examples of the regenerative processes. Recent advances in the fields of gene editing, tissue engineering, stem cell differentiation, small interfering RNA-based therapies, and single-cell transcriptomics have paved a roadmap for future research into liver regeneration as well as for the identification of previously unknown cell types and gene expression patterns. In summary, liver injury and regeneration is a complex and dynamic process. A better understanding of the cellular and molecular mechanisms driving this phenomenon could lead to the development of new therapies for liver diseases and improve patient outcomes.
Collapse
Affiliation(s)
- Shainan Hora
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
| | - Torsten Wuestefeld
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore;
- National Cancer Centre Singapore, Singapore 168583, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
25
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
26
|
Jiang C, Chen H, Kang Y, He X, Huang J, Lu T, Sui X, Chen H, Xiao J, Zhang J, Zhang H, Zheng J, Yang Y, Yao J, Cai J, Zhang Y. Administration of AG490 decreases the senescence of umbilical cord-mesenchymal stem cells and promotes the cytotherapeutic effect in liver fibrosis. Cell Death Discov 2023; 9:273. [PMID: 37507381 PMCID: PMC10382487 DOI: 10.1038/s41420-023-01546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The therapeutic potential of umbilical cord-mesenchymal stem cell (UC-MSC) transplantation in liver fibrosis has been highlighted. However, the fate of transplanted MSCs in the fibrotic microenvironment remains unclear. In this study, we aim to uncover the fate of transplanted MSCs and develop targeting strategies that could enhance the therapeutic efficacy of MSC therapy in liver fibrosis. We used human UC-MSCs as the study object. For in vitro experiments, we stimulated UC-MSCs with several fibrotic-related factors (Liver fibrotic Factors, LF), including TGFβ, TNFα and IFNγ for downstream investigations. We co-cultured LF-treated UC-MSCs with hepatic stellate cell line LX-2 to assess the anti-fibrotic effect. We showed that upon LF stimulation, UC-MSCs exhibited reduced anti-fibrotic activity and underwent rapid senescence. Pathway analysis showed that JAK/STAT3 signaling was highly activated upon LF stimulation, which significantly elevated senescence-associated secretory phenotype (SASP) and senescence in UC-MSCs and could be reversed by a specific JAK inhibitor AG490. Moreover, using both carbon tetrachloride (CCl4) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induce fibrosis models, we demonstrated that AG490 pretreatment promoted UC-MSCs survival within the fibrotic liver microenvironment and exhibited enhance therapeutic efficacy. Overall, we showed that targeting MSC senescence in vivo through AG490 pretreatment could enhance the anti-fibrotic activities of UC-MSCs.
Collapse
Affiliation(s)
- Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinqian Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinyi He
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianyang Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30309, USA
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China.
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China.
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China.
| |
Collapse
|
27
|
Du K, Maeso-Díaz R, Oh SH, Wang E, Chen T, Pan C, Xiang K, Dutta RK, Wang XF, Chi JT, Diehl AM. Targeting YAP-mediated HSC death susceptibility and senescence for treatment of liver fibrosis. Hepatology 2023; 77:1998-2015. [PMID: 36815382 PMCID: PMC10416614 DOI: 10.1097/hep.0000000000000326] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS Liver fibrosis results from the accumulation of myofibroblasts (MFs) derived from quiescent HSCs, and yes-associated protein (YAP) controls this state transition. Although fibrosis is also influenced by HSC death and senescence, whether YAP regulates these processes and whether this could be leveraged to treat liver fibrosis are unknown. APPROACH AND RESULTS YAP activity was manipulated in MF-HSCs to determine how YAP impacts susceptibility to pro-apoptotic senolytic agents or ferroptosis. Effects of senescence on YAP activity and susceptibility to apoptosis versus ferroptosis were also examined. CCl 4 -treated mice were treated with a ferroptosis inducer or pro-apoptotic senolytic to determine the effects on liver fibrosis. YAP was conditionally disrupted in MFs to determine how YAP activity in MF-HSC affects liver fibrosis in mouse models. Silencing YAP in cultured MF-HSCs induced HSC senescence and vulnerability to senolytics, and promoted ferroptosis resistance. Conversely, inducing HSC senescence suppressed YAP activity, increased sensitivity to senolytics, and decreased sensitivity to ferroptosis. Single-cell analysis of HSCs from fibrotic livers revealed heterogeneous sensitivity to ferroptosis, apoptosis, and senescence. In mice with chronic liver injury, neither the ferroptosis inducer nor senolytic improved fibrosis. However, selectively depleting YAP in MF-HSCs induced senescence and decreased liver injury and fibrosis. CONCLUSION YAP determines whether MF-HSCs remain activated or become senescent. By regulating this state transition, Yap controls both HSC fibrogenic activity and susceptibility to distinct mechanisms for cell death. MF-HSC-specific YAP depletion induces senescence and protects injured livers from fibrosis. Clarifying determinants of HSC YAP activity may facilitate the development of novel anti-fibrotic therapies.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Raquel Maeso-Díaz
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Tianyi Chen
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Christopher Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
29
|
Medina Rangel PX, Ishibe S. PD-1, a New Player in Podocyte Age-Related Senescence. Am J Kidney Dis 2023; 81:361-363. [PMID: 36403888 DOI: 10.1053/j.ajkd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Affiliation(s)
| | - Shuta Ishibe
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
30
|
Wang J, Huang X, Zheng D, Li Q, Mei M, Bao S. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. J Genet Genomics 2023; 50:87-98. [PMID: 35500745 DOI: 10.1016/j.jgg.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Human hepatocellular carcinoma (HCC) occurs almost exclusively in cirrhotic livers. Here, we report that hepatic loss of protein arginine methyltransferase 5 (PRMT5) in mice is sufficient to cause cirrhosis and HCC in a clinically relevant way. Furthermore, pathological polyploidization induced by hepatic loss of PRMT5 promotes liver cirrhosis and hepatic tumorigenesis in aged liver. The loss of PRMT5 leads to hyper-accumulation of P21 and endoreplication-dependent formation of pathological mono-nuclear polyploid hepatocytes. PRMT5 and symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) directly associate with chromatin of P21 to suppress its transcription. More importantly, loss of P21 rescues the pathological mono-nuclear polyploidy and prevents PRMT5-deficiency-induced liver cirrhosis and HCC. Thus, our results indicate that PRMT5-mediated symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) is crucial for preventing pathological polyploidization, liver cirrhosis and tumorigenesis in mouse liver.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiang Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoshan Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
32
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
33
|
Potential Role of Polyphenolic Flavonoids as Senotherapeutic Agents in Degenerative Diseases and Geroprotection. Pharmaceut Med 2022; 36:331-352. [PMID: 36100824 PMCID: PMC9470070 DOI: 10.1007/s40290-022-00444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 10/29/2022]
|
34
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
35
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
36
|
Unique molecular characteristics of NAFLD-associated liver cancer accentuate β-catenin/TNFRSF19-mediated immune evasion. J Hepatol 2022; 77:410-423. [PMID: 35351523 DOI: 10.1016/j.jhep.2022.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The hepatic manifestation of the metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), can lead to the development of hepatocellular carcinoma (HCC). Despite a strong causative link, NAFLD-HCC is often underrepresented in systematic genome explorations. METHODS Herein, tumor-normal pairs from 100 patients diagnosed with NAFLD-HCC were subject to next-generation sequencing. Bioinformatic analyses were performed to identify key genomic, epigenomic and transcriptomic events associated with the pathogenesis of NAFLD-HCC. Establishment of primary patient-derived NAFLD-HCC culture was used as a representative human model for downstream in vitro investigations of the underlying CTNNB1 S45P driver mutation. A syngeneic immunocompetent mouse model was used to further test the involvement of CTNNB1mutand TNFRSF19 in reshaping the tumor microenvironment. RESULTS Mutational processes operative in the livers of patients with NAFLD inferred susceptibility to tumor formation through defective DNA repair pathways. Dense promoter mutations and dysregulated transcription factors accentuated activated transcriptional regulation in NAFLD-HCC, in particular the enrichment of MAZ-MYC activities. Somatic events common in HCCs arising from NAFLD and viral hepatitis B infection underscore similar driver pathways, although an incidence shift highlights CTNNB1mut dominance in NAFLD-HCC (33%). Immune exclusion correlated evidently with CTNNB1mut. Chromatin immunoprecipitation-sequencing integrated with transcriptome and immune profiling revealed a unique transcriptional axis, wherein CTNNB1mut leads to an upregulation of TNFRSF19 which subsequently represses senescence-associated secretory phenotype-like cytokines (including IL6 and CXCL8). This phenomenon could be reverted by the Wnt-modulator ICG001. CONCLUSIONS The unique mutational processes in the livers of patients with NAFLD and NAFLD-HCC allude to a "field effect" involving a gain-of-function role of CTNNB1 mutations in immune exclusion. LAY SUMMARY The increasing prevalence of metabolic syndrome in adult populations means that NAFLD is poised to be the major cause of liver cancer in the 21st century. We showed a strong "field effect" in the livers of patients with NAFLD, wherein activated β-catenin was involved in reshaping the tumor-immune microenvironment.
Collapse
|
37
|
Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J Hepatol 2022; 77:219-236. [PMID: 35157957 DOI: 10.1016/j.jhep.2022.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed M Elsharkawy
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, B15 2TH UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| | - Michele Vacca
- Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
38
|
Vetuschi A, Cappariello A, Onori P, Gaudio E, Latella G, Pompili S, Sferra R. Ferroptosis resistance cooperates with cellular senescence in the overt stage of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Eur J Histochem 2022; 66. [PMID: 35726536 PMCID: PMC9251610 DOI: 10.4081/ejh.2022.3391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cellular senescence and ferroptosis are the two main, fine-tuned processes in tissue damage restraint; however, they can be overactivated in pathologies such as nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH), becoming dangerous stimuli. Senescence is characterized by a decline in cell division and an abnormal release of reactive oxygen species (ROS), and ferroptosis is represented by iron deposition associated with an excessive accumulation of ROS. ROS and cellular stress pathways are also drivers of NAFLD/NASH development. The etiology of NAFLD/NASH lies in poor diets enriched in fat and sugar. This food regimen leads to liver steatosis, resulting in progressive degeneration of the organ, with a late onset of irreversible fibrosis and cirrhosis. Few studies have investigated the possible connection between senescence and ferroptosis in NAFLD/NASH progression, despite the two events sharing some molecular players. We hypothesized a possible link between senescence and ferroptosis in a NAFLD background. To thoroughly investigate this in the context of "Western-style" diet (WSD) abuse, we used an amylin-modified liver NASH mouse model. The main NASH hallmarks have been confirmed in this model, as well as an increase in apoptosis, and Ki67 and p53 expression in the liver. Senescent beta-galactosidase-positive cells were elevated, as well as the expression of the related secretory molecules Il-6 and MMP-1. Features of DNA damage and iron-overload were found in the livers of NASH mice. Gpx4 (glutathione peroxidase 4) expression, counteracting ferroptotic cell death, was increased. Notably, an increased number of senescent cells showing overexpression of gpx4 was also found. Our data seem to suggest that senescent cells acquire a gpx4-mediated mechanism of ferroptosis resistance and thus remain in the liver, fostering the deterioration of liver fitness.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila.
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila.
| |
Collapse
|
39
|
Sen B, Aggarwal S, Nath R, Sehgal R, Singh R, Agrawal K, Shashidhara AN, Rastogi A, Bajpai M, Pamecha V, Trehanpati N, Ramakrishna G. Secretome of senescent hepatoma cells modulate immune cell fate by macrophage polarization and neutrophil extracellular traps formation. Med Oncol 2022; 39:134. [PMID: 35726030 DOI: 10.1007/s12032-022-01732-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 01/07/2023]
Abstract
Presence of dysfunctional senescent hepatocytes is a hallmark feature of liver cirrhosis which finally culminates in liver cancer. We now report the presence of senescent hepatocytes (p21 and p53 positive) in the vicinity of infiltrated immune cells in hepatocellular carcinoma tissue specimens by immunohistochemistry. Hence, we evaluated in vitro, the relevance of senescent hepatoma cells in altering the fate of monocytes and neutrophils by assaying for macrophage polarization and extracellular trap (NETs) formation, respectively. Premature senescence was induced in hepatoma cells (HepG2 and Huh7 cells) by treating cells with doxorubicin. Senescent hepatoma cells showed strong inflammatory phenotype with induced expression of cytokines (IL1β, IL6, IL8 and IL13) as evaluated by flow cytometry. The senescent secretome from hepatoma cells when incubated with healthy monocytes caused it to differentiate predominantly towards M2 fate (CD80low CD86low CD163high CD206high) when analysed by flow cytometry. This was corroborated by the finding in clinical samples where human hepatocellular carcinoma harbouring senescent hepatocytes showed presence of M2 macrophages, while M1 macrophages were predominant in non-tumorous region. Additionally, the senescent secretome from Huh7 cells enhanced the NETs formation, while HepG2 secretome had an inhibitory effect. In conclusion, the "pro-inflammatory" senescent secretome drives non-inflammatory type M2 macrophage polarization and modulated neutrophil traps which in turn can influence the tumor microenvironment.
Collapse
Affiliation(s)
- Bijoya Sen
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Savera Aggarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | - Rhisita Nath
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | - Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | - Khushboo Agrawal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | | | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Viniyendra Pamecha
- Department of Hepatopancreatobiliary Surgery, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), D1 Block, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
40
|
Ma X, Williams SN, Ding WX. Linking of Senescence to Autophagy Deficiency in Chronic Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 14:405-406. [PMID: 35605640 PMCID: PMC9304967 DOI: 10.1016/j.jcmgh.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022]
Affiliation(s)
| | | | - Wen-Xing Ding
- Correspondence Address correspondence to: Wen-Xing Ding, PhD, Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, Kansas 66160.
| |
Collapse
|
41
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
42
|
Fielder E, Wan T, Alimohammadiha G, Ishaq A, Low E, Weigand BM, Kelly G, Parker C, Griffin B, Jurk D, Korolchuk VI, von Zglinicki T, Miwa S. Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice. eLife 2022; 11:75492. [PMID: 35507395 PMCID: PMC9154747 DOI: 10.7554/elife.75492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer survivors suffer from progressive frailty, multimorbidity, and premature morbidity. We hypothesise that therapy-induced senescence and senescence progression via bystander effects are significant causes of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting. Male mice were sublethally irradiated at 5 months of age and treated (or not) with either a senolytic drug (Navitoclax or dasatinib + quercetin) for 10 days or with the senostatic metformin for 10 weeks. Follow-up was for 1 year. Treatments commencing within a month after irradiation effectively reduced frailty progression (p<0.05) and improved muscle (p<0.01) and liver (p<0.05) function as well as short-term memory (p<0.05) until advanced age with no need for repeated interventions. Senolytic interventions that started late, after radiation-induced premature frailty was manifest, still had beneficial effects on frailty (p<0.05) and short-term memory (p<0.05). Metformin was similarly effective as senolytics. At therapeutically achievable concentrations, metformin acted as a senostatic neither via inhibition of mitochondrial complex I, nor via improvement of mitophagy or mitochondrial function, but by reducing non-mitochondrial reactive oxygen species production via NADPH oxidase 4 inhibition in senescent cells. Our study suggests that the progression of adverse long-term health and quality-of-life effects of radiation exposure, as experienced by cancer survivors, might be rescued by short-term adjuvant anti-senescence interventions.
Collapse
Affiliation(s)
- Edward Fielder
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Tengfei Wan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Ghazaleh Alimohammadiha
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Abbas Ishaq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Evon Low
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - B Melanie Weigand
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - George Kelly
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Craig Parker
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Brigid Griffin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Diana Jurk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Satomi Miwa
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| |
Collapse
|
43
|
Nutrition Interventions of Herbal Compounds on Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1059257. [PMID: 35528514 PMCID: PMC9068308 DOI: 10.1155/2022/1059257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
When cells undergo large-scale senescence, organ aging ensues, resulting in irreversible organ pathology and organismal aging. The study of senescence in cells provides an important avenue to understand the factors that influence aging and can be used as one of the useful tools for examining age-related human diseases. At present, many herbal compounds have shown effects on delaying cell senescence. This review summarizes the main characteristics and mechanisms of cell senescence, age-related diseases, and the recent progress on the natural products targeting cellular senescence, with the aim of providing insights to aid the clinical management of age-related diseases.
Collapse
|
44
|
Luo J, Li L, Chang B, Zhu Z, Deng F, Hu M, Yu Y, Lu X, Chen Z, Zuo D, Zhou J. Mannan-Binding Lectin via Interaction With Cell Surface Calreticulin Promotes Senescence of Activated Hepatic Stellate Cells to Limit Liver Fibrosis Progression. Cell Mol Gastroenterol Hepatol 2022; 14:75-99. [PMID: 35381393 PMCID: PMC9117817 DOI: 10.1016/j.jcmgh.2022.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis represents a hallmark of most chronic liver diseases (CLD) triggered by recurrent liver injury and subsequent myofibroblast transdifferentiations of resident hepatic stellate cells (HSCs). Mannan-binding lectin (MBL) is potentially involved in hepatic fibrosis in CLD through unclear mechanisms. Therefore, we investigated the crosstalk between MBL and HSCs, and the consequent effects on fibrosis progression. METHODS Samples from patients with liver cirrhosis were collected. MBL deficiency (MBL-/-) and wild-type (WT) C57BL/6J mice were used to construct a CCl4-induced liver fibrosis model. Administration of MBL-expressing, liver-specific, adeno-associated virus was performed to restore hepatic MBL expression in MBL-/- mice. The human HSC line LX-2 was used for in vitro experiments. RESULTS MBL levels in patients with liver cirrhosis were correlated with disease severity. In the CCl4-induced liver fibrosis model, MBL-/- mice showed severer liver fibrosis accompanied by reduced senescent activated HSCs in liver tissue compared with WT mice, which could be inhibited by administering MBL-expressing, liver-specific, adeno-associated virus. Moreover, depleting senescent cells with senolytic treatment could abrogate these differences owing to MBL absence. Furthermore, MBL could interact directly with calreticulin associated with low-density lipoprotein receptor-related protein 1 on the cell surface of HSCs, which further promotes senescence in HSCs by up-regulating the mammalian target of rapamycin/p53/p21 signaling pathway. CONCLUSIONS MBL as a newfound senescence-promoting modulator and its crosstalk with HSCs in the liver microenvironment is essential for the control of hepatic fibrosis progression, suggesting its potential therapeutic use in treating CLD associated with liver fibrosis.
Collapse
Affiliation(s)
- Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
46
|
Denk H, Pabst D, Abuja PM, Reihs R, Tessaro B, Zatloukal K, Lackner C. Senescence markers in focal nodular hyperplasia of the liver: pathogenic considerations on the basis of immunohistochemical results. Mod Pathol 2022; 35:87-95. [PMID: 34645984 DOI: 10.1038/s41379-021-00940-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
Focal nodular hyperplasia (FNH) is a polyclonal tumour-like hepatic lesion characterised by parenchymal nodules, connective tissue septa without interlobular bile ducts, pronounced ductular reaction and inflammation. It may represent a response to local arterial hyperperfusion and hyperoxygenation resulting in oxidative stress. We aimed at obtaining closer insight into the pathogenesis of FNH with its characteristic morphologic features. Immunohistochemistry and immunofluorescence microscopy was performed on FNH specimens using antibodies against keratins (K) 7 and 19, neural cell adhesion molecule (NCAM), lamin B1, senescence markers (CDK inhibitor 1/p21Cip1, CDK inhibitor /p16Ink4a, senescence-associated (SA) β- galactosidase activity), proliferation markers (Ki-67, proliferating-cell nuclear antigen (PCNA)), and the abnormally phosphorylated histone γ-H2AX, indicating DNA double strand breaks; moreover SA β- galactosidase activity was determined histochemically. Ductular metaplasia of hepatocytes indicated by K7 expression in the absence of K19 plays a major role in the development of ductular reaction in FNH. Moreover, the expression of senescence markers (p21Cip1, p16Ink4a, γ-H2AX, SA β-galactosidase activity) in hepatocytes and cholangiocytes suggests that stress-induced cellular senescence contributes to fibrosis and inflammation via production of components of the senescence-associated secretory phenotype. Expression of proliferation markers (Ki-67, PCNA) was not enhanced in hepatocytes and biliary cells. Senescence and ductular metaplasia of hepatocytes may thus be involved in inflammation, fibrosis and apoptosis resistance. Hence, fibrosis, inflammation and reduced apoptotic cell death, rather than proliferation (hyperplasia) may be responsible for increased tissue mass and tumour-like appearance of FNH.
Collapse
Affiliation(s)
- Helmut Denk
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Daniela Pabst
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter M Abuja
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Reihs
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Brigitte Tessaro
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Carolin Lackner
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
47
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Wei Q, Zhou J, Wang K, Zhang X, Chen J, Lu D, Wei X, Zheng S, Xu X. Combination of Early Allograft Dysfunction and Protein Expression Patterns Predicts Outcome of Liver Transplantation From Donation After Cardiac Death. Front Med (Lausanne) 2021; 8:775212. [PMID: 34957150 PMCID: PMC8692269 DOI: 10.3389/fmed.2021.775212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Early allograft dysfunction (EAD) after liver transplantation (LT) accompanies poor prognosis. This study aims to explore the relationship between pretransplant intrahepatic proteins and the incidence of EAD, and the value of combined EAD and protein profiles for predicting recipient and graft survival prognosis. Liver biopsy specimens of 105 pretransplant grafts used for LT were collected and used for immunohistochemistry analysis of 5 proteins. And matched clinical data of donor, recipient, transplantation, and prognosis were analyzed. The incidence of EAD was 41.9% (44/105) in this cohort. Macrovesicular steatosis (P = 0.016), donor body mass index (P = 0.013), recipients' pretransplant serum creatinine (P = 0.036), and intrahepatic expression of heme oxygenase 1 (HO1) (P = 0.015) and tumor necrosis factor α (TNF-α) (P = 0.039) were independent predictors of EAD. Inferior graft and recipient prognosis were observed in patients who experienced EAD (P = 0.028 and 0.031) or received grafts with higher expression of sirtuin 1 (P = 0.005 and 0.013). The graft and recipient survival were worst in patients with both EAD and high expression of sirtuin 1 (P = 0.001 and 0.004). In conclusion, pretransplant intrahepatic expression of HO1 and TNF-α are associated with the incidence of EAD. The combination of EAD and EAD-unrelated proteins showed superiority in distinguishing recipients with worse prognosis.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kun Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuanyu Zhang
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junli Chen
- China Liver Transplant Registery, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Kumar A, Welch N, Mishra S, Bellar A, Silva RN, Li L, Singh SS, Sharkoff M, Kerr A, Chelluboyina AK, Sekar J, Attaway AH, Hoppel C, Willard B, Davuluri G, Dasarathy S. Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence. JCI Insight 2021; 6:154089. [PMID: 34935641 PMCID: PMC8783680 DOI: 10.1172/jci.insight.154089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype–increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Li
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics & Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gangarao Davuluri
- Department of Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Srinivasan Dasarathy
- Department of Inflammation & Immunity and.,Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|