1
|
Lu MY, Chuang WL, Yu ML. The role of artificial intelligence in the management of liver diseases. Kaohsiung J Med Sci 2024; 40:962-971. [PMID: 39440678 DOI: 10.1002/kjm2.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Universal neonatal hepatitis B virus (HBV) vaccination and the advent of direct-acting antivirals (DAA) against hepatitis C virus (HCV) have reshaped the epidemiology of chronic liver diseases. However, some aspects of the management of chronic liver diseases remain unresolved. Nucleotide analogs can achieve sustained HBV DNA suppression but rarely lead to a functional cure. Despite the high efficacy of DAAs, successful antiviral therapy does not eliminate the risk of hepatocellular carcinoma (HCC), highlighted the need for cost-effective identification of high-risk populations for HCC surveillance and tailored HCC treatment strategies for these populations. The accessibility of high-throughput genomic data has accelerated the development of precision medicine, and the emergence of artificial intelligence (AI) has led to a new era of precision medicine. AI can learn from complex, non-linear data and identify hidden patterns within real-world datasets. The combination of AI and multi-omics approaches can facilitate disease diagnosis, biomarker discovery, and the prediction of treatment efficacy and prognosis. AI algorithms have been implemented in various aspects, including non-invasive tests, predictive models, image diagnosis, and the interpretation of histopathology findings. AI can support clinicians in decision-making, alleviate clinical burdens, and curtail healthcare expenses. In this review, we introduce the fundamental concepts of machine learning and review the role of AI in the management of chronic liver diseases.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Matboli M, Diab GI, Saad M, Khaled A, Roushdy M, Ali M, ELsawi HA, Aboughaleb IH. Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101456. [PMID: 39055616 PMCID: PMC11268357 DOI: 10.1016/j.jceh.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC. Methods We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6). Results LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%). Conclusion Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Gouda I. Diab
- Biomedical Engineering Department, Egyptian Armed Forces, Cairo, Egypt
| | - Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Marian Roushdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Marwa Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | | |
Collapse
|
3
|
Xu C, Zhang Y, Zhou J, Zhang J, Dong H, Chen X, Tian Y, Wu Y. Integrated temporal transcriptional and epigenetic single-cell analysis reveals the intrarenal immune characteristics in an early-stage model of IgA nephropathy during its acute injury. Front Immunol 2024; 15:1405748. [PMID: 39493754 PMCID: PMC11528150 DOI: 10.3389/fimmu.2024.1405748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Rationale Kidney inflammation plays a crucial role in the pathogenesis of IgA nephropathy (IgAN), yet the specific phenotypes of immune cells involved in disease progression remain incompletely understood. Utilizing joint profiling through longitudinal single-cell RNA-sequencing (scRNAseq) and single-cell assay for transposase-accessible chromatin sequencing (scATACseq) can provide a comprehensive framework for elucidating the development of cell subset diversity and how chromatin accessibility regulates transcription. Objective We aimed to characterize the dynamic immune cellular landscape at a high resolution in an early IgAN mouse model with acute kidney injury (AKI). Methods and results A murine model was utilized to mimic 3 immunological states -"immune stability (IS), immune activation (IA) and immune remission (IR)" in early human IgAN-associated glomerulopathy during AKI, achieved through lipopolysaccharide (LPS) injection. Urinary albumin to creatinine ratio (UACR) was measured to further validate the exacerbation and resolution of kidney inflammation during this course. Paired scRNAseq and scATACseq analysis was performed on CD45+ immune cells isolated from kidney tissues obtained from CTRL (healthy vehicle), IS, IA and IR (4 or 5 mice each). The analyses revealed 7 major cell types and 24 clusters based on 72304 single-cell transcriptomes, allowing for the identification and characterization of various immune cell types within each cluster. Our data offer an impartial depiction of the immunological characteristics, as the proportions of immune cell types fluctuated throughout different stages of the disease. Specifically, these analyses also revealed novel subpopulations, such as a macrophage subset (Nlrp1b Mac) with distinct epigenetic features and a unique transcription factor motif profile, potentially exerting immunoregulatory effects, as well as an early subset of Tex distinguished by their effector and cytolytic potential (CX3CR1-transTeff). Furthermore, in order to investigate the potential interaction between immune cells and renal resident cells, we conducted single-cell RNA sequencing on kidney cells obtained from a separate cohort of IS and IA mice without isolating immune cells. These findings underscored the diverse roles played by macrophages and CD8+ T cells in maintaining homeostasis of endothelial cells (ECs) under stress. Conclusions This study presents a comprehensive analysis of the dynamic changes in immune cell profiles in a model of IgAN, identifying key cell types and their roles and interactions. These findings significantly contribute to the understanding of the pathogenesis of IgAN and may provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Xu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Zhou
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangnan Zhang
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese People's Liberation Army (PLA) General Hospital, Chinese People's Liberation Army (PLA) Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
4
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
5
|
Salié H, Wischer L, D'Alessio A, Godbole I, Suo Y, Otto-Mora P, Beck J, Neumann O, Stenzinger A, Schirmacher P, Fulgenzi CAM, Blaumeiser A, Boerries M, Roehlen N, Schultheiß M, Hofmann M, Thimme R, Pinato DJ, Longerich T, Bengsch B. Spatial single-cell profiling and neighbourhood analysis reveal the determinants of immune architecture connected to checkpoint inhibitor therapy outcome in hepatocellular carcinoma. Gut 2024:gutjnl-2024-332837. [PMID: 39349005 DOI: 10.1136/gutjnl-2024-332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The determinants of the response to checkpoint immunotherapy in hepatocellular carcinoma (HCC) remain poorly understood. The organisation of the immune response in the tumour microenvironment (TME) is expected to govern immunotherapy outcomes but spatial immunotypes remain poorly defined. OBJECTIVE We hypothesised that the deconvolution of spatial immune network architectures could identify clinically relevant immunotypes in HCC. DESIGN We conducted highly multiplexed imaging mass cytometry on HCC tissues from 101 patients. We performed in-depth spatial single-cell analysis in a discovery and validation cohort to deconvolute the determinants of the heterogeneity of HCC immune architecture and develop a spatial immune classification that was tested for the prediction of immune checkpoint inhibitor (ICI) therapy. RESULTS Bioinformatic analysis identified 23 major immune, stroma, parenchymal and tumour cell types in the HCC TME. Unsupervised neighbourhood detection based on the spatial interaction of immune cells identified three immune architectures with differing involvement of immune cells and immune checkpoints dominated by either CD8 T-cells, myeloid immune cells or B- and CD4 T-cells. We used these to define three major spatial HCC immunotypes that reflect a higher level of intratumour immune cell organisation: depleted, compartmentalised and enriched. Progression-free survival under ICI therapy differed significantly between the spatial immune types with improved survival of enriched patients. In patients with intratumour heterogeneity, the presence of one enriched area governed long-term survival.
Collapse
Affiliation(s)
- Henrike Salié
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lara Wischer
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Ira Godbole
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Yuan Suo
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Andreas Blaumeiser
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
| | - Natascha Roehlen
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Michael Schultheiß
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bertram Bengsch
- Department of Internal Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| |
Collapse
|
6
|
Cowzer D, Chou JF, Walch H, Keane F, Khalil D, Shia J, Do RKG, Yarmohammadi H, Erinjeri JP, El Dika I, Yaqubie A, Azhari H, Gambarin M, Hajj C, Crane C, Wei AC, Jarnagin W, Solit DB, Berger MF, O'Reilly EM, Schultz N, Chatila W, Capanu M, Abou-Alfa GK, Harding JJ. Clinicogenomic predictors of outcomes in patients with hepatocellular carcinoma treated with immunotherapy. Oncologist 2024; 29:894-903. [PMID: 38937977 PMCID: PMC11448888 DOI: 10.1093/oncolo/oyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) combinations extend overall survival (OS) while anti-PD-1/L1 monotherapy is non-inferior to sorafenib in treatment-naïve, patients with advanced hepatocellular carcinoma (HCC). Clinicogenomic features are posited to influence patient outcomes. METHODS The primary objective of this retrospective study was to define the clinical, pathologic, and genomic factors associated with outcomes to ICI therapy in patients with HCC. Patients with histologically confirmed advanced HCC treated with ICI at Memorial Sloan Kettering Cancer Center from 2012 to 2022 were included. Association between clinical, pathological, and genomic characteristics were assessed with univariable and multivariable Cox regression model for progression-free survival (PFS) and OS. RESULTS Two-hundred and forty-two patients were treated with ICI-based therapy. Patients were predominantly male (82%) with virally mediated HCC (53%) and Child Pugh A score (70%). Median follow-up was 28 months (0.5-78.4). Median PFS for those treated in 1st line, 2nd line and ≥ 3rd line was 4.9 (range: 2.9-6.2), 3.1 (2.3-4.0), and 2.5 (2.1-4.0) months, respectively. Median OS for those treated in 1st line, 2nd line, and ≥ 3rd line was 16 (11-22), 7.5 (6.4-11), and 6.4 (4.6-26) months, respectively. Poor liver function and performance status associated with worse PFS and OS, while viral hepatitis C was associated with favorable outcome. Genetic alterations were not associated with outcomes. CONCLUSION Clinicopathologic factors were the major determinates of outcomes for patients with advanced HCC treated with ICI. Molecular profiling did not aid in stratification of ICI outcomes. Future studies should explore alternative biomarkers such as the level of immune activation or the pretreatment composition of the immune tumor microenvironment.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Danny Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Jinru Shia
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard K G Do
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hooman Yarmohammadi
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph P Erinjeri
- Weill Medical College of Cornell University, New York, NY, United States
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hassan Azhari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Maya Gambarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Carla Hajj
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christopher Crane
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alice C Wei
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - William Jarnagin
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Michael F Berger
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Walid Chatila
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
7
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
8
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
9
|
Chuma M, Uojima H, Toyoda H, Hiraoka A, Arase Y, Atsukawa M, Itokawa N, Okubo T, Tada T, Numata K, Morimoto M, Sugimori M, Nozaki A, Iwasaki S, Yasuda S, Koshiyama Y, Mishima Y, Tsuruya K, Tokoro C, Miura Y, Hidaka H, Kumada T, Kusano C, Kagawa T, Maeda S. Clinical significance of circulating biomarkers of immune-checkpoint molecules with atezolizumab plus bevacizumab therapy in unresectable hepatocellular carcinoma. Hepatol Int 2024; 18:1472-1485. [PMID: 38963640 DOI: 10.1007/s12072-024-10680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/06/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The aims of this study were to identify clinically significant biomarkers of a response to atezolizumab plus bevacizumab (ATZ + BV) therapy and to develop target strategies against unresectable hepatocellular carcinoma (u-HCC). METHOD We first investigated the potential of circulating tumor DNA (ctDNA) to serve as a biomarker for predicting the therapeutic outcome in 24 u-HCC patients treated with ATZ + BV therapy. Next, we analyzed levels of immune-related cytokines in blood samples from 134 u-HCC patients who received ATZ + BV. For this, serum immune-related molecules or cancer-immune cycle-related molecules that have been reported in HCC patient sera, namely CD274, LAG-3, CCL2, 4, 5, CXCL1, 9, 10, 12, 13, CX3CL1, CCR5, IFNγ and IL-6, 8 were measured using enzyme-linked immunosorbent assay. RESULTS More than 1% of variant read frequency (VRF) mutations were found in TP53, APC, PIK3CA and VHL, although with no correlation with treatment response. Among the 15 cytokines evaluated, CXCL9 and LAG-3 levels were significantly different between patients with objective response (OR), stable disease (SD), and progressive disease (PD) following ATZ + BV treatment. Receiver-operating characteristic curve analyses of CXCL9 (cut-off value: 419.1 pg/ml) and LAG-3 (cut-off value: 3736.3 pg/ml) indicated areas of 0.779 and 0.697, respectively, for differentiating PD from non-PD and OR from non-OR. In multivariate analysis of progression-free survival (PFS) and overall survival (OS), high serum CXCL9 (hazard ratio (HR) and 95% confidence interval (CI): 0.412 (0.251-0.677) (p = 0.0005) for PFS and 0.252 (0.125-0.508) (p = 0.0001) for OS), and low serum LAG-3 (HR and 95% CI 0.419 (0.249-0.705) (p = 0.0011) for PFS and 0.294 (0.140-0.617) (p = 0.0012) for OS) were independent positive predictive factors. CONCLUSION Although, as far as we examined, no ctDNA mutations in blood were found to be related to ATZ + BV treatment efficacy, serum CXCL9 and LAG-3 levels, which are related to the cancer-immune cycle, were associated with treatment efficacy and could be predictive markers of the efficacy of ATZ + BV treatment in HCC patients.
Collapse
Affiliation(s)
- Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, Japan.
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Yoshitake Arase
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Norio Itokawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Toshifumi Tada
- Department of Gastroenterology, Himeji Red Cross Hospital, Himeji, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, Japan
| | - Manabu Morimoto
- Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Makoto Sugimori
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, Japan
| | - Shuichiro Iwasaki
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuichi Koshiyama
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yusuke Mishima
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kota Tsuruya
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Chikako Tokoro
- Division of Gastroenterology, Saiseikai Yokohamashi-Nanbu Hospital, Yokohama, Japan
| | - Yuki Miura
- Gastroenterology Division, Hadano Red Cross Hospital, Hadano, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takashi Kumada
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
- Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
10
|
Chen H, Liu H, Zhang X, Wang S, Liu C, An K, Liu R, Tian X. Diversified applications of hepatocellular carcinoma medications: molecular-targeted, immunotherapeutic, and combined approaches. Front Pharmacol 2024; 15:1422033. [PMID: 39399471 PMCID: PMC11467865 DOI: 10.3389/fphar.2024.1422033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the primary forms of liver cancer and is currently the sixth most prevalent malignancy worldwide. In addition to surgical interventions, effective drug treatment is essential for treating HCC. With an increasing number of therapeutic drugs for liver cancer undergoing clinical studies, the therapeutic strategies for advanced HCC are more diverse than ever, leading to improved prospects for HCC patients. Molecular targeted drugs and immunotherapies have become crucial treatment options for HCC. Treatment programs include single-agent molecular-targeted drugs, immunotherapies, combinations of immunotherapies with molecular-targeted drugs, and dual immune checkpoint inhibitors. However, further exploration is necessary to determine the optimal pharmacological treatment regimens, and the development of new effective drugs is urgently needed. This review provides an overview of the current globally approved drugs for liver cancer, as well as the latest advances in ongoing clinical research and drug therapies. Additionally, the review offers an outlook and discussion on the prospects for the development of drug therapy approaches for HCC.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Huihui Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xiaowei Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| |
Collapse
|
11
|
Taherifard E, Tran K, Saeed A, Yasin JA, Saeed A. Biomarkers for Immunotherapy Efficacy in Advanced Hepatocellular Carcinoma: A Comprehensive Review. Diagnostics (Basel) 2024; 14:2054. [PMID: 39335733 PMCID: PMC11431712 DOI: 10.3390/diagnostics14182054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver malignancy and the sixth most common cancer globally, remains fatal for many patients with inappropriate responses to treatment. Recent advancements in immunotherapy have transformed the treatment landscape for advanced HCC. However, variability in patient responses to immunotherapy highlights the need for biomarkers that can predict treatment outcomes. This manuscript comprehensively reviews the evolving role of biomarkers in immunotherapy efficacy, spanning from blood-derived indicators-alpha-fetoprotein, inflammatory markers, cytokines, circulating tumor cells, and their DNA-to tissue-derived indicators-programmed cell death ligand 1 expression, tumor mutational burden, microsatellite instability, and tumor-infiltrating lymphocytes. The current body of evidence suggests that these biomarkers hold promise for improving patient selection and predicting immunotherapy outcomes. Each biomarker offers unique insights into disease biology and the immune landscape of HCC, potentially enhancing the precision of treatment strategies. However, challenges such as methodological variability, high costs, inconsistent findings, and the need for large-scale validation in well-powered two-arm trial studies persist, making them currently unsuitable for integration into standard care. Addressing these challenges through standardized techniques and implementation of further studies will be critical for the future incorporation of these biomarkers into clinical practice for advanced HCC.
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Krystal Tran
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA
| | - Jehad Amer Yasin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
12
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
13
|
Du J, Huang Z. NLR stability predicts response to immune checkpoint inhibitors in advanced hepatocellular carcinoma. Sci Rep 2024; 14:19583. [PMID: 39179639 PMCID: PMC11344071 DOI: 10.1038/s41598-024-68048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/18/2024] [Indexed: 08/26/2024] Open
Abstract
A high baseline NLR is associated with a poor prognosis of immunotherapy in patients with advanced HCC. As anti-tumour immune activation takes time, early dynamic changes in NLR may serve as a biomarker for predicting immunotherapy response. We conducted a retrospective study in which we enrolled 209 patients with aHCC who received ICIs (training cohort: N = 121, validation cohort: N = 88). In the training cohort, we categorized the patients based on the early changes in their NLR. Specifically, we defined patients as NLR Stable-Responder, NLR Responder and NLR Non-Responder. We compared the outcomes of these three patient groups using survival analysis. Additionally, we shortened the observation period to 6 weeks and validated the findings in the validation cohort. In the training cohort, early dynamic changes in NLR (HR 0.14, 95%CI 0.03-0.65, p = 0.012, HR 0.19, 95%CI 0.07-0.54, p = 0.002; HR 0.21, 95%CI 0.10-0.42, p < 0.001, HR 0.40, 95%CI 0.23-0.69, p = 0.001), PD-L1 < 1% (HR 5.36, 95%CI 1.12-25.66, p = 0.036; HR 2.98, 95%CI 1.51-5.91, p = 0.002) and MVI (HR 3.52, 95%CI 1.28-9.69, p = 0.015; HR 1.99, 95%CI 1.14-3.47, p = 0.015) were identified as independent predictors of OS and PFS. In the validation cohort, when the observation period was reduced to 6 weeks, early NLR changes still have predictive value. Early dynamic changes in NLR may be an easily defined, cost-effective, non-invasive biomarker to predict aHCC response to ICIs.
Collapse
Affiliation(s)
- Jiajia Du
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
14
|
Zhang S, Deshpande A, Verma BK, Wang H, Mi H, Yuan L, Ho WJ, Jaffee EM, Zhu Q, Anders RA, Yarchoan M, Kagohara LT, Fertig EJ, Popel AS. Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery. Cancer Res 2024; 84:2734-2748. [PMID: 38861365 DOI: 10.1158/0008-5472.can-24-0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Due to the lack of treatment options, there remains a need to advance new therapeutics in hepatocellular carcinoma (HCC). The traditional approach moves from initial molecular discovery through animal models to human trials to advance novel systemic therapies that improve treatment outcomes for patients with cancer. Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison with spatial multiomics data from a neoadjuvant HCC clinical trial combining anti-PD1 immunotherapy and a multitargeted tyrosine kinase inhibitor cabozantinib. Validation using spatial proteomics data from imaging mass cytometry demonstrated that closer proximity between CD8 T cells and macrophages correlated with nonresponse. We also compared the model output with Visium spatial transcriptomics profiling of samples from posttreatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. Spatial transcriptomics data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides a novel approach for patient outcome prediction and biomarker discovery. Significance: Incorporating mathematical modeling and computer simulations with high-throughput spatial multiomics data provides an effective approach for patient outcome prediction and biomarker discovery.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Babita K Verma
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Long Yuan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Luciane T Kagohara
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Immunotherapy Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
16
|
Yang J, Zhang Y, Chen Y, Yang Y, Deng Y. Dynamic Changes of Neutrophil-to-Lymphocyte Ratio on Predicting Response of Immune Checkpoint Inhibitors Plus Targeted Therapies for Unresectable Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1495-1505. [PMID: 39131510 PMCID: PMC11315645 DOI: 10.2147/jhc.s468843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Backgrounds and Aims Multiple regimens of immune checkpoint inhibitors (ICIs) plus targeted therapies are commonly prescribed as first-line treatments for unresectable hepatocellular carcinoma (uHCC). Here, we aimed to investigate the correlation between dynamic changes of neutrophil-to-lymphocyte ratio (NLR) and tumor response to the combination of ICIs and targeted therapies for uHCC. Methods Sixty-one patients who received ICIs plus targeted therapies for uHCC were enrolled in this retrospective study. The NLR before and at 3-6 weeks after treatments were assessed to calculate the dynamic NLR changes (ΔNLR). Multivariate logistic regression and Cox regression models were used to explore the relationship between dynamic NLR changes and tumor response or progression-free survival (PFS), respectively. Furthermore, we assessed the predictive effect of alpha-fetoprotein (AFP) changes in combination with dynamic NLR changes compared to AFP changes alone. Results The NLR at 3-6 weeks and ΔNLR after treatments significantly increased in patients who underwent progressive disease (PD), while the baseline NLR showed no significant difference between different tumor responses. Increased NLR and AFP after treatments were both independent predictors of PD (For NLR increase: OR, 2.28; 95% CI, 1.47-3.88, P < 0.001; For AFP increase: OR, 1.46; 95% CI, 1.03-2.17, P = 0.043), and correlated with worse PFS (for NLR increase: HR, 4.08; 95% CI, 1.99-8.36, P < 0.001; for AFP increase: HR, 2.10; 95% CI, 1.04-4.24, P = 0.039). The receiver operating characteristic (ROC) curve and net reclassification index (NRI) showed that the combination of dynamic NLR and AFP changes was better than AFP changes alone on predicting PD (AUC: 0.83 vs 0.68, P = 0.034; NRI: 0.340, P = 0.048) and PFS (AUC: 0.80 vs 0.70, P = 0.166; NRI: 0.431, P = 0.042). Conclusion Dynamic changes of NLR might be an effective predictor of the therapeutic response to ICIs plus targeted therapies for uHCC.
Collapse
Affiliation(s)
- Jianming Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yu Zhang
- Department of Breast Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, People’s Republic of China
| | - Yewu Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, People’s Republic of China
| | - Yinan Deng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
17
|
Kim JH, Kim YH, Nam HC, Kim CW, Yoo JS, Han JW, Jang JW, Choi JY, Yoon SK, Chun HJ, Oh JS, Kim S, Lee SH, Sung PS. Consistent efficacy of hepatic artery infusion chemotherapy irrespective of PD‑L1 positivity in unresectable hepatocellular carcinoma. Oncol Lett 2024; 28:388. [PMID: 38966587 PMCID: PMC11223005 DOI: 10.3892/ol.2024.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
Atezolizumab/bevacizumab is the first line of treatment for unresectable hepatocellular carcinoma (HCC), combining immune checkpoint inhibitor and anti-VEGF monoclonal antibodies. Hepatic arterial infusion chemotherapy (HAIC) is administered when the above-described combination fails to confer sufficient clinical benefit. The present study aimed to explore the association between tumor programmed cell death-ligand 1 (PD-L1) positivity and HAIC response. A total of 40 patients with HCC who had undergone HAIC with available biopsy samples obtained between January 2020 and May 2023 were retrospectively enrolled. Tumor response, progression-free survival (PFS), disease control rate (DCR) and overall survival (OS) were evaluated. PD-L1 expression in tumor samples was assessed using a combined positivity score. The response rates of HAIC-treated patients with advanced HCC after failure of atezolizumab/bevacizumab combination therapy were recorded. OS (P=0.9717) and PFS (P=0.4194) did not differ between patients with and without PD-L1 positivity. The objective response rate (P=0.7830) and DCR (P=0.7020) also did not differ based on PD-L1 status. In conclusion, the current findings highlight the consistent efficacy of HAIC, regardless of PD-L1 positivity.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Gastroenterology and Hepatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Gyeonggi 11765, Republic of Korea
| | - Young Hoon Kim
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Chul Nam
- Department of Gastroenterology and Hepatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Gyeonggi 11765, Republic of Korea
| | - Chang-Wook Kim
- Department of Gastroenterology and Hepatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Gyeonggi 11765, Republic of Korea
| | - Jae-Sung Yoo
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Won Han
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ho Jong Chun
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Suk Oh
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Suho Kim
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Hak Lee
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Pil Soo Sung
- Department of Gastroenterology and Hepatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
18
|
Qiu L, Ma T, Guo Y, Chen J. Immune landscape of hepatocellular carcinoma: The central role of TP53-inducible glycolysis and apoptosis regulator. Open Med (Wars) 2024; 19:20240999. [PMID: 39091612 PMCID: PMC11292791 DOI: 10.1515/med-2024-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Objective This study aims to address the substantive issue of lacking reliable prognostic biomarkers in hepatocellular carcinoma (HCC) by investigating the relationship between TP53-inducible glycolysis and apoptosis regulator (TIGAR) and HCC prognosis using The Cancer Genome Atlas database. Methods (1) Integrated statistical analyses, including logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test, were conducted to explore the association between TIGAR expression and clinical-pathological features of HCC. (2) The Kaplan-Meier method combined with univariate and multivariate Cox regression models underscored TIGAR as a prognostic factor in HCC. (3) Gene set enrichment analysis (GSEA) revealed key pathways associated with TIGAR, while single-sample gene set enrichment analysis (ssGSEA) determined its relevance to cancer immune infiltration. Results (1) Elevated TIGAR expression was significantly correlated with decreased survival outcomes in HCC patients. (2) GSEA highlighted the significant link between TIGAR and humoral immunity. (3) ssGSEA revealed a positive correlation between TIGAR expression and infiltration of Th1 and Th2 cells and a negative correlation with Th17 cell infiltration. Conclusion TIGAR, as a potential prognostic biomarker for HCC, holds significant value in immune infiltration. Understanding the role of TIGAR could contribute to improved prognostic predictions and personalized treatment strategies for HCC patients.
Collapse
Affiliation(s)
- Lingbing Qiu
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 518020, Shenzhen, Guangdong Province, P. R. China
| | - Tianyi Ma
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, 518020, Shenzhen, Guangdong Province, P. R. China
| | - Yunmiao Guo
- Clinical Research Institute of Zhanjiang, Central People’s Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, 236 Yuanzhu Road, 524045, Zhanjiang, Guangdong Province, P. R. China
| | - Jugao Chen
- Department of Oncology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, No. 1017, Dongmen North Road, Luohu District, 518020, Shenzhen, Guangdong Province, P. R. China
| |
Collapse
|
19
|
Zhang S, Li L, Liu C, Pu M, Ma Y, Zhang T, Chai J, Li H, Yang J, Chen M, Kong L, Xia T. The use of peripheral CD3 +γδ +Vδ2 + T lymphocyte cells in combination with the ALBI score to predict immunotherapy response in patients with advanced hepatocellular carcinoma: a retrospective study. J Cancer Res Clin Oncol 2024; 150:365. [PMID: 39052085 PMCID: PMC11272815 DOI: 10.1007/s00432-024-05896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Currently, there is a lack of effective indicators for predicting the efficacy of immunotherapy in patients with advanced hepatocellular carcinoma (HCC). This study aimed to investigate the expression and prognostic value of peripheral T lymphocyte subsets in advanced HCC. METHODS Patients with advanced HCC who were treated with immune checkpoint inhibitors (ICIs) from December 2021 to December 2023 were included in the study. Flow cytometry was used to detect lymphocyte subsets before treatment. The patients were divided into disease control (DC) and nondisease control (nDC) groups based on treatment efficacy. Relationships between the clinical characteristics/peripheral T lymphocytes and immunotherapy efficacy were analyzed. The effectiveness of peripheral T lymphocyte subsets in predicting immunotherapy efficacy for patients with advanced HCC was analyzed using receiver operating characteristic (ROC) curves. RESULTS A total of 40 eligible patients were included in this study. Non-DC was significantly associated with higher albumin-bilirubin (ALBI) scores. The percentages of γδ+Vδ2+PD1+ T cells and γδ+Vδ2+Tim3+ T cells were greater in the nDC group than in the DC group. Multivariable regression analysis revealed that the ALBI score and T lymphocytes expressing γδ+Vδ2+PD1+ and γδ+Vδ2+Tim3+ were founded to be independent influencing factors. The area under the ROC curve (AUC) values for these combinations was 0.944 (95% CI, 0.882 ~ 1.000). CONCLUSIONS The calculation of the ALBI score and determination of the percentages CD3+γδ+Vδ2+PD1+ T lymphocytes and CD3+γδ+Vδ2+Tim3+ T lymphocytes in the peripheral blood of patients with advanced HCC are helpful for predicting the patients' responses to ICIs, helping to screen patients who may clinically benefit from immunotherapy. RETROSPECTIVELY REGISTERED: number: ChiCTR2400080409, date of registration: 2024-01-29.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/therapy
- Male
- Female
- Retrospective Studies
- Middle Aged
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Aged
- Prognosis
- CD3 Complex/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Adult
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Luyang Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Chengli Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China.
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China.
- Graduate School of Hebei North University, Zhangjiakou, China.
| | - Meng Pu
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yingbo Ma
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry group, Beijing, China
| | - Haoming Li
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Jun Yang
- Postgraduate Training Base of Air Force Medical Center, China Medical University, Beijing, China
| | - Meishan Chen
- Department of Ultrasound, Strategic Support Force Xingcheng Specialized Sanatorium, Huludao, China
| | - Linghong Kong
- Department of Hepatobiliary Surgery, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Tian Xia
- Graduate School of Hebei North University, Zhangjiakou, China
| |
Collapse
|
20
|
Reveneau MF, Masliah-Planchon J, Fernandez M, Ouikene A, Dron B, Dadamessi I, Dayen C, Golmard L, Chauffert B. Major response of a peritoneal mesothelioma to nivolumab and ipilimumab: a case report, molecular analysis and review of literature. Front Oncol 2024; 14:1410322. [PMID: 39091916 PMCID: PMC11291227 DOI: 10.3389/fonc.2024.1410322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare tumor associated with a poor prognosis and a lack of consensus regarding treatment strategies. While the Checkmate 743 trial demonstrated the superiority of first-line nivolumab and ipilimumab over chemotherapy in malignant pleural mesothelioma (MPlM), few studies have assessed the effectiveness of immunotherapy against MPM, due to its rarity. Here, we report a major and sustained 12-month response in a 74-year-old female patient who received the anti-PD-1 nivolumab and the anti-CTLA4 ipilimumab as first-line therapy for diffuse MPM. PD-L1 was expressed and BAP1 expression was lost, as shown by immunohistochemistry, however the BAP1 gene was not mutated. Our findings suggest a role for ICI in non-resectable diffuse MPM exhibiting PD-L1 overexpression and loss of BAP1 expression, and instill new hope in their treatment. To our knowledge, this is the second reported case of dual immunotherapy used as first-line in MPM with a major clinical response. To investigate the clinical outcome, we conducted additional molecular analyses of the MPM tumor and we reviewed the literature on immunotherapy in MPM to discuss the role of PD-L1 and BAP1.
Collapse
Affiliation(s)
- Marie-Florence Reveneau
- Department of Genetics, Institut Curie, Paris, France
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | | | - Manuel Fernandez
- Department of Radiology, Saint Quentin Hospital, Saint Quentin, France
| | - Abdenour Ouikene
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | - Bernard Dron
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Innocenti Dadamessi
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Charles Dayen
- Department of Pneumology, Saint Quentin Hospital, Saint Quentin, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
| | - Bruno Chauffert
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| |
Collapse
|
21
|
Li Y, Fang Y, Li D, Wu J, Huang Z, Liao X, Liu X, Wei C, Huang Z. Constructing a prognostic model for hepatocellular carcinoma based on bioinformatics analysis of inflammation-related genes. Front Med (Lausanne) 2024; 11:1420353. [PMID: 39055701 PMCID: PMC11269197 DOI: 10.3389/fmed.2024.1420353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background This study aims to screen inflammation-related genes closely associated with the prognosis of hepatocellular carcinoma (HCC) to accurately forecast the prognosis of HCC patients. Methods Gene expression matrices and clinical information for liver cancer samples were obtained from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An intersection of differentially expressed genes of HCC and normal and GeneCards yielded inflammation-related genes associated with HCC. Cox regression and the minor absolute shrinkage and selection operator (LASSO) regression analysis to filter genes associated with HCC prognosis. The prognostic value of the model was confirmed by drawing Kaplan-Meier and ROC curves. Select differentially expressed genes between the high-risk and low-risk groups and perform GO and KEGG pathways analyses. CIBERSORT analysis was conducted to assess associations of risk models with immune cells and verified using real-time qPCR. Results A total of six hub genes (C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1) were selected using multivariate Cox regression to construct a prognostic model. The validation evaluation of the prognostic model showed that it has an excellent ability to predict prognosis. A line plot was drawn to indicate the HCC patients' survival, and the calibration curve revealed satisfactory predictability. Among the six hub genes, C3 and DNASE1L3 are relatively low expressed in HCCLM3 and 97H liver cancer cell lines, while CTNNB1, CYBC1, IRAK1, and SERPINE1 are relatively overexpressed in liver cancer cell lines. Conclusion One new inflammatory factor-associated prognostic model was constructed in this study. The risk score can be an independent predictor for judging the prognosis of HCC patients' survival.
Collapse
Affiliation(s)
- Yinglian Li
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Fang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - DongLi Li
- Radiology Department, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Jiangtao Wu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zichong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xueyin Liao
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Liu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Chunxiao Wei
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Wang C, Wei F, Sun X, Qiu W, Yu Y, Sun D, Zhi Y, Li J, Fan Z, Lv G, Wang G. Exploring potential predictive biomarkers through historical perspectives on the evolution of systemic therapies into the emergence of neoadjuvant therapy for the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1429919. [PMID: 38993637 PMCID: PMC11236692 DOI: 10.3389/fonc.2024.1429919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a type of liver cancer, ranks as the sixth most prevalent cancer globally and represents the third leading cause of cancer-related deaths. Approximately half of HCC patients miss the opportunity for curative treatment and are then limited to undergoing systemic therapies. Currently, systemic therapy has entered the era of immunotherapy, particularly with the advent of immune-checkpoint inhibitors (ICIs), which have significantly enhanced outcomes for patients with advanced HCC. Neoadjuvant treatment for HCC has become a possibility-findings from the IMbrave 050 trial indicated that ICIs offer the benefit of recurrence-free survival for high-risk HCC patients post-resection or local ablation. However, only a small fraction of individuals benefit from systemic therapy. Consequently, there is an urgent need to identify predictive biomarkers for treatment response and outcome assessment. This study reviewed the historical progression of systemic therapy for HCC, highlighting notable therapeutic advancements. This study examined the development of systemic therapies involving conventional drugs and clinical trials utilized in HCC treatment, as well as potential predictive biomarkers for advanced and/or locally advanced HCC. Various studies have revealed potential biomarkers in the context of HCC treatment. These include the association of dendritic cells (DCs) with a favorable response to neoadjuvant therapy, the presence of enriched T effector cells and tertiary lymphoid structures, the identification of CD138+ plasma cells, and distinct spatial arrangements of B cells in close proximity to T cells among responders with locally advanced HCC receiving neoadjuvant cabozantinib and nivolumab treatment. Furthermore, pathological response has been associated with intratumoral cellular triads consisting of progenitor CD8+ T cells and CXCL13+ CD4+ T helper cells surrounding mature DCs in patients receiving neoadjuvant cemiplimab for resectable HCC. Despite no widely recognized predictive biomarkers for HCC individualized treatment, we believe neoadjuvant trials hold the most promise in identifying and validating them. This is because they can collect multiple samples from resectable HCC patients across stages, especially with multi-omics, bridging preclinical and clinical gaps.
Collapse
Affiliation(s)
- Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dawei Sun
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery I, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of the General Surgery Health Department of Jilin Province, Changchun, China
| |
Collapse
|
23
|
Li S, Xu Y, Hu X, Chen H, Xi X, Long F, Rong Y, Wang J, Yuan C, Liang C, Wang F. Crosstalk of non-apoptotic RCD panel in hepatocellular carcinoma reveals the prognostic and therapeutic optimization. iScience 2024; 27:109901. [PMID: 38799554 PMCID: PMC11126946 DOI: 10.1016/j.isci.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Non-apoptotic regulated cell death (RCD) of tumor cells profoundly affects tumor progression and plays critical roles in determining response to immune checkpoint inhibitors (ICIs). Prognosis-distinctive HCC subtypes were identified by consensus cluster analysis based on the expressions of 507 non-apoptotic RCD genes obtained from databases and literature. Meanwhile, a set of bioinformatic tools was integrated to analyze the differences of the tumor immune microenvironment infiltration, genetic mutation, copy number variation, and epigenetics alternations within two subtypes. Finally, a non-apoptotic RCDRS signature was constructed and its reliability was evaluated in HCC patients' tissues. The high-RCDRS HCC subgroup showed a significantly lower overall survival and less sensitivity to ICIs compared to low-RCDRS subgroup, but higher sensitivity to cisplatin, paclitaxel, and sorafenib. Overall, we established an RCDRS panel consisting of four non-apoptotic RCD genes, which might be a promising predictor for evaluating HCC prognosis, guiding therapeutic decision-making, and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Forensic Center of Justice, Zhongnan Hospital of Wuhan University, Wuhan China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chunhui Yuan
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
24
|
Zhang R, Dai J, Yao F, Zhou S, Huang W, Xu J, Yu K, Chen Y, Fan B, Zhang L, Xu J, Li Q. Hypomethylation-enhanced CRTC2 expression drives malignant phenotypes and primary resistance to immunotherapy in hepatocellular carcinoma. iScience 2024; 27:109821. [PMID: 38770131 PMCID: PMC11103543 DOI: 10.1016/j.isci.2024.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
The cyclic AMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) is a crucial regulator of hepatic lipid metabolism and gluconeogenesis and correlates with tumorigenesis. However, the mechanism through which CRTC2 regulates hepatocellular carcinoma (HCC) progression is largely unknown. Here, we found that increased CRTC2 expression predicted advanced tumor grade and stage, as well as worse prognosis in patients with HCC. DNA promoter hypomethylation led to higher CRTC2 expression in HCC. Functionally, CRTC2 contributed to HCC malignant phenotypes through the activated Wnt/β-catenin pathway, which could be abrogated by the small-molecular inhibitor XAV-939. Moreover, Crtc2 facilitated tumor growth while concurrently downregulating the PD-L1/PD-1 axis, resulting in primary resistance to immunotherapy. In immunocompetent mice models of HCC, targeting Crtc2 in combination with anti-PD-1 therapy prominently suppressed tumor growth by synergistically enhancing responsiveness to immunotherapy. Collectively, targeting CRTC2 might be a promising therapeutic strategy to sensitize immunotherapy in HCC.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
| | - Jingjing Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Feifan Yao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
| | - Wei Huang
- Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili 835000, China
| | - Jiali Xu
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210000, China
| | - Kai Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
| | - Yining Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Boqiang Fan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Liren Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| | - Qing Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu Province 210000, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province 210000, China
| |
Collapse
|
25
|
Wang H, Qian YW, Dong H, Cong WM. Pathologic assessment of hepatocellular carcinoma in the era of immunotherapy: a narrative review. Hepatobiliary Surg Nutr 2024; 13:472-493. [PMID: 38911201 PMCID: PMC11190517 DOI: 10.21037/hbsn-22-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/23/2023] [Indexed: 06/25/2024]
Abstract
Background and Objective Immune checkpoint inhibitor (ICI)-based therapy has achieved impressive success in various cancer types. Several ICIs have been unprecedentedly approved as the treatment regimens for advanced hepatocellular carcinoma (HCC) in recent decade. Meanwhile, numerous clinical trials are being performed to exploit more ICIs into initially unresectable HCC and postoperative HCC to expectantly induce adequate tumor downstaging for further resection or implement adjuvant treatment for relapse-free survival, respectively. In this review, we aim to summarize some pragmatic histomorphologic, immunohistochemical, and molecular pathologic parameters which promisingly indicate the response of neoadjuvant/conversion ICI-related therapy and predict the efficacy of adjuvant/therapeutic ICI-related therapy for HCC. Methods We searched PubMed using the terms hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitor, immune checkpoint blockade, conversion therapy, neoadjuvant therapy, adjuvant therapy, biomarker, pathologic evaluation, pathologic assessment till February 2023. Key Content and Findings Although there is no consensus regarding the pathologic evaluation of relevant HCC specimens, it is encouraging that a few of studies have concentrated on this field, and moreover, the methods and parameters noted on other cancer types are also worthy of reference. For the pathologic assessment of HCC specimens underwent immunotherapy, a suitable sampling scheme, identifying immunotherapy-related pathologic response, and quantification of pathologic response rate should be emphasized. For the patients of HCC who are scheduled to receive immunotherapy, tumor-infiltrating lymphocyte, intratumoral tertiary lymphoid structure, programmed cell death ligand 1, Wnt/β-catenin, microsatellite instability and mismatch repair, tumor mutational burden and tumor neoantigen, as well as some other signaling pathways are the potential predictive biomarkers of treatment response of ICI. Conclusions The management of HCC in the era of immunotherapy arises a brand-new pathological challenge that is to provide an immunotherapy-related diagnostic report. Albeit many related researches are preclinical or insufficient, they may tremendously alter the immunotherapy strategy of HCC in future.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - You-Wen Qian
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
26
|
Salem R, Greten TF. Interventional radiology meets immuno-oncology for hepatocellular carcinoma. J Hepatol 2024; 80:967-976. [PMID: 35988688 DOI: 10.1016/j.jhep.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022]
Abstract
Locoregional and systemic therapies are the most used treatment options for patients with hepatocellular carcinoma (HCC). Interventional radiologists have improved and developed novel protocols and devices for both intratumoural ablative approaches with curative intent and various transarterial intrahepatic treatment options, which have continuously improved patient outcomes. Two large phase III randomised clinical trials have demonstrated the efficacy of different immune checkpoint inhibitors either as single agents or in combination in the first-line setting and immunotherapy has become the standard first-line treatment option for patients with advanced HCC. Herein, we discuss advances and perspectives in the area of interventional radiology (IR) and immune-oncology (IO). We summarise results from recent studies and provide an overview of ongoing studies in IR and IO. Based on the significant advances in both areas, we propose that IR and IO need to cover the emerging "discipline" of IR-IO, in which we develop and test novel approaches to combine locoregional therapies with immunotherapy, in order to develop sufficient evidence for them to be considered standard of care for patients with HCC in the near future.
Collapse
Affiliation(s)
- Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Tim F Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda MD, USA; NCI CCR Liver Cancer Program, Center for Cancer Research, NCI, Bethesda MD, USA
| |
Collapse
|
27
|
Melero I, Yau T, Kang YK, Kim TY, Santoro A, Sangro B, Kudo M, Hou MM, Matilla A, Tovoli F, Knox J, He AR, El-Rayes B, Acosta-Rivera M, Lim HY, Soleymani S, Yao J, Neely J, Tschaika M, Hsu C, El-Khoueiry AB. Nivolumab plus ipilimumab combination therapy in patients with advanced hepatocellular carcinoma previously treated with sorafenib: 5-year results from CheckMate 040. Ann Oncol 2024; 35:537-548. [PMID: 38844309 DOI: 10.1016/j.annonc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Nivolumab plus ipilimumab demonstrated promising clinical activity and durable responses in sorafenib-treated patients with advanced hepatocellular carcinoma (HCC) in the CheckMate 040 study at 30.7-month median follow-up. Here, we present 5-year results from this cohort. PATIENTS AND METHODS Patients were randomized 1 : 1 : 1 to arm A [nivolumab 1 mg/kg plus ipilimumab 3 mg/kg Q3W (four doses)] or arm B [nivolumab 3 mg/kg plus ipilimumab 1 mg/kg Q3W (four doses)], each followed by nivolumab 240 mg Q2W, or arm C (nivolumab 3 mg/kg Q2W plus ipilimumab 1 mg/kg Q6W). The primary objectives were safety, tolerability, investigator-assessed objective response rate (ORR), and duration of response (DOR) per RECIST version 1.1. RESULTS A total of 148 patients were randomized across treatment arms. At 60-month minimum follow-up (62.6-month median follow-up), the ORR was 34% (n = 17), 27% (n = 13), and 29% (n = 14) in arms A, B, and C, respectively. The median DOR was 51.2 months [95% confidence interval (CI) 12.6 months-not estimable (NE)], 15.2 months (95% CI 7.1 months-NE), and 21.7 months (95% CI 4.2 months-NE), respectively. The median overall survival (OS) was 22.2 months (34/50; 95% CI 9.4-54.8 months) in arm A, 12.5 months (38/49; 95% CI 7.6-16.4 months) in arm B, and 12.7 months (40/49; 95% CI 7.4-30.5 months) in arm C; 60-month OS rates were 29%, 19%, and 21%, respectively. In an exploratory analysis of OS by response (6-month landmark), the median OS was meaningfully longer for responders versus nonresponders for all arms. No new safety signals were identified with longer follow-up. There were no new discontinuations due to immune-mediated adverse events since the primary analysis. CONCLUSIONS Consistent with the primary analysis, the arm A regimen of nivolumab plus ipilimumab continued to demonstrate clinically meaningful responses and long-term survival benefit, with no new safety signals in patients with advanced HCC following sorafenib treatment, further supporting its use as a second-line treatment in these patients.
Collapse
Affiliation(s)
- I Melero
- Department of Immunology, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain.
| | - T Yau
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Y-K Kang
- Department of Oncology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - A Santoro
- Humanitas University and IRCCS Humanitas Research Hospital - Humanitas Cancer Center, Rozzano, Italy
| | - B Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - M-M Hou
- Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - A Matilla
- Hospital General Universitario Gregorio Marañón CIBEREHD, Madrid, Spain
| | - F Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - J Knox
- Princess Margaret Cancer Centre, Toronto, Canada
| | - A R He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - B El-Rayes
- Department of Hematology and Medical Oncology, University of Alabama at Birmingham, Birmingham, USA
| | | | - H Y Lim
- School of Medicine, Sungkyunkwan University, Seoul, Korea
| | | | - J Yao
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, USA
| | - J Neely
- Translational Medicine, Bristol Myers Squibb, Princeton, USA
| | - M Tschaika
- Oncology Clinical Development, Bristol Myers Squibb, Princeton, USA
| | - C Hsu
- National Taiwan University Hospital, Taipei, Taiwan; National Taiwan University Cancer Center, Taipei, Taiwan
| | | |
Collapse
|
28
|
Saleh Y, Abu Hejleh T, Abdelrahim M, Shamseddine A, Chehade L, Alawabdeh T, Mohamad I, Sammour M, Turfa R. Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation. Cancers (Basel) 2024; 16:2081. [PMID: 38893200 PMCID: PMC11171314 DOI: 10.3390/cancers16112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths. Classically, liver transplantation (LT) can be curative for HCC tumors within the Milan criteria. Bridging strategies to reduce the dropouts from LT waiting lists and/or to downstage patients who are beyond the Milan criteria are widely utilized. We conducted a literature-based review to evaluate the role of systemic therapies as a bridging treatment to liver transplantation (LT) in HCC patients. Tyrosine kinase inhibitors (TKIs) can be used as a systemic bridging therapy to LT in patients with contraindications for locoregional liver-directed therapies. Immune checkpoint inhibitor (ICI) treatment can be utilized either as a monotherapy or as a combination therapy with bevacizumab or TKIs prior to LT. Acute rejection after liver transplantation is a concern in the context of ICI treatment. Thus, a safe ICI washout period before LT and cautious post-LT immunosuppression strategies are required to reduce post-LT rejections and to optimize clinical outcomes. Nevertheless, prospective clinical trials are needed to establish definitive conclusions about the utility of systemic therapy as a bridging modality prior to LT in HCC patients.
Collapse
Affiliation(s)
- Yacob Saleh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Taher Abu Hejleh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston, TX 77030, USA;
| | - Ali Shamseddine
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon; (A.S.); (L.C.)
| | - Laudy Chehade
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon; (A.S.); (L.C.)
| | - Tala Alawabdeh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Mohammad Sammour
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| | - Rim Turfa
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (T.A.H.); (T.A.); (M.S.)
| |
Collapse
|
29
|
Colloca GA, Venturino A. Radiographic and serologic response in patients with unresectable hepatocellular carcinoma receiving systemic antineoplastic treatments: A trial-level analysis. Cancer 2024; 130:1773-1783. [PMID: 38231887 DOI: 10.1002/cncr.35199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND In a disease like unresectable hepatocellular carcinoma, overall survival is an inadequate outcome measure for evaluating the effectiveness of treatments given the high risk of death from liver failure. There is an unmet need for reliable alternative end points for clinical trials and daily clinical practice. To evaluate treatment response in patients with unresectable or metastatic hepatocellular carcinoma (mHCC), imaging-related end points are often used, whereas serologic end points have been developed for patients with serum alpha-fetoprotein levels >20 ng/mL. The objective of this study was to evaluate clinical trials that report concomitant assessment of radiographic and serologic response in patients with mHCC. METHODS After a systematic review, studies that evaluated response according to radiographic and serologic criteria were selected. A correlation between progression-free survival (PFS) and overall survival (OS) was performed, and a linear regression of each response-related outcome measure with OS was reported. Finally, the effect of eight baseline variables on OS and response-related measures was evaluated. RESULTS Twenty-six studies were included, including 16 first-line studies and 10 second-line studies. PFS and response rates demonstrated a significant relationship with OS, whereas disease control rates did not. The responses were correlated with OS, particularly in the first-line setting, after targeted therapy, and whenever assessment was early. Among the baseline variables, only performance status had a prognostic role, whereas hepatitis B virus-related liver disease was associated with higher radiographic response rates. CONCLUSIONS PFS and radiographic and serologic response rates appear to be reliable intermediate end points in patients with mHCC who are undergoing systemic antineoplastic therapy. However, the serologic response is available earlier.
Collapse
|
30
|
Hsu SK, Chou CK, Lin IL, Chang WT, Kuo IY, Chiu CC. Deubiquitinating enzymes: potential regulators of the tumor microenvironment and implications for immune evasion. Cell Commun Signal 2024; 22:259. [PMID: 38715050 PMCID: PMC11075295 DOI: 10.1186/s12964-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chon-Kit Chou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR, 999078, P.R. China
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
31
|
Chen X, Kou L, Xie X, Su S, Li J, Li Y. Prognostic biomarkers associated with immune checkpoint inhibitors in hepatocellular carcinoma. Immunology 2024; 172:21-45. [PMID: 38214111 DOI: 10.1111/imm.13751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
The treatment of hepatocellular carcinoma (HCC), particularly advanced HCC, has been a serious challenge. Immune checkpoint inhibitors (ICIs) are landmark drugs in the field of cancer therapy in recent years, which have changed the landscape of cancer treatment. In the field of HCC treatment, this class of drugs has shown good therapeutic prospects. For example, atezolizumab in combination with bevacizumab has been approved as first-line treatment for advanced HCC due to significant efficacy. However, sensitivity to ICI therapy varies widely among HCC patients. Therefore, there is an urgent need to search for determinants of resistance/sensitivity to ICIs and to screen biomarkers that can predict the efficacy of ICIs. This manuscript reviews the research progress of prognostic biomarkers associated with ICIs in HCC in order to provide a scientific basis for the development of clinically individualised precision medication regimens.
Collapse
Affiliation(s)
- Xiu Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Song Su
- Department of Hepatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Zhang W, Song LN, You YF, Qi FN, Cui XH, Yi MX, Zhu G, Chang RA, Zhang HJ. Application of artificial intelligence in the prediction of immunotherapy efficacy in hepatocellular carcinoma: Current status and prospects. Artif Intell Gastroenterol 2024; 5:90096. [DOI: 10.35712/aig.v5.i1.90096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024] Open
Abstract
Artificial Intelligence (AI) has increased as a potent tool in medicine, with promising oncology applications. The emergence of immunotherapy has transformed the treatment terrain for hepatocellular carcinoma (HCC), offering new hope to patients with this challenging malignancy. This article examines the role and future of AI in forecasting the effectiveness of immunotherapy in HCC. We highlight the potential of AI to revolutionize the prediction of therapy response, thus improving patient selection and clinical outcomes. The article further outlines the challenges and future research directions in this emerging field.
Collapse
Affiliation(s)
- Wei Zhang
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li-Ning Song
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yun-Fei You
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Feng-Nan Qi
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Hong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Ming-Xun Yi
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ren-An Chang
- Research Center of Clinical Medicine and Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hai-Jian Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
33
|
Arvanitakis K, Papadakos SP, Vakadaris G, Chatzikalil E, Stergiou IE, Kalopitas G, Theocharis S, Germanidis G. Shedding light on the role of LAG-3 in hepatocellular carcinoma: unraveling immunomodulatory pathways. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by chronic inflammation and complex alterations within the tumor microenvironment (TME). Lymphocyte activation gene 3 (LAG-3), also known as CD223, has gained prominence as a potential next-generation immune checkpoint, maintaining continuous expression in response to persistent antigen exposure within the TME, warranting our attention. In patients with HCC, LAG-3 expression on T cells, regulatory T cells (Tregs), and natural killer (NK) cells contributes to immune evasion, while high expression of LAG-3 leads to increased angiogenesis and poor prognosis. By interacting with major histocompatibility complex class II molecules, LAG-3 promotes T cell exhaustion and suppresses antitumor responses, often in collaboration with other immune checkpoints like programmed cell death protein 1 (PD-1), while on Tregs and NK cells, LAG-3 modulates their suppressive functions, indirectly facilitating tumor immune escape. LAG-3 expression may offer prognostic insights, correlating with disease progression and outcomes in HCC patients, while various preclinical studies highlight the potential of LAG-3-targeted therapies in reinvigorating immune responses against HCC, with a few combination approaches targeting LAG-3 alongside other checkpoints demonstrating synergistic effects in restoring T cell function. Therefore, harnessing LAG-3 as a therapeutic target holds promise for enhancing antitumor immunity and potentially improving HCC treatment outcomes. Our narrative review aims to delve into the full spectrum of LAG-3 signaling in HCC, with the goal of a better understanding of the pathophysiological and immunological basis of its use to arrest HCC growth and development.
Collapse
|
34
|
Wang ZY, Xu B, Wang LN, Zhu XD, Huang C, Shen YH, Li H, Li ML, Zhou J, Fan J, Sun HC. Platelet-to-lymphocyte ratio predicts tumor response and survival of patients with hepatocellular carcinoma undergoing immunotherapies. Int Immunopharmacol 2024; 131:111863. [PMID: 38492340 DOI: 10.1016/j.intimp.2024.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Lymphocyte-related factors were associated with survival outcome of different types of cancers. Nevertheless, the association between lymphocytes-related factors and tumor response of immunotherapy remains unclear. METHODS This is a retrospective study. Eligible participants included patients with unresectable or advanced hepatocellular carcinoma (HCC) who underwent immunotherapy as their first-line treatment. Radiological assessment of tumor response adhered to RECIST 1.1 and HCC-specific modified RECIST (mRECIST) criteria. Univariate and multivariate logistic analyses were employed to analyze clinical factors associated with tumor response. Kaplan-Meier survivial analysis were employed to compare progression-free survival (PFS) and overall survival (OS) across different clinical factors. Furthermore, patients who received treatment with either a combination of bevacizumab and anti-PD-1(L1) antibody (Beva group) or tyrosine-kinase inhibitor (TKI) and anti-PD-1 antibody (TKI group) were examined to explore the relation between clinical factors and tumor response. RESULTS A total of 208 patients were enrolled in this study. The median PFS and OS were 9.84 months and 24.44 months,respectively. An independent factor associated with a more favorable tumor response to immunotherapy was identified when PLR<100. Patients with PLR<100 had longer PFS than other patients, while OS showed no significant difference. Further analysis revealed that PLR exhibited superior prognostic value in patients of the Beva group as compared to those in the TKI group. CONCLUSIONS There exisits an association between PLR and tumor response as well as survival outcomes in patients receiving immunotherapy, particularly those treated with the combination of bevacizumab and anti-PD-1.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu-Na Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mei-Ling Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Peng W, Pan Y, Xie L, Yang Z, Ye Z, Chen J, Wang J, Hu D, Xu L, Zhou Z, Chen M, Fang A, Zhang Y. The emerging therapies are reshaping the first-line treatment for advanced hepatocellular carcinoma: a systematic review and network meta-analysis. Therap Adv Gastroenterol 2024; 17:17562848241237631. [PMID: 38645513 PMCID: PMC11032067 DOI: 10.1177/17562848241237631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 04/23/2024] Open
Abstract
Background Given the superior performance of various therapies over sorafenib in advanced hepatocellular carcinoma (HCC) and the absence of direct comparisons, it is crucial to explore the efficacy of these treatments in phase III randomized clinical trials. Objectives The goal is to identify which patients are most likely to benefit significantly from these emerging therapies, contributing to more personalized and informed clinical decision-making. Design Systematic review and network meta-analysis. Data sources and methods PubMed, Embase, ClinicalTrials.gov, and international conference databases have been searched from 1 January 2010 to 1 December 2023. Results After screening, 17 phase III trials encompassing 18 treatments were included. In the whole-population network meta-analysis, the newly first-line tremelimumab plus durvalumab (Tre + Du) was found to be comparable with atezolizumab plus bevacizumab (Atezo + Beva) in providing the best overall survival (OS) benefit [hazard ratio (HR) 1.35, 95% confidence interval (CI): 0.93-1.92]. Concerning OS benefits, sintilimab plus bevacizumab biosimilar (Sint + Beva), camrelizumab plus rivoceranib (Camre + Rivo), and lenvatinib plus pembrolizumab (Lenva + Pemb) appear to exhibit similar effects to Tre + Du and Atezo + Beva. In the context of progression-free survival, Atezo + Beva seemed to outperform Tre + Du (HR: 0.66 CI: 0.49-0.87), while the effects are comparable to Sint + Beva, Camre + Rivo, and Lenva + Pemb. Upon comparison between Asia-Pacific and non-Asia-Pacific cohorts, as well as between hepatitis B virus (HBV)-infected and non-HBV-infected populations, immune checkpoint inhibitor (ICI)-based treatments seemed to exhibit heightened efficacy in the Asia-Pacific group and among individuals with HBV infection. However, combined ICI-based therapies did not show more effectiveness than molecular-targeted drugs in patients without macrovascular invasion and/or extrahepatic spread. As for grades 3-5 adverse events, combined therapies showed comparable safety to sorafenib and lenvatinib. Conclusion Compared with sorafenib and lenvatinib, combination therapies based on ICIs significantly improved the prognosis of advanced HCC and demonstrated similar safety. At the same time, the optimal treatment approach should be tailored to individual patient characteristics, such as etiology, tumor staging, and serum alpha-fetoprotein levels. With lower incidence rates of treatment-related adverse events and non-inferior efficacy compared to sorafenib, ICI monotherapies should be prioritized as a first-line treatment approach for patients who are not suitable candidates for ICI-combined therapies. Trial registration PROSPERO, CRD42022288172.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yangxun Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Lan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Zhoutian Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Zhiwei Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jinbin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Juncheng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Dandan Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Zhongguo Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Aiping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
36
|
Liu X, Zhang K, Kaya NA, Jia Z, Wu D, Chen T, Liu Z, Zhu S, Hillmer AM, Wuestefeld T, Liu J, Chan YS, Hu Z, Ma L, Jiang L, Zhai W. Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma. Nat Commun 2024; 15:3169. [PMID: 38609353 PMCID: PMC11015015 DOI: 10.1038/s41467-024-47541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Solid tumors are complex ecosystems with heterogeneous 3D structures, but the spatial intra-tumor heterogeneity (sITH) at the macroscopic (i.e., whole tumor) level is under-explored. Using a phylogeographic approach, we sequence genomes and transcriptomes from 235 spatially informed sectors across 13 hepatocellular carcinomas (HCC), generating one of the largest datasets for studying sITH. We find that tumor heterogeneity in HCC segregates into spatially variegated blocks with large genotypic and phenotypic differences. By dissecting the transcriptomic heterogeneity, we discover that 30% of patients had a "spatially competing distribution" (SCD), where different spatial blocks have distinct transcriptomic subtypes co-existing within a tumor, capturing the critical transition period in disease progression. Interestingly, the tumor regions with more advanced transcriptomic subtypes (e.g., higher cell cycle) often take clonal dominance with a wider geographic range, rejecting neutral evolution for SCD patients. Extending the statistical tests for detecting natural selection to many non-SCD patients reveal varying levels of selective signal across different tumors, implying that many evolutionary forces including natural selection and geographic isolation can influence the overall pattern of sITH. Taken together, tumor phylogeography unravels a dynamic landscape of sITH, pinpointing important evolutionary and clinical consequences of spatial heterogeneity in cancer.
Collapse
Affiliation(s)
- Xiaodong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Zhang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Neslihan A Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhe Jia
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Dafei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Sinan Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Wuestefeld
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yun Shen Chan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Li Jiang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
37
|
El-Khoueiry AB, Trojan J, Meyer T, Yau T, Melero I, Kudo M, Hsu C, Kim TY, Choo SP, Kang YK, Yeo W, Chopra A, Soleymani S, Yao J, Neely J, Tschaika M, Welling TH, Sangro B. Nivolumab in sorafenib-naive and sorafenib-experienced patients with advanced hepatocellular carcinoma: 5-year follow-up from CheckMate 040. Ann Oncol 2024; 35:381-391. [PMID: 38151184 DOI: 10.1016/j.annonc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Patients with advanced hepatocellular carcinoma (aHCC) have a poor prognosis and high mortality. Nivolumab monotherapy demonstrated clinical benefit with an acceptable safety profile in patients with aHCC in the CheckMate 040 study. Five-year follow-up of the sorafenib-naive and sorafenib-experienced groups of CheckMate 040 is presented here. PATIENTS AND METHODS Patients received nivolumab monotherapy at dose levels of 0.1-10.0 mg/kg (dose-escalation phase) or 3 mg/kg (dose-expansion phase) every 2 weeks until disease progression or unacceptable toxicity. Primary endpoints were safety and tolerability (dose escalation), and objective response rate (ORR) by blinded independent central review (BICR) and by investigator as per RECIST version 1.1 (dose expansion). RESULTS Eighty sorafenib-naive and 154 sorafenib-experienced patients were treated. Minimum follow-up in both groups was 60 months. ORR as per BICR was 20% [95% confidence interval (CI) 12% to 30%] and 14% (95% CI 9% to 21%) in the sorafenib-naive and sorafenib-experienced groups, respectively. Responses occurred regardless of HCC etiology or baseline tumor cell programmed death-ligand 1 (PD-L1) expression levels. Median overall survival (OS) was 26.6 months (95% CI 16.6-30.6 months) and 15.1 months (95% CI 13.0-18.2 months) in sorafenib-naive and sorafenib-experienced patients, respectively. The 3-year OS rates were 28% in the sorafenib-naive and 20% in the sorafenib-experienced groups; 5-year OS rates were 14% and 12%, respectively. No new safety signals were identified; grade 3/4 treatment-related adverse events were observed in 33% and 21% of patients in the sorafenib-naive and sorafenib-experienced groups, respectively. Biomarker analyses showed that baseline PD-L1 expression ≥1% was associated with higher ORR and longer OS compared with PD-L1 <1%. In the sorafenib-naive group, patients with OS ≥3 years exhibited higher baseline CD8 T-cell density compared with those with OS <1 year. CONCLUSION With 5 years of follow-up, nivolumab monotherapy continued to provide durable clinical benefit with manageable safety in sorafenib-naive and sorafenib-experienced patients with aHCC.
Collapse
Affiliation(s)
- A B El-Khoueiry
- Division of Medical Oncology, USC Norris Comprehensive Cancer Center, Los Angeles, USA.
| | - J Trojan
- Department of Medicine, Goethe University Hospital and Cancer Center, Frankfurt, Germany
| | - T Meyer
- Department of Oncology, Royal Free Hospital, London, UK
| | - T Yau
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - I Melero
- Department of Immunology, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - C Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - S-P Choo
- Division of Medical Oncology, National Cancer Center and Curie Oncology, Singapore, Republic of Singapore
| | - Y-K Kang
- Department of Oncology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - W Yeo
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| | - A Chopra
- Department of Medical Oncology, Johns Hopkins Singapore International Medical Centre, Singapore, Republic of Singapore
| | - S Soleymani
- Global Biometrics & Data Sciences, Bristol Myers Squibb, Princeton, USA
| | - J Yao
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, USA
| | - J Neely
- Translational Medicine, Bristol Myers Squibb, Princeton, USA
| | - M Tschaika
- Oncology Clinical Development, Bristol Myers Squibb, Princeton, USA
| | - T H Welling
- Perlmutter Cancer Center and Department of Surgery, NYU Langone Health, New York, USA
| | - B Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| |
Collapse
|
38
|
Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology 2024; 79:926-940. [PMID: 36680397 DOI: 10.1097/hep.0000000000000237] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/21/2022] [Indexed: 01/22/2023]
Abstract
HCC comprises ∼80% of primary liver cancer. HCC is the only major cancer for which death rates have not improved over the last 10 years. Most patients are diagnosed with advanced disease when surgical and locoregional treatments are not feasible or effective. Sorafenib, a multikinase inhibitor targeting cell growth and angiogenesis, was approved for advanced unresectable HCC in 2007. Since then, other multikinase inhibitors have been approved. Lenvatinib was found to be noninferior to sorafenib as a first-line agent. Regorafenib, cabozantinib, and ramucirumab were shown to prolong survival as second-line agents. Advances in immunotherapy for HCC have also added hope for patients, but their efficacy remains limited. A large proportion of patients with advanced HCC gain no long-term benefit from systemic therapy due to primary and acquired drug resistance, which, combined with its rising incidence, keeps HCC a highly fatal disease. This review summarizes mechanisms of primary and acquired resistance to therapy and includes methods for bypassing resistance. It addresses recent advancements in immunotherapy, provides new perspectives on the linkage between drug resistance and molecular etiology of HCC, and evaluates the role of the microbiome in drug resistance. It also discusses alterations in signaling pathways, dysregulation of apoptosis, modulations in the tumor microenvironment, involvement of cancer stem cells, changes in drug metabolism/transport, tumor hypoxia, DNA repair, and the role of microRNAs in drug resistance. Understanding the interplay among these factors will provide guidance on the development of new therapeutic strategies capable of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra D Ladd
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, Pikarsky E, Kudo M, Finn RS. Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin Oncol 2024; 21:294-311. [PMID: 38424197 DOI: 10.1038/s41571-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Liver cancer, specifically hepatocellular carcinoma (HCC), is the sixth most common cancer and the third leading cause of cancer mortality worldwide. The development of effective systemic therapies, particularly those involving immune-checkpoint inhibitors (ICIs), has substantially improved the outcomes of patients with advanced-stage HCC. Approximately 30% of patients are diagnosed with early stage disease and currently receive potentially curative therapies, such as resection, liver transplantation or local ablation, which result in median overall survival durations beyond 60 months. Nonetheless, up to 70% of these patients will have disease recurrence within 5 years of resection or local ablation. To date, the results of randomized clinical trials testing adjuvant therapy in patients with HCC have been negative. This major unmet need has been addressed with the IMbrave 050 trial, demonstrating a recurrence-free survival benefit in patients with a high risk of relapse after resection or local ablation who received adjuvant atezolizumab plus bevacizumab. In parallel, studies testing neoadjuvant ICIs alone or in combination in patients with early stage disease have also reported efficacy. In this Review, we provide a comprehensive overview of the current approaches to manage patients with early stage HCC. We also describe the tumour immune microenvironment and the mechanisms of action of ICIs and cancer vaccines in this setting. Finally, we summarize the available evidence from phase II/III trials of neoadjuvant and adjuvant approaches and discuss emerging clinical trials, identification of biomarkers and clinical trial design considerations for future studies.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mark Yarchoan
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit G Singal
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas U Marron
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myron Schwartz
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
40
|
Chen W, Hu Z, Li G, Zhang L, Li T. The State of Systematic Therapies in Clinic for Hepatobiliary Cancers. J Hepatocell Carcinoma 2024; 11:629-649. [PMID: 38559555 PMCID: PMC10981875 DOI: 10.2147/jhc.s454666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Hepatobiliary cancer (HBC) includes hepatocellular carcinoma and biliary tract carcinoma (cholangiocarcinoma and gallbladder carcinoma), and its morbidity and mortality are significantly correlated with disease stage. Surgery is the cornerstone of curative therapy for early stage of HBC. However, a large proportion of patients with HBC are diagnosed with advanced stage and can only receive systemic treatment. According to the results of clinical trials, the first-line and second-line treatment programs are constantly updated with the improvement of therapeutic effectiveness. In order to improve the therapeutic effect, reduce the occurrence of drug resistance, and reduce the adverse reactions of patients, the treatment of HBC has gradually developed from single-agent therapy to combination. The traditional therapeutic philosophy proposed that patients with advanced HBC are only amenable to systematic therapies. With some encouraging clinical trial results, the treatment concept has been revolutionized, and patients with advanced HBC who receive novel systemic combination therapies with multi-modality treatment (including surgery, transplant, TACE, HAIC, RT) have significantly improved survival time. This review summarizes the treatment options and the latest clinical advances of HBC in each stage and discusses future direction, in order to inform the development of more effective treatments for HBC.
Collapse
Affiliation(s)
- Weixun Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhengnan Hu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ganxun Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Lei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Tao Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
41
|
Cappuyns S, Corbett V, Yarchoan M, Finn RS, Llovet JM. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma: A Review. JAMA Oncol 2024; 10:395-404. [PMID: 37535375 PMCID: PMC10837331 DOI: 10.1001/jamaoncol.2023.2677] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Importance The combination of immune checkpoint inhibitors with antiangiogenic agents has revolutionized the treatment landscape of advanced hepatocellular carcinoma (HCC). However, due to rapid publication of new studies that attained their predefined primary end points, a lack of robust cross-trial comparison of first-line therapies, and diverging clinical guidelines, no clear-cut treatment flowchart and sequence of therapies are available. This critical analysis of the recommendations for the management of advanced HCC from the main scientific societies in the US and Europe adopted an integrated approach to provide information on the clinical benefit (overall survival and progression-free survival) and safety profile of these therapies using the European Society for Medical Oncology (ESMO)-Magnitude of Clinical Benefit Scale (MCBS) score and an ad hoc network meta-analysis. Observations There is a major consensus among guidelines that atezolizumab plus bevacizumab has a primacy as the recommended first-line treatment of choice in advanced HCC. On progression after immunotherapy-containing regimens and for patients with contraindications for immunotherapies, most guidelines maintain the established treatment hierarchy, recommending lenvatinib or sorafenib as the preferred options, followed by either regorafenib, cabozantinib, or ramucirumab. Thus far, the first-line immune-based regimen of tremelimumab plus durvalumab has been integrated only in the American Association for the Study of Liver Diseases guidance document and the latest National Comprehensive Cancer Network guidelines and has particular utility for patients with a high risk of gastrointestinal bleeding. Overall, in the first-line setting, both atezolizumab plus bevacizumab and sintilimab plus IBI305 (a bevacizumab biosimilar) and durvalumab plus tremelimumab received the highest ESMO-MCBS score of 5, indicating a substantial magnitude of clinical benefit. In a network meta-analysis, no significant differences in overall survival were found among the various combination regimens. However, the newly reported combination of camrelizumab plus rivoceranib was associated with a significantly higher risk of treatment-related adverse events compared with atezolizumab plus bevacizumab (relative risk, 1.59; 95% CI, 1.25-2.03; P < .001). Conclusions and Relevance This narrative review found that atezolizumab plus bevacizumab is regarded as the primary standard of care for advanced HCC in the first-line setting. These findings from integrating the recommendations from scientific societies' guidelines for managing advanced HCC along with new data from cross-trial comparisons may aid clinicians in decision-making and guide them through a rapidly evolving and complex treatment landscape.
Collapse
Affiliation(s)
- Sarah Cappuyns
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Digestive Oncology, Department of Gastroenterology, Universitair Ziekenhuis Leuven/Katholieke Universiteit Leuven, Leuven, Belgium
| | - Virginia Corbett
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard S Finn
- Department of Medicine, Hematology/Oncology, Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
42
|
Lehrich BM, Zhang J, Monga SP, Dhanasekaran R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol 2024; 80:515-530. [PMID: 38104635 PMCID: PMC10923008 DOI: 10.1016/j.jhep.2023.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The diagnosis and management of hepatocellular carcinoma (HCC) have improved significantly in recent years. With the introduction of immunotherapy-based combination therapy, there has been a notable expansion in treatment options for patients with unresectable HCC. Simultaneously, innovative molecular tests for early detection and management of HCC are emerging. This progress prompts a key question: as liquid biopsy techniques rise in prominence, will they replace traditional tissue biopsies, or will both techniques remain relevant? Given the ongoing challenges of early HCC detection, including issues with ultrasound sensitivity, accessibility, and patient adherence to surveillance, the evolution of diagnostic techniques is more relevant than ever. Furthermore, the accurate stratification of HCC is limited by the absence of reliable biomarkers which can predict response to therapies. While the advantages of molecular diagnostics are evident, their potential has not yet been fully harnessed, largely because tissue biopsies are not routinely performed for HCC. Liquid biopsies, analysing components such as circulating tumour cells, DNA, and extracellular vesicles, provide a promising alternative, though they are still associated with challenges related to sensitivity, cost, and accessibility. The early results from multi-analyte liquid biopsy panels are promising and suggest they could play a transformative role in HCC detection and management; however, comprehensive clinical validation is still ongoing. In this review, we explore the challenges and potential of both tissue and liquid biopsy, highlighting that these diagnostic methods, while distinct in their approaches, are set to jointly reshape the future of HCC management.
Collapse
Affiliation(s)
- Brandon M Lehrich
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA
| | - Satdarshan P Monga
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA.
| |
Collapse
|
43
|
Kim HD, Jung S, Lim HY, Ryoo BY, Ryu MH, Chuah S, Chon HJ, Kang B, Hong JY, Lee HC, Moon DB, Kim KH, Kim TW, Tai D, Chew V, Lee JS, Finn RS, Koh JY, Yoo C. Regorafenib plus nivolumab in unresectable hepatocellular carcinoma: the phase 2 RENOBATE trial. Nat Med 2024; 30:699-707. [PMID: 38374347 PMCID: PMC10957471 DOI: 10.1038/s41591-024-02824-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/21/2024] [Indexed: 02/21/2024]
Abstract
Regorafenib has anti-tumor activity in patients with unresectable hepatocellular carcinoma (uHCC) with potential immunomodulatory effects, suggesting that its combination with immune checkpoint inhibitor may have clinically meaningful benefits in patients with uHCC. The multicenter, single-arm, phase 2 RENOBATE trial tested regorafenib-nivolumab as front-line treatment for uHCC. Forty-two patients received nivolumab 480 mg every 4 weeks and regorafenib 80 mg daily (3-weeks-on/1-week-off schedule). The primary endpoint was the investigator-assessed objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. The secondary endpoints included safety, progression-free survival (PFS) and overall survival (OS). ORR per RECIST version 1.1 was 31.0%, meeting the primary endpoint. The most common adverse events were palmar-plantar erythrodysesthesia syndrome (38.1%), alopecia (26.2%) and skin rash (23.8%). Median PFS was 7.38 months. The 1-year OS rate was 80.5%, and the median OS was not reached. Exploratory single-cell RNA sequencing analyses of peripheral blood mononuclear cells showed that long-term responders exhibited T cell receptor repertoire diversification, enrichment of genes representing immunotherapy responsiveness in MKI67+ proliferating CD8+ T cells and a higher probability of M1-directed monocyte polarization. Our data support further clinical development of the regorafenib-nivolumab combination as front-line treatment for uHCC and provide preliminary insights on immune biomarkers of response. ClinicalTrials.gov identifier: NCT04310709 .
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seyoung Jung
- Genome Insight, Inc., San Diego, La Jolla, CA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Samuel Chuah
- Translational Immunology Institute, SingHealth-Duke-NUS Academic Medical Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Beodeul Kang
- Department of Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Chu Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deok-Bog Moon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ki-Hun Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - David Tai
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute, SingHealth-Duke-NUS Academic Medical Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Jeong Seok Lee
- Genome Insight, Inc., San Diego, La Jolla, CA, USA
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Richard S Finn
- Division of Hematology-Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Haber PK, Krenzien F, Sarıbeyoğlu K, Pratschke J, Schöning W. Integrating the new systemic treatment landscape and surgical therapy in hepatocellular carcinoma. Turk J Surg 2024; 40:1-10. [PMID: 39036000 PMCID: PMC11257723 DOI: 10.47717/turkjsurg.2024.6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 07/23/2024]
Abstract
The treatment landscape of hepatocellular carcinoma has evolved rapidly within the last decade. Minimally-invasive techniques have reached a new level of safety, affording surgeons to pursue more aggressive treatment strategies to ultimately improve oncological outcomes. These procedures have been increasingly applied to treat patients with more progressed tumors and in select case even patients with advanced stage disease confined to the liver. Concomitantly, a dramatic increase in research into immunotherapy has altered the treatment paradigm in advanced disease stages, where the emerging treatment regimens can provide durable responses in a subset of the patient population for whom prognosis is dramatically improved. These treatments are now tested in early-stage disease to address the pressing unmet need of high recurrence rates after resection and in intermediate stage to complement the proven efficacy of intraarterial embolization in delaying progression. This review provides an in-depth discussion of these trends and describes how the treatment landscape has already changed and which impediments remain.
Collapse
Affiliation(s)
| | - Felix Krenzien
- Department of Surgery, Charité University, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
He M, Liu Y, Chen S, Deng H, Feng C, Qiao S, Chen Q, Hu Y, Chen H, Wang X, Jiang X, Xia X, Zhao M, Lyu N. Serum amyloid A promotes glycolysis of neutrophils during PD-1 blockade resistance in hepatocellular carcinoma. Nat Commun 2024; 15:1754. [PMID: 38409200 PMCID: PMC10897330 DOI: 10.1038/s41467-024-46118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
The response to programmed death-1 (PD-1) blockade varies in hepatocellular carcinoma (HCC). We utilize a panel of 16 serum factors to show that a circulating level of serum amyloid A (SAA) > 20.0 mg/L has the highest accuracy in predicting anti-PD-1 resistance in HCC. Further experiments show a correlation between peritumoral SAA expression and circulating SAA levels in patients with progressive disease after PD-1 inhibition. In vitro experiments demonstrate that SAA induces neutrophils to express PD-L1 through glycolytic activation via an LDHA/STAT3 pathway and to release oncostatin M, thereby attenuating cytotoxic T cell function. In vivo, genetic or pharmacological inhibition of STAT3 or SAA eliminates neutrophil-mediated immunosuppression and enhances antitumor efficacy of anti-PD-1 treatment. This study indicates that SAA may be a critical inflammatory cytokine implicated in anti-PD-1 resistance in HCC. Targeting SAA-induced PD-L1+ neutrophils through STAT3 or SAA inhibition may present a potential approach for overcoming anti-PD1 resistance.
Collapse
Affiliation(s)
- Meng He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haijing Deng
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Cheng Feng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qifeng Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiongying Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Tian C, Yu Y, Wang Y, Yang L, Tang Y, Yu C, Feng G, Zheng D, Wang X. Neoadjuvant Immune Checkpoint Inhibitors in hepatocellular carcinoma: a meta-analysis and systematic review. Front Immunol 2024; 15:1352873. [PMID: 38440727 PMCID: PMC10909934 DOI: 10.3389/fimmu.2024.1352873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Background Neoadjuvant immunotherapy has demonstrated beneficial outcomes in various cancer types; however, standardized protocols for neoadjuvant immunotherapy in hepatocellular carcinoma (HCC) are currently lacking. This systematic review and meta-analysis aims to investigate the reliability of neoadjuvant immunotherapy's efficacy and safety in the context of HCC. Methods A systematic search was conducted across PubMed (MEDLINE), EMBASE, the Web of Science, the Cochrane Library, and conference proceedings to identify clinical trials involving resectable HCC and neoadjuvant immunotherapy. Single-arm meta-analyses were employed to compute odds ratios and 95% confidence intervals (CIs). Heterogeneity analysis, data quality assessment, and subgroup analyses based on the type of immunotherapy drugs and combination therapies were performed. This meta-analysis is registered in PROSPERO (identifier CRD42023474276). Results This meta-analysis included 255 patients from 11 studies. Among resectable HCC patients, neoadjuvant immunotherapy exhibited an overall major pathological response (MPR) rate of 0.47 (95% CI 0.31-0.70) and a pathological complete response (pCR) rate of 0.22 (95% CI 0.14-0.36). The overall objective response rate (ORR) was 0.37 (95% CI 0.20-0.69), with a grade 3-4 treatment-related adverse event (TRAE) incidence rate of 0.35 (95% CI 0.24-0.51). Furthermore, the combined surgical resection rate was 3.08 (95% CI 1.66-5.72). Subgroup analysis shows no significant differences in the efficacy and safety of different single-agent immunotherapies; the efficacy of dual ICIs (Immune Checkpoint Inhibitors) combination therapy is superior to targeted combined immunotherapy and monotherapy, while the reverse is observed in terms of safety. Discussion Neoadjuvant immunotherapy presents beneficial outcomes in the treatment of resectable HCC. However, large-scale, high-quality experiments are warranted in the future to provide robust data support.
Collapse
Affiliation(s)
- Chunhong Tian
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lunwei Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyang Yu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaofei Feng
- Department of Oncology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Dayong Zheng
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, China
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Beibei District Traditional Chinese Medicine Hospital (Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine), Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci 2024; 31:22. [PMID: 38368324 PMCID: PMC10874078 DOI: 10.1186/s12929-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024] Open
Abstract
Translational research plays a key role in drug development and biomarker discovery for hepatocellular carcinoma (HCC). However, unique challenges exist in this field because of the limited availability of human tumor samples from surgery, the lack of homogenous oncogenic driver mutations, and the paucity of adequate experimental models. In this review, we provide insights into these challenges and review recent advancements, with a particular focus on the two main agents currently used as mainstream therapies for HCC: anti-angiogenic agents and immunotherapy. First, we examine the pre-clinical and clinical studies to highlight the challenges of determining the optimal therapeutic combinations with biologically effective dosage for HCC. Second, we discuss biomarker studies focusing on anti-PD1/anti-PD-L1-based combination therapy. Finally, we discuss the progress made in our collective understanding of tumor immunology and in multi-omics analysis technology, which enhance our understanding of the mechanisms underlying immunotherapy, characterize different patient subgroups, and facilitate the development of novel combination approaches to improve treatment efficacy. In summary, this review provides a comprehensive overview of efforts in translational research aiming at advancing our understanding of and improving the treatment of HCC.
Collapse
Affiliation(s)
- Valerie Chew
- Translational Immunology Institute, SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chien-Huai Chuang
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
Zhang N, Yang X, Piao M, Xun Z, Wang Y, Ning C, Zhang X, Zhang L, Wang Y, Wang S, Chao J, Lu Z, Yang X, Wang H, Zhao H. Biomarkers and prognostic factors of PD-1/PD-L1 inhibitor-based therapy in patients with advanced hepatocellular carcinoma. Biomark Res 2024; 12:26. [PMID: 38355603 PMCID: PMC10865587 DOI: 10.1186/s40364-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic therapies using programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors have demonstrated commendable efficacy in some patients with advanced hepatocellular carcinoma (HCC); however, other individuals do not respond favorably. Hence, identifying the biomarkers, the prognostic factors, and their underlying mechanisms is crucial. In this review, we summarized the latest advancements in this field. Within the tumor microenvironment, PD-L1 expression is commonly utilized to predict response. Moreover, the characteristics of tumor-infiltrating lymphocytes are associated with the effectiveness of immunotherapy. Preclinical studies have identified stimulatory dendritic cells, conventional dendritic cells, and macrophages as potential biomarkers. The emergence of single-cell sequencing and spatial transcriptomics has provided invaluable insights into tumor heterogeneity through the lens of single-cell profiling and spatial distribution. With the widespread adoption of next-generation sequencing, certain genomic characteristics, including tumor mutational burden, copy number alterations, specific genes (TP53, CTNNB1, and GZMB), and signaling pathways (WNT/β-catenin) have been found to correlate with prognosis. Furthermore, clinical features such as tumor size, number, and metastasis status have demonstrated prognostic value. Notably, common indicators such as the Child-Pugh score and Eastern Cooperative Oncology Group score, which are used in patients with liver diseases, have shown potential. Similarly, commonly employed laboratory parameters such as baseline transforming growth factor beta, lactate dehydrogenase, dynamic changes in alpha-fetoprotein (AFP) and abnormal prothrombin, CRAFITY score (composed of C-reactive protein and AFP), and immune adverse events have been identified as predictive biomarkers. Novel imaging techniques such as EOB-MRI and PET/CT employing innovative tracers also have potential. Moreover, liquid biopsy has gained widespread use in biomarker studies owing to its non-invasive, convenient, and highly reproducible nature, as well as its dynamic monitoring capabilities. Research on the gut microbiome, including its composition, dynamic changes, and metabolomic analysis, has gained considerable attention. Efficient biomarker discovery relies on continuous updating of treatment strategies. Next, we summarized recent advancements in clinical research on HCC immunotherapy and provided an overview of ongoing clinical trials for contributing to the understanding and improvement of HCC immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Cong Ning
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xinmu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, No.36 Industrial 8 Road, Nanshan District, Shenzhen City, Guangdong province, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
49
|
Martínez-Blanco P, Suárez M, Gil-Rojas S, Torres AM, Martínez-García N, Blasco P, Torralba M, Mateo J. Prognostic Factors for Mortality in Hepatocellular Carcinoma at Diagnosis: Development of a Predictive Model Using Artificial Intelligence. Diagnostics (Basel) 2024; 14:406. [PMID: 38396445 PMCID: PMC10888215 DOI: 10.3390/diagnostics14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for 75% of primary liver tumors. Controlling risk factors associated with its development and implementing screenings in risk populations does not seem sufficient to improve the prognosis of these patients at diagnosis. The development of a predictive prognostic model for mortality at the diagnosis of HCC is proposed. METHODS In this retrospective multicenter study, the analysis of data from 191 HCC patients was conducted using machine learning (ML) techniques to analyze the prognostic factors of mortality that are significant at the time of diagnosis. Clinical and analytical data of interest in patients with HCC were gathered. RESULTS Meeting Milan criteria, Barcelona Clinic Liver Cancer (BCLC) classification and albumin levels were the variables with the greatest impact on the prognosis of HCC patients. The ML algorithm that achieved the best results was random forest (RF). CONCLUSIONS The development of a predictive prognostic model at the diagnosis is a valuable tool for patients with HCC and for application in clinical practice. RF is useful and reliable in the analysis of prognostic factors in the diagnosis of HCC. The search for new prognostic factors is still necessary in patients with HCC.
Collapse
Affiliation(s)
| | - Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Sergio Gil-Rojas
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | | | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Miguel Torralba
- Internal Medicine Unit, Guadalajara University Hospital, 19002 Guadalajara, Spain (M.T.)
- Faculty of Medicine, Universidad de Alcalá de Henares, 28801 Alcalá de Henares, Spain
- Translational Research Group in Cellular Immunology (GITIC), Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
50
|
Wang H, Huang H, Liu T, Chen Y, Li J, He M, Peng J, Liang E, Li J, Liu W. Peripheral blood lymphocyte subsets predict the efficacy of TACE with or without PD-1 inhibitors in patients with hepatocellular carcinoma: a prospective clinical study. Front Immunol 2024; 15:1325330. [PMID: 38404585 PMCID: PMC10884244 DOI: 10.3389/fimmu.2024.1325330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background Although peripheral blood lymphocyte subsets, particularly PD-1+ T cells, are promising prognostic indicators for patients with cancer. However, their clinical significance remains unclear. Methods We prospectively enrolled 157 patients with hepatocellular carcinoma (HCC) treated with transcatheter arterial chemoembolization combined with or without PD-1 inhibitors. Twenty peripheral lymphocyte subsets and cytokines were analyzed. We analyzed the differences in PD-1+ T cells between patients treated with and without PD-1 inhibitors and their associations with tumor response, survival prognosis, and clinical features. Results We found that the baseline CD8+PD-1+ and CD4+PD-1+ T-cell frequencies in patients who had received PD-1 inhibitors were lower than those in patients who had not received PD-1 inhibitors (p < 0.001). In the former patients, there were no differences in PD-1+ T-cell frequencies between the responder and non-responder subgroups (p > 0.05), whereas in the latter patients, the levels of CD8+PD-1+ T cells, CD4+PD-1+ T cells, and CD8+PD-1+/CD4+PD-1+ ratio did not predict tumor response, progression-free survival (PFS), or overall survival (OS) (p>0.05). Furthermore, in multivariate analysis of patients treated with or without PD-1 inhibitors revealed that the levels of CD8+CD38+ T cells (OR = 2.806, p = 0.006) were associated with tumor response, whereas those of CD8+CD28+ T cells (p = 0.038, p = 0.001) and natural killer (NK) cells (p = 0.001, p = 0.027) were associated with PFS and OS. Although, these independent prognostic factors were associated with progressive tumor characteristics (p<0.05), with the exception of CD8+CD28+ T cells, changes in these factors before and after treatment were unassociated with tumor response (p > 0.05). Conclusion Circulating CD8+CD38+ T cells, CD8+CD28+ T cells, and NK cells were identified as potential prognostic factors for tumor response and survival in patients with HCC. Contrastingly, although PD-1 inhibitors can effectively block the T cell PD-1 receptor, the baseline PD-1+ T-cell frequencies and changes in the frequency of these cells have limited prognostic value.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijie Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Liu
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoming Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinwei Li
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min He
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Enyu Liang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wendao Liu
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|