1
|
Spivak I, Guldiken N, Usachov V, Schaap F, Damink SWO, Bouchecareilh M, Lehmann A, Fu L, Mo F, Ensari GK, Hufnagel F, Fromme M, Preisinger C, Strnad P. Alpha-1 Antitrypsin Inclusions Sequester GRP78 in a Bile Acid-Inducible Manner. Liver Int 2025; 45:e16207. [PMID: 39665869 PMCID: PMC11636636 DOI: 10.1111/liv.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND AIMS The homozygous PiZ mutation (PIZZ genotype) constitutes the predominant cause of severe alpha-1 antitrypsin (AAT) deficiency and leads to liver disease via hepatocellular AAT aggregation. We systematically analysed the composition of AAT aggregates and studied the impact of bile acids. METHODS AAT inclusions were isolated from livers of PiZ overexpressing mice and PIZZ humans via fluorescence-activated and immunomagnetic sorting (FACS/MACS), while insoluble proteins were obtained via Triton-X extraction. Inclusion composition was evaluated through mass-spectrometry (MS), immunoblotting and immunostaining. Hepatocytes with versus without AAT aggregates were obtained via microdissection. Serum bile acids were assessed in 57 PIZZ subjects and 19 controls. Mice were administered 2% cholic acid (CA)-supplemented chow for 7 days. RESULTS MS identified the key endoplasmic reticulum chaperone 78 kDa glucose-regulated protein (GRP78) in FACS/MACS pulldowns. GRP78 was also enriched in insoluble fractions from PiZ mice versus wild types and detected in insoluble fractions/MACS isolates from PIZZ liver explants. In cultured cells/primary hepatocytes, PiZ overexpression was associated with increased GRP78 mRNA/protein levels. In human livers, hepatocytes with AAT aggregates had higher GRP78 levels than hepatocytes without. PIZZ subjects displayed higher serum bile acid levels than controls and the highest levels were seen in individuals with liver injury/fibrosis. In PiZ mice, CA-mediated bile acid challenge resulted in increased liver injury and translocation of GRP78 into the aggregates. CONCLUSIONS Our results demonstrate that GRP78 is sequestered within AAT inclusions. Bile acid accumulation, as seen in PIZZ subjects with liver disease, may promote GRP78 segregation and thereby augment liver damage. TRIAL REGISTRATION NCT02929940.
Collapse
Affiliation(s)
- Igor Spivak
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Nurdan Guldiken
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Valentyn Usachov
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Frank Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | - Steven W.M. Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtNetherlands
- Department of General, Visceral and Transplant SurgeryUniversity Hospital RWTH AachenAachenGermany
| | | | | | - Lei Fu
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
- Department of Science and TechnologyRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Fa‐Rong Mo
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Gökce Kobazi Ensari
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Franziska Hufnagel
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Malin Fromme
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Christian Preisinger
- Interdisciplinary Center for Clinical Research (IZKF)University Hospital RWTH AachenAachenGermany
| | - Pavel Strnad
- Medical Department III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
2
|
Feitosa PHR, Castellano MVCDO, Costa CHD, Cardoso ADRO, Pereira LFF, Fernandes FLA, Costa FM, Felisbino MB, Oliveira AFFD, Jardim JR, Miravitlles M. Recommendations for the diagnosis and treatment of alpha-1 antitrypsin deficiency. J Bras Pneumol 2024; 50:e20240235. [PMID: 39661838 PMCID: PMC11601085 DOI: 10.36416/1806-3756/e20240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 12/13/2024] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a relatively rare genetic disorder, inherited in an autosomal codominant manner, that results in reduced serum AAT concentrations, with a consequent reduction in antielastase activity in the lungs, as well as an increased risk of diseases such as pulmonary emphysema, liver cirrhosis, and necrotizing panniculitis. It results from different mutations in the SERPINA1 gene, leading to changes in the AAT glycoprotein, which can alter its concentration, conformation, and function. Unfortunately, underdiagnosis is quite common; it is possible that only 10% of cases are diagnosed. The most common deficiency is in the Z variant, and it is estimated that more than 3 million people worldwide have combinations of alleles associated with severe AATD. Serum AAT concentrations should be determined, and allelic variants should be identified by phenotyping or genotyping. Monitoring lung function, especially through spirometry, is essential, because it provides information on the progression of the disease. Although pulmonary densitometry appears to be the most sensitive measure of emphysema progression, it should not be used in routine clinical practice to monitor patients. In general, the treatment is similar to that indicated for patients with COPD not caused by AATD. Exogenous administration of purified human serum-derived AAT is the only specific treatment approved for AATD in nonsmoking patients with severe deficiency (serum AAT concentration of < 57 mg/dL or < 11 µM), with evidence of functional loss above the physiological level.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Leon Arrabal Fernandes
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo ( SP) Brasil
| | - Fábio Marcelo Costa
- . Complexo Hospital das Clínicas, Universidade Federal do Paraná - CHC-UFPR - Curitiba (PR) Brasil
| | - Manuela Brisot Felisbino
- . Hospital Universitário, Universidade Federal de Santa Catarina - HU-UFSC - Florianópolis (SC) Brasil
| | | | - Jose R Jardim
- . Universidade Federal de São Paulo, São Paulo (SP) Brasil
| | - Marc Miravitlles
- . Vall d'Hebron Institut de Recerca - VHIR - Hospital Universitário Valld'Hebron, Barcelona, España
| |
Collapse
|
3
|
Suri A, Zhang Z, Neuschwander-Tetri B, Lomas DA, Heyer-Chauhan N, Burling K, Loomba R, Brenner DA, Nagy R, Wilson A, Carpenter D, Blomenkamp K, Teckman J. Fibrosis, biomarkers and liver biopsy in AAT deficiency and relation to liver Z protein polymer accumulation. Liver Int 2024; 44:3204-3213. [PMID: 39263815 PMCID: PMC11588506 DOI: 10.1111/liv.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIMS The course of adults with ZZ alpha-1-antitrypsin deficiency (AATD) liver disease is unpredictable. The utility of markers, including liver biopsy, is undefined. METHODS A prospective cohort, including protocol liver biopsies, was enrolled to address these questions. RESULTS We enrolled 96 homozygous ZZ AATD adults prospectively at three US sites with standardized clinical evaluations, and protocol liver biopsies. Fibrosis was scored using Ishak (stages 0-6). Also, 51% of the 96 subjects had Ishak score >1 fibrosis (49% Ishak 0-1, 36% Ishak 2-3 and 15% ≥4). Elevated aspartate aminotransferase (AST) more than alanine aminotransferase (ALT), high body mass index (BMI), obesity, AST platelet ratio index and elevated serum Z alpha 1 antitrypsin (AAT) polymer levels were associated with increased fibrosis. Steatosis did not correlate to fibrosis. Increased fibrosis was associated with increased mutant Z polymer globular inclusions (p = .002) and increased diffuse cytoplasmic Z polymer on biopsy (p = .0029) in a direct relationship. Increased globule Z polymer was associated with increased serum AST (p = .007) and increased periportal inflammation on histopathology (p = .004), but there was no relationship of Z polymer hepatocellular accumulation with ALT, gamma glutamine transferase, inflammation in other parts of the lobule, necrosis or steatosis. Serum Z polymer levels were directly correlated to hepatic Z protein polymer content. Lung function, smoking and alcohol consumption patterns were not associated with fibrosis. CONCLUSION In AATD high BMI, obesity and elevated AST are associated with increased fibrosis. Liver biopsy features are correlated to some serum tests. Serum Z AAT polymer levels could be a future biomarker to detect fibrosis early and is directly correlated to liver Z content.
Collapse
Affiliation(s)
- Anandini Suri
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University, St Louis, Missouri, USA
| | - Zidong Zhang
- Department of Health and Clinical Outcomes Research AHEAD Institute, Saint Louis University, St Louis, Missouri, USA
| | - Brent Neuschwander-Tetri
- Department of Medicine Division of Gastroenterology, Saint Louis University, St Louis, Missouri, USA
| | - David A Lomas
- Department of Medicine Division of Medicine, UCL Respiratory, University College London, London, UK
| | - Nina Heyer-Chauhan
- Department of Medicine UCL Respiratory, University College London, London, UK
| | - Keith Burling
- Department of Medicine Core Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rohit Loomba
- Department of Internal Medicine Internal Medicine, University of California San Diego, San Diego, California, USA
| | - David A Brenner
- Department of Internal Medicine Internal Medicine, University of California San Diego, San Diego, California, USA
| | - Rosemary Nagy
- Department of Pediatrics Pediatric Clinical Trial Unit, Saint Louis University, St Louis, Missouri, USA
| | - Andrew Wilson
- Department of Internal Medicine Internal Medicine, Boston University, Boston, Massachusetts, USA
| | - Danielle Carpenter
- Department of Pathology Pathology, Saint Louis University, St Louis, Missouri, USA
| | - Keith Blomenkamp
- Division of Pediatric Gastroenterology, Department of Pediatrics, Saint Louis University, St Louis, Missouri, USA
| | - Jeffrey Teckman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University, St Louis, Missouri, USA
| |
Collapse
|
4
|
González-Carracedo MA, Herrera-Luis E, Marco-Simancas M, Escuela-Escobar A, Martín-González E, Sardón-Prado O, Corcuera P, Hernández-Pérez JM, Lorenzo-Díaz F, Pérez-Pérez JA. Haplotype-Aware Detection of SERPINA1 Variants by Nanopore Sequencing. J Mol Diagn 2024; 26:971-987. [PMID: 39276924 DOI: 10.1016/j.jmoldx.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
α-1 Antitrypsin (AAT) is an acute-phase reactant with immunomodulatory properties that mainly inhibits neutrophil elastase. Low serum levels cause AAT deficiency (AATD), an underdiagnosed condition that predisposes to pulmonary and hepatic diseases. The SERPINA1 gene, which encodes AAT, contains >500 variants. PI∗Z and PI∗S alleles are the most diagnosed causes of AATD, but the role of the SERPINA1 haplotypes in AAT function remains unknown. SERPINA1 gene was PCR amplified from 94 patients with asthma, using primers with tails for indexing. Sequencing libraries were loaded into a MinION-Mk1C, and MinKNOW was used for basecalling and demultiplexing. Nanofilt and Minimap2 were used for filtering and mapping/alignment. Variant calling/phasing were performed with PEPPER-Margin-DeepVariant. SERPINA1 gene was 100% covered for all samples, with a minimum sequencing depth of 500×. A total of 75 single-nucleotide variants (SNVs) and 4 insertions/deletions were detected, with 45 and 2 of them highly polymorphic (minor allele frequency >0.1), respectively. Nine of the SNVs showed differences in allele frequencies when compared with the overall Spanish population. More than 90% of heterozygous SNVs were phased, yielding 91 and 58 different haplotypes for each SERPINA1 amplified region. Haplotype-based linkage disequilibrium analysis suggests that a recombination hotspot could generate variation in the SERPINA1 gene. The proposed workflow enables haplotype-aware genotyping of the SERPINA1 gene by nanopore sequencing, which will allow the development of novel AATD diagnostic strategies.
Collapse
Affiliation(s)
- Mario A González-Carracedo
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - María Marco-Simancas
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Ainhoa Escuela-Escobar
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain
| | - Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain; Department of Pediatrics, University of the Basque Country, San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Jose M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S. de Candelaria, Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain
| | - José A Pérez-Pérez
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands, Universidad de La Laguna, Tenerife, Spain; Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
5
|
Fromme M, Payancé A, Mandorfer M, Thorhauge KH, Pons M, Miravitlles M, Stolk J, van Hoek B, Stirnimann G, Frankova S, Sperl J, Kremer AE, Burbaum B, Schrader C, Kadioglu A, Walkenhaus M, Schneider CV, Klebingat F, Balcar L, Kappe NN, Schaefer B, Chorostowska-Wynimko J, Aigner E, Gensluckner S, Striedl P, Roger P, Ryan J, Roche S, Vögelin M, Ala A, Bantel H, Verbeek J, Mariño Z, Praktiknjo M, Gevers TJG, Reuken PA, Berg T, George J, Demir M, Bruns T, Trautwein C, Zoller H, Trauner M, Genesca J, Griffiths WJ, Clark V, Krag A, Turner AM, McElvaney NG, Strnad P. Longitudinal Evaluation of Individuals With Severe Alpha-1 Antitrypsin Deficiency (Pi∗ZZ Genotype). Gastroenterology 2024:S0016-5085(24)05572-0. [PMID: 39414159 DOI: 10.1053/j.gastro.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND AND AIMS Homozygous Pi∗Z mutation in alpha-1 antitrypsin (Pi∗ZZ genotype) predisposes to pulmonary loss-of-function and hepatic gain-of-function injury. To facilitate selection into clinical trials typically targeting only 1 organ, we systematically evaluated an international, multicenter, longitudinal, Pi∗ZZ cohort to uncover natural disease course and surrogates for future liver- and lung-related endpoints. METHODS Cohort 1 recruited 737 Pi∗ZZ individuals from 25 different centers without known liver comorbidities who received a baseline clinical and laboratory assessment as well as liver stiffness measurement (LSM). A follow-up interview was performed after at least 6 months. Cohort 2 consisted of 135 Pi∗ZZ subjects without significant liver fibrosis, who received a standardized baseline and follow-up examination at least 2 years later, both including LSM. RESULTS During 2634 patient-years of follow-up, 39 individuals died, with liver and lung being responsible for 46% and 36% of deaths, respectively. Forty-one Pi∗ZZ subjects who developed a hepatic endpoint presented with significantly higher baseline liver fibrosis surrogates, that is, LSM (24 vs 5 kPa, P < .001) and aspartate aminotransferase-to-platelet ratio index (1.1 vs 0.3 units, P < .001). Liver-related endpoints within 5 years were most accurately predicted by LSM (area under the curve 0.95) followed by aspartate aminotransferase-to-platelet ratio index (0.92). Baseline lung parameters displayed only a moderate predictive utility for lung-related endpoints within 5 years (forced expiratory volume in the first second area under the curve 0.76). Fibrosis progression in those with no/mild fibrosis at baseline was rare and primarily seen in those with preexisting risk factors. CONCLUSIONS Noninvasive liver fibrosis surrogates accurately stratify liver-related risks in Pi∗ZZ individuals. Our findings have direct implications for routine care and future clinical trials of Pi∗ZZ patients.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Audrey Payancé
- AP-HP, Service d'hépatologie, Hôpital Beaujon, AP-HP, Clichy, France, DMU Digest, Centre de référence des Maladies Vasculaires du foie, FILFOIE, Clichy, France, Université Paris Cité, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Health Care Provider of the European Reference Network on Rare Respiratory Diseases (ERN LUNG), Barcelona, Spain
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine, University Hospital Inselspital and University of Bern, Bern, Switzerland
| | - Sona Frankova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Jan Sperl
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Amine Kadioglu
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Michelle Walkenhaus
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Fabienne Klebingat
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Naomi N Kappe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Sophie Gensluckner
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Philipp Striedl
- First Department of Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Pauline Roger
- AP-HP, service d'hépatologie, Hôpital Beaujon, AP-HP, Clichy, France, DMU Digest, Clichy, France
| | - John Ryan
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Suzanne Roche
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Marius Vögelin
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Aftab Ala
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Belgium
| | - Zoe Mariño
- Liver Unit, Hospital Clínic Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), University of Barcelona, Barcelona, Spain
| | - Michael Praktiknjo
- Department of Medicine B, Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, Universitätsklinikum Muenster, Muenster, Germany
| | - Tom J G Gevers
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Philipp A Reuken
- Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine, Leipzig University Medical Center, Leipzig, Germany
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Berlin, Germany
| | - Tony Bruns
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - William J Griffiths
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany.
| |
Collapse
|
6
|
Fromme M, Schneider CV, Guldiken N, Amzou S, Luo Y, Pons M, Genesca J, Miravitlles M, Thorhauge KH, Mandorfer M, Waern J, Schneider KM, Sperl J, Frankova S, Bartel M, Zimmer H, Zorn M, Krag A, Turner A, Trautwein C, Strnad P. Alcohol consumption and liver phenotype of individuals with alpha-1 antitrypsin deficiency. Liver Int 2024; 44:2660-2671. [PMID: 39031304 DOI: 10.1111/liv.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND AIMS Alpha-1 antitrypsin deficiency is an inherited disorder caused by alpha-1 antitrypsin (AAT) mutations. We analysed the association between alcohol intake and liver-related parameters in individuals with the heterozygous/homozygous Pi*Z AAT variant (Pi*MZ/Pi*ZZ genotype) found in the United Kingdom Biobank and the European Alpha1 liver consortium. METHODS Reported alcohol consumption was evaluated in two cohorts: (i) the community-based United Kingdom Biobank (17 145 Pi*MZ, 141 Pi*ZZ subjects, and 425 002 non-carriers [Pi*MM]); and (ii) the European Alpha1 liver consortium (561 Pi*ZZ individuals). Cohort (ii) included measurements of carbohydrate-deficient transferrin (CDT). RESULTS In both cohorts, no/low alcohol intake was reported by >80% of individuals, while harmful consumption was rare (~1%). Among Pi*MM and Pi*MZ individuals from cohort (i), moderate alcohol consumption resulted in a <30% increased rate of elevated transaminases and ~50% increase in elevated gamma-glutamyl transferase values, while harmful alcohol intake led to an at least twofold increase in the abnormal levels. In Pi*ZZ individuals from both cohorts, moderate alcohol consumption had no marked impact on serum transaminase levels. Among Pi*ZZ subjects from cohort (ii) who reported no/low alcohol consumption, those with increased CDT levels more often had signs of advanced liver disease. CONCLUSIONS Pi*MZ/Pi*ZZ genotype does not seem to markedly aggravate the hepatic toxicity of moderate alcohol consumption. CDT values might be helpful to detect alcohol consumption in those with advanced fibrosis. More data are needed to evaluate the impact of harmful alcohol consumption.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Samira Amzou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Yizhao Luo
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Miravitlles
- Department of Pneumology, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Health Care Provider of the European Reference Network on Rare Lung Disorders (ERN LUNG), Barcelona, Spain
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Johan Waern
- Department of Medicine, Gastroenterology and Hepatology Unit, Sahlgrenska University Hospital, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Gothenburg, Sweden
| | - Kai Markus Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Jan Sperl
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Sona Frankova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Marc Bartel
- Institute of Forensic and Traffic Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Zimmer
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Zorn
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Alice Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
7
|
Fromme M, Rademacher L, Amzou S, Cook CD, Zacharias I, Zhang L, Ripollone JE, Strnad P. Association of circulating Z-polymer with adverse clinical outcomes and liver fibrosis in adults with alpha-1 antitrypsin deficiency. United European Gastroenterol J 2024; 12:1091-1101. [PMID: 39024029 PMCID: PMC11485299 DOI: 10.1002/ueg2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Circulating polymerized mutant Z-alpha-1 antitrypsin (Z-polymer) constitutes a characteristic feature in alpha-1 antitrypsin deficiency (AATD), but there is limited knowledge about its association with adverse clinical outcomes and liver fibrosis. We explored this association using data from a large cohort of adults with AATD. METHODS A total of 836 (431 PiZZ, 405 PiMZ) adults with AATD and 312 controls (PiMM) from the European Alpha-1 Liver Cohort (2015-2020) were included. Time-to-event analyses were conducted for adults with the PiZZ genotype followed for adverse clinical outcomes (earliest occurrence of liver-related hospitalization, liver transplant or all-cause mortality). Cox proportional hazard models were used to describe the association between binary circulating Z-polymer levels and adverse clinical outcomes. Correlations between baseline circulating Z-polymer levels and baseline liver fibrosis (liver stiffness measurement [LSM] determined by transient elastography [FibroScan®]) were evaluated. The analyses were stratified by augmentation therapy status. RESULTS Of 324 adults with the PiZZ genotype and longitudinal follow-up data, 28 reported adverse clinical outcomes. Higher baseline circulating Z-polymer levels were associated with an increased risk of adverse clinical outcomes in both crude (hazard ratio [95% confidence interval, CI], 2.88 [1.21, 6.87]) and age-adjusted (1.96 [0.78, 4.94]) analyses. In adults with the PiZZ genotype, circulating Z-polymer levels were weakly positively correlated with baseline LSM (Spearman's rho [95% CI]: 0.21 [0.11, 0.31]). Similar results were observed after stratification by augmentation therapy status. CONCLUSIONS In adults with the PiZZ genotype, higher circulating Z-polymer levels were associated with a shorter time to adverse clinical outcome, and positively correlated with baseline LSM. Circulating Z-polymer levels may be a prognostic biomarker of clinically relevant disease in AATD.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenHealth Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Laura Rademacher
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenHealth Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Samira Amzou
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenHealth Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | | | | | - Lanju Zhang
- Vertex PharmaceuticalsBostonMassachusettsUSA
| | | | - Pavel Strnad
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenHealth Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| |
Collapse
|
8
|
Clark VC, Strange C, Strnad P, Sanchez AJ, Kwo P, Pereira VM, van Hoek B, Barjaktarevic I, Corsico AG, Pons M, Goldklang M, Gray M, Kuhn B, Vargas HE, Vierling JM, Vuppalanchi R, Brantly M, Kappe N, Chang T, Schluep T, Zhou R, Hamilton J, San Martin J, Loomba R. Fazirsiran for Adults With Alpha-1 Antitrypsin Deficiency Liver Disease: A Phase 2 Placebo Controlled Trial (SEQUOIA). Gastroenterology 2024; 167:1008-1018.e5. [PMID: 38964420 DOI: 10.1053/j.gastro.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Homozygous ZZ alpha-1 antitrypsin (AAT) deficiency produces mutant AAT (Z-AAT) proteins in hepatocytes, leading to progressive liver fibrosis. We evaluated the safety and efficacy of an investigational RNA interference therapeutic, fazirsiran, that degrades Z-AAT messenger RNA, reducing deleterious protein synthesis. METHODS This ongoing, phase 2 study randomized 40 patients to subcutaneous placebo or fazirsiran 25, 100, or 200 mg. The primary endpoint was percent change in serum Z-AAT concentration from baseline to week 16. Patients with fibrosis on baseline liver biopsy received treatment on day 1, at week 4, and then every 12 weeks and had a second liver biopsy at or after weeks 48, 72, or 96. Patients without fibrosis received 2 doses on day 1 and at week 4. RESULTS At week 16, least-squares mean percent declines in serum Z-AAT concentration were -61%, -83%, and -94% with fazirsiran 25, 100, and 200 mg, respectively, vs placebo (all P < .0001). Efficacy was sustained through week 52. At postdose liver biopsy, fazirsiran reduced median liver Z-AAT concentration by 93% compared with an increase of 26% with placebo. All fazirsiran-treated patients had histologic reduction from baseline in hepatic globule burden. Portal inflammation improved in 5 of 12 and 0 of 8 patients with a baseline score of >0 in the fazirsiran and placebo groups, respectively. Histologic meta-analysis of histologic data in viral hepatitis score improved by >1 point in 7 of 14 and 3 of 8 patients with fibrosis of >F0 at baseline in the fazirsiran and placebo groups, respectively. No adverse events led to discontinuation, and pulmonary function tests remained stable. CONCLUSIONS Fazirsiran reduced serum and liver concentrations of Z-AAT in a dose-dependent manner and reduced hepatic globule burden. (ClinicalTrials.gov, Number NCT03945292).
Collapse
Affiliation(s)
- Virginia C Clark
- Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida.
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule, Aachen University, Health Care Provider of the European Reference Network on Rare Liver Disorders, Aachen, Germany
| | - Antonio J Sanchez
- Division of Gastroenterology and Hepatology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Paul Kwo
- School of Medicine, Stanford University, Redwood City, California
| | - Vitor Magno Pereira
- Hospital Central do Funchal, Madeira, Portugal; Universidade da Madeira, Madeira, Portugal
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology and LUMC Transplantation Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Angelo Guido Corsico
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy; Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Monica Pons
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
| | | | - Meagan Gray
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brooks Kuhn
- Division of Pulmonary and Critical Care and Sleep Medicine, University of California, Davis, Sacramento, California; University of California, Davis, Alpha-1 Deficiency Clinic, University of California, Davis, Sacramento, California
| | - Hugo E Vargas
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, Arizona
| | - John M Vierling
- Departments of Medicine and Surgery, Baylor College of Medicine, Houston, Texas
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Naomi Kappe
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ting Chang
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | - Rong Zhou
- Arrowhead Pharmaceuticals, Inc, Pasadena, California
| | | | | | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
9
|
Balderacchi AM, Bignotti M, Ottaviani S, Denardo A, Barzon V, Ben Khlifa E, Vailati G, Piloni D, Benini F, Corda L, Corsico AG, Ferrarotti I, Fra A. Quantification of circulating alpha-1-antitrypsin polymers associated with different SERPINA1 genotypes. Clin Chem Lab Med 2024; 62:1980-1990. [PMID: 38407261 DOI: 10.1515/cclm-2023-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES Alpha-1-antitrypsin deficiency is a genetic disorder caused by mutations in the SERPINA1 gene encoding alpha-1-antitrypsin (AAT), the major serine protease inhibitor in plasma. Reduced AAT levels are associated with elevated risk of developing emphysema mainly due to uncontrolled activity of neutrophil elastase in the lungs. The prevalent Z-AAT mutant and many rare pathogenic AAT variants also predispose to liver disease due to their accumulation as polymeric chains in hepatocytes. Part of these polymers are secreted into the bloodstream and could represent biomarkers of intra-hepatic accumulation. Moreover, being inactive, they further lower lung protection against proteases. Aim of our study is to accurately quantify the percentage of circulating polymers (CP) in a cohort of subjects with different SERPINA1 genotypes. METHODS CP concentration was measured in plasma or Dried Blood Spot (DBS) by a sensitive sandwich ELISA based on capture by the polymer-specific 2C1 monoclonal antibody. RESULTS CP were significantly elevated in patients with the prevalent PI*SZ and PI*ZZ genotypes, with considerable intra-genotype variability. Notably, higher percentage of polymers was observed in association with elevated C-reactive protein. CP levels were also increased in carriers of the Mmalton variant, and of Mprocida, I, Plowell and Mherleen in heterozygosity with Z-AAT. CONCLUSIONS These findings highlight the importance of implementing CP quantification in a clinical laboratory. Indeed, the variable amount of CP in patients with the same genotype may correlate with the variable severity of the associated lung and liver diseases. Moreover, CP can reveal the polymerogenic potential of newly discovered ultrarare AAT variants.
Collapse
Affiliation(s)
- Alice M Balderacchi
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mattia Bignotti
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Stefania Ottaviani
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Denardo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Valentina Barzon
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Emna Ben Khlifa
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| | - Guido Vailati
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Davide Piloni
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Benini
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Luciano Corda
- Referral Centre for Alpha-1 Antitrypsin Deficiency, 18515 Spedali Civili , Brescia, Italy
| | - Angelo G Corsico
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, UOC Pulmonology, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, Pulmonology Unit, 19001University of Pavia, Pavia, Italy
| | - Annamaria Fra
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, 9297University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
11
|
Ferreira AI, Guimarães C, Macedo Silva V, Xavier S, Magalhães J, Cotter J. Alpha-1 antitrypsin deficiency and Pi*Z allele as important co-factors in the development of liver fibrosis. World J Hepatol 2024; 16:1099-1110. [PMID: 39221093 PMCID: PMC11362909 DOI: 10.4254/wjh.v16.i8.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a codominant autosomal hereditary condition that predisposes patients to the development of lung and/or liver disease, and Pi*Z allele is the most clinically relevant mutation. AIM To evaluate the impact of clinical parameters and AATD phenotypes, particularly the Pi*Z allele, in liver fibrosis. METHODS Cross-sectional cohort study including consecutive patients with AATD followed in Pulmonology or Hepatology consultation. RESULTS Included 69 patients, 49.3% had Pi*MZ phenotype and 10.1% Pi*ZZ. An age ≥ 55 years, age at diagnosis ≥ 41 years and AAT at diagnosis < 77 mg/dL predicted a nonalcoholic fatty liver disease fibrosis score (NFS) not excluding advanced fibrosis [area under the curve (AUC) = 0.840, P < 0.001; AUC = 0.836, P < 0.001; AUC = 0.681, P = 0.025]. An age ≥ 50 years and age at diagnosis ≥ 41 years predicted a fibrosis-4 index of moderate to advanced fibrosis (AUC = 0.831, P < 0.001; AUC = 0.795, P < 0.001). Patients with hypertension, type 2 diabetes mellitus (DM), dyslipidaemia, metabolic syndrome, and regular alcohol consumption were more likely to have a NFS not excluding advanced fibrosis (P < 0.001, P = 0.002, P = 0.008, P < 0.001, P = 0.033). Patients with at least one Pi*Z allele and type 2 DM were 8 times more likely to have liver stiffness measurement ≥ 7.1 kPa (P = 0.040). CONCLUSION Risk factors for liver disease in AATD included an age ≥ 50 years, age at diagnosis ≥ 41 years, metabolic risk factors, regular alcohol consumption, at least one Pi*Z allele, and AAT value at diagnosis < 77 mg/dL. We created an algorithm for liver disease screening in AATD patients to use in primary care, selecting those to be referred to Hepatology consultation.
Collapse
Affiliation(s)
- Ana Isabel Ferreira
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal.
| | - Catarina Guimarães
- Department of Pulmonology, Hospital Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
| | - Vitor Macedo Silva
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - Sofia Xavier
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - Joana Magalhães
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - José Cotter
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| |
Collapse
|
12
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
13
|
Nobes J, Leith D, Handjiev S, Dillon JF, Dow E. Intelligent Liver Function Testing (iLFT): An Intelligent Laboratory Approach to Identifying Chronic Liver Disease. Diagnostics (Basel) 2024; 14:960. [PMID: 38732374 PMCID: PMC11083526 DOI: 10.3390/diagnostics14090960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The intelligent Liver Function Testing (iLFT) pathway is a novel, algorithm-based system which provides automated laboratory investigations and clinical feedback on abnormal liver function test (LFT) results from primary care. iLFT was introduced to NHS Tayside, Scotland, in August 2018 in response to vast numbers of abnormal LFTs, many of which were not appropriately investigated, coupled with rising mortality from chronic liver disease. Here, we outline the development and implementation of the iLFT pathway, considering the implications for the diagnostic laboratories, primary care services and specialist hepatology clinics. Additionally, we describe the utility, outcomes and evolution of iLFT, which was used over 11,000 times in its first three years alone. Finally, we will consider the future of iLFT and propose areas where similar 'intelligent' approaches could be used to add value to laboratory investigations.
Collapse
Affiliation(s)
- Jennifer Nobes
- Department of Blood Sciences, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY, UK
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Damien Leith
- Department of Gastroenterology and Hepatology, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY, UK
- Gut Group, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Sava Handjiev
- Department of Blood Sciences, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY, UK
- Gut Group, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - John F. Dillon
- Department of Gastroenterology and Hepatology, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY, UK
- Gut Group, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ellie Dow
- Department of Blood Sciences, NHS Tayside, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
14
|
Loomba R, Clark G, Teckman J, Ajmera V, Behling C, Brantly M, Brenner D, D'Armiento J, Fried MW, Iyer JS, Mandorfer M, Rockey DC, Tincopa M, Vuppalanchi R, Younossi Z, Krag A, Turner AM, Strnad P. Review article: New developments in biomarkers and clinical drug development in alpha-1 antitrypsin deficiency-related liver disease. Aliment Pharmacol Ther 2024; 59:1183-1195. [PMID: 38516814 DOI: 10.1111/apt.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Alpha-1 antitrypsin liver disease (AATLD) occurs in a subset of patients with alpha-1 antitrypsin deficiency. Risk factors for disease progression and specific pathophysiologic features are not well known and validated non-invasive assessments for disease severity are lacking. Currently, there are no approved treatments for AATLD. AIMS To outline existing understanding of AATLD and to identify knowledge gaps critical to improving clinical trial design and development of new treatments. METHODS This report was developed following a multi-stakeholder forum organised by the Alpha-1 Antitrypsin Deficiency Related Liver Disease Expert Panel in which experts presented an overview of the available literature on this topic. RESULTS AATLD results from a 'gain of toxic function' and primarily manifests in those with the homozygous Pi*ZZ genotype. Accumulation of misfolded 'Z' AAT protein in liver cells triggers intracellular hepatocyte injury which may ultimately lead to hepatic fibrosis. Male gender, age over 50 years, persistently elevated liver tests, concomitant hepatitis B or C virus infection, and metabolic syndrome, including obesity and type 2 diabetes mellitus, are known risk factors for adult AATLD. While the gold standard for assessing AATLD disease activity is liver histology, less invasive measures with low intra- and inter-observer variability are needed. Measurement of liver stiffness shows promise; validated thresholds for staging AATLD are in development. Such advances will help patients by enabling risk stratification and personalised surveillance, along with streamlining the development process for novel therapies. CONCLUSIONS This inaugural forum generated a list of recommendations to address unmet needs in the field of AATLD.
Collapse
Affiliation(s)
- Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Ginger Clark
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jeff Teckman
- Pediatrics and Biochemistry, St. Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Cynthia Behling
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
- Pacific Rim Pathology Lab, San Diego, California, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - David Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jeanine D'Armiento
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | | | | | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Don C Rockey
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Monica Tincopa
- University of California San Diego, San Diego, California, USA
| | - Raj Vuppalanchi
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | - Pavel Strnad
- University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
15
|
Volkert I, Fromme M, Schneider C, Candels L, Lindhauer C, Su H, Thorhauge K, Pons M, Mohamed MR, Schneider KM, Strnad P, Trautwein C. Impact of PNPLA3 I148M on alpha-1 antitrypsin deficiency-dependent liver disease progression. Hepatology 2024; 79:898-911. [PMID: 37625151 DOI: 10.1097/hep.0000000000000574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Genetic risk factors are major determinants of chronic liver disease (CLD) progression. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M polymorphism and alpha-1 antitrypsin (AAT) E342K variant, termed PiZ, are major modifiers of metabolic CLD. Both variants are known to affect metabolic CLD through increased endoplasmic reticulum stress, but their combined effect on CLD progression remains largely unknown. Here, we aimed to test our working hypothesis that their combined incidence triggers CLD disease progression. APPROACH AND RESULTS We showed that patients with PiZZ/PNPLA3 I148M from the European alpha-1-antitrypsin deficiency (AATD) liver consortium and the UK Biobank had a trend towards higher liver enzymes, but no increased liver fat accumulation was evident between subgroups. After generating transgenic mice that overexpress the PiZ variant and simultaneously harbor the PNPLA3 I148M knockin (designated as PiZ/PNPLA3 I148M ), we observed that animals with PiZ and PiZ/PNPLA3 I148M showed increased liver enzymes compared to controls during aging. However, no significant difference between PiZ and PiZ/PNPLA3 I148M groups was observed, with no increased liver fat accumulation over time. To further study the impact on CLD progression, a Western-styled diet was administered, which resulted in increased fat accumulation and fibrosis in PiZ and PiZ/PNPLA3 I148M livers compared to controls, but the additional presence of PNPLA3 I148M had no impact on liver phenotype. Notably, the PiZ variant protected PNPLA3 I148M mice from liver damage and obesity after Western-styled diet feeding. CONCLUSION Our results demonstrate that the PNPLA3 polymorphism in the absence of additional metabolic risk factors is insufficient to drive the development of advanced liver disease in severe AATD.
Collapse
Affiliation(s)
- Ines Volkert
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Malin Fromme
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lena Candels
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Huan Su
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Katrine Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Pavel Strnad
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Konkwo C, Chowdhury S, Vilarinho S. Genetics of liver disease in adults. Hepatol Commun 2024; 8:e0408. [PMID: 38551385 PMCID: PMC10984672 DOI: 10.1097/hc9.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic liver disease stands as a significant global health problem with an estimated 2 million annual deaths across the globe. Combining the use of next-generation sequencing technologies with evolving knowledge in the interpretation of genetic variation across the human genome is propelling our understanding, diagnosis, and management of both rare and common liver diseases. Here, we review the contribution of risk and protective alleles to common forms of liver disease, the rising number of monogenic diseases affecting the liver, and the role of somatic genetic variants in the onset and progression of oncological and non-oncological liver diseases. The incorporation of genomic information in the diagnosis and management of patients with liver disease is driving the beginning of a new era of genomics-informed clinical hepatology practice, facilitating personalized medicine, and improving patient care.
Collapse
Affiliation(s)
- Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Errante F, Pallecchi M, Bartolucci G, Frediani E, Margheri F, Giovannelli L, Papini AM, Rovero P. Retro-Inverso Collagen Modulator Peptide Derived from Serpin A1 with Enhanced Stability and Activity In Vitro. J Med Chem 2024. [PMID: 38470817 DOI: 10.1021/acs.jmedchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.
Collapse
Affiliation(s)
- Fosca Errante
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Espikem s.r.l., Prato, PO 59100, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Firenze, FI 50139, Italy
| | - Anna M Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Paolo Rovero
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
18
|
Pérez-Carrión MD, Posadas I, Ceña V. Nanoparticles and siRNA: A new era in therapeutics? Pharmacol Res 2024; 201:107102. [PMID: 38331236 DOI: 10.1016/j.phrs.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Since its discovery in 1998, the use of small interfering RNA (siRNA) has been increasing in biomedical studies because of its ability to very selectively inhibit the expression of any target gene. Thus, siRNAs can be used to generate therapeutic compounds for different diseases, including those that are currently 'undruggable'. This has led siRNA-based therapeutic compounds to break into clinical settings, with them holding the promise to potentially revolutionise therapeutic approaches. To date, the United States Food and Drug Administration (FDA) have approved 5 compounds for treating different diseases including hypercholesterolemia, transthyretin-mediated amyloidosis (which leads to polyneuropathy), hepatic porphyria, and hyperoxaluria. This current article presents an overview of the molecular mechanisms involved in the selective pharmacological actions of siRNA-based compounds. It also describes the ongoing clinical trials of siRNA-based therapeutic compounds for hepatic diseases, pulmonary diseases, atherosclerosis, hypertriglyceridemia, transthyretin-mediated amyloidosis, and hyperoxaluria, kidney diseases, and haemophilia, as well as providing a description of FDA-approved siRNA therapies. Because of space constraints and to provide an otherwise comprehensive review, siRNA-based compounds applied to cancer therapies have been excluded. Finally, we discuss how the use of lipid-based nanoparticles to deliver siRNAs holds promise for selectively targeting mRNA-encoding proteins associated with the genesis of different diseases. Thus, siRNAs can help reduce the cellular levels of these proteins, thereby contributing to disease treatment. As consequence, a marked increase in the number of marketed siRNA-based medicines is expected in the next two decades, which will likely open up a new era of therapeutics.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Fromme M, Hamesch K, Schneider CV, Mandorfer M, Pons M, Thorhauge KH, Pereira V, Sperl J, Frankova S, Reichert MC, Benini F, Burbaum B, Kleinjans M, Amzou S, Rademacher L, Bewersdorf L, Verbeek J, Nevens F, Genesca J, Miravitlles M, Nuñez A, Schaefer B, Zoller H, Janciauskiene S, Waern J, Oliveira A, Maia L, Simões C, Mahadeva R, Fraughen DD, Trauner M, Krag A, Lammert F, Bals R, Gaisa NT, Aigner E, Griffiths WJ, Denk H, Teumer A, McElvaney NG, Turner AM, Trautwein C, Strnad P. Alpha-1 Antitrypsin Augmentation and the Liver Phenotype of Adults With Alpha-1 Antitrypsin Deficiency (Genotype Pi∗ZZ). Clin Gastroenterol Hepatol 2024; 22:283-294.e5. [PMID: 37716616 DOI: 10.1016/j.cgh.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND & AIMS α1-Antitrypsin (AAT) is a major protease inhibitor produced by hepatocytes. The most relevant AAT mutation giving rise to AAT deficiency (AATD), the 'Pi∗Z' variant, causes harmful AAT protein accumulation in the liver, shortage of AAT in the systemic circulation, and thereby predisposes to liver and lung injury. Although intravenous AAT augmentation constitutes an established treatment of AATD-associated lung disease, its impact on the liver is unknown. METHODS Liver-related parameters were assessed in a multinational cohort of 760 adults with severe AATD (Pi∗ZZ genotype) and available liver phenotyping, of whom 344 received augmentation therapy and 416 did not. Liver fibrosis was evaluated noninvasively via the serum test AST-to-platelet ratio index and via transient elastography-based liver stiffness measurement. Histologic parameters were compared in 15 Pi∗ZZ adults with and 35 without augmentation. RESULTS Compared with nonaugmented subjects, augmented Pi∗ZZ individuals displayed lower serum liver enzyme levels (AST 71% vs 75% upper limit of normal, P < .001; bilirubin 49% vs 58% upper limit of normal, P = .019) and lower surrogate markers of fibrosis (AST-to-platelet ratio index 0.34 vs 0.38, P < .001; liver stiffness measurement 6.5 vs 7.2 kPa, P = .005). Among biopsied participants, augmented individuals had less pronounced liver fibrosis and less inflammatory foci but no differences in AAT accumulation were noted. CONCLUSIONS The first evaluation of AAT augmentation on the Pi∗ZZ-related liver disease indicates liver safety of a widely used treatment for AATD-associated lung disease. Prospective studies are needed to confirm the beneficial effects and to demonstrate the potential efficacy of exogenous AAT in patients with Pi∗ZZ-associated liver disease.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark; Faculty of Health Sciences, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Jan Sperl
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Sona Frankova
- Department of Hepatogastroenterology, Institute for Clinical and Experimental Medicine, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Prague, Czech Republic
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Brescia, Italy
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Moritz Kleinjans
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Samira Amzou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Laura Rademacher
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Lisa Bewersdorf
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Jef Verbeek
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology, KU Leuven University Hospitals, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Belgium
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research, Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | | | - Johan Waern
- Gastroenterology and Hepatology Unit, Department of Medicine, Sahlgrenska University Hospital, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Gothenburg, Sweden
| | - António Oliveira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Luís Maia
- Centro Hospitalar Universitário do Porto, Porto, Portugal
| | | | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Daniel D Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense C, Denmark; Faculty of Health Sciences, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Homburg, Germany; Hannover Medical School, Hannover, Germany
| | - Robert Bals
- Department of Medicine V, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - William J Griffiths
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany.
| |
Collapse
|
20
|
Janciauskiene S, Welte T, Lehmann M. An Enzyme-Linked Immunosorbent Assay (ELISA) for Quantification of Circulating Pi*Z Alpha1-Antitrypsin Polymers. Methods Mol Biol 2024; 2750:113-122. [PMID: 38108972 DOI: 10.1007/978-1-0716-3605-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a sensitive immunoassay based on specific antigen-antibody reaction that is used for quantitative/qualitative analysis of various analytes in serum, plasma, saliva, cell and tissue lysates, and urine. ELISAs are typically performed in multi-well plates and depending on the design require coating antibody/antigen, analyte, detection antibodies, buffer, wash solution, and substrate/chromogen. Here we describe highly specific monoclonal antibody-based ELISA that detects circulating polymers formed by Pi*Z variant of human alpha-1-antitrypsin (Z-AAT). The circulating Z-AAT polymers are present in all individuals with inherited Pi*Z AAT deficiency. Thus, our assay provides a useful tool to examine the clinical significance and utility of Z-AAT polymers.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | |
Collapse
|
21
|
Picker N, Hagiwara M, Baumann S, Marins EG, Wilke T, Ren K, Maywald U, Karki C, Strnad P. Liver disease epidemiology and burden in patients with alterations in plasma protein metabolism: German retrospective insurance claims analysis. World J Hepatol 2023; 15:1127-1139. [PMID: 37970617 PMCID: PMC10642430 DOI: 10.4254/wjh.v15.i10.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency is a rare genetic disease and a leading cause of inherited alterations in plasma protein metabolism (APPM). AIM To understand the prevalence, burden and progression of liver disease in patients with APPM including alpha-1 antitrypsin deficiency. METHODS We conducted a retrospective analysis of anonymized patient-level claims data from a German health insurance provider (AOK PLUS). The APPM cohort comprised patients with APPM (identified using the German Modification of the International Classification of Diseases-10th Revision [ICD-10-GM] code E88.0 between 01/01/2010-30/09/2020) and incident liver disease (ICD-10-GM codes K74, K70.2-3 and K71.7 between 01/01/2012-30/09/2020). The control cohort comprised patients without APPM but with incident liver disease. Outcomes were incidence/prevalence of liver disease in patients with APPM, demographics/baseline characteristics, diagnostic procedures, progression-free survival (PFS), disease progression and mortality. RESULTS Overall, 2680 and 26299 patients were included in the APPM (fibrosis, 96; cirrhosis, 2584) and control (fibrosis, 1444; cirrhosis, 24855) cohorts, respectively. Per 100000 individuals, annual incidence and prevalence of APPM and liver disease was 10-15 and 36-51, respectively. In the APPM cohort, median survival was 4.7 years [95% confidence interval (CI): 3.5-7.0] and 2.5 years (95%CI: 2.3-2.8) in patients with fibrosis and cirrhosis, respectively. A higher proportion of patients in the APPM cohort experienced disease progression (92.0%) compared with the control cohort (67.2%). Median PFS was shorter in the APPM cohort (0.9 years, 95%CI: 0.7-1.1) compared with the control cohort (3.7 years, 95%CI: 3.6-3.8; P < 0.001). Patients with cirrhosis in the control cohort had longer event-free survival for ascites, hepatic encephalopathy, hepatic failure and esophageal/gastric varices than patients with cirrhosis in the APPM cohort (P < 0.001). Patients with fibrosis in the control cohort had longer event-free survival for ascites, cirrhosis, hepatic failure and esophageal/gastric varices than patients with fibrosis in the APPM cohort (P < 0.001). In the APPM cohort, the most common diagnostic procedures within 12 mo after the first diagnosis of liver disease were imaging procedures (66.3%) and laboratory tests (51.0%). CONCLUSION Among patients with liver disease, those with APPM experience substantial burden and earlier liver disease progression than patients without APPM.
Collapse
Affiliation(s)
- Nils Picker
- Real-World Evidence, Cytel Inc. Ingress-Health HWM GmbH, Wismar 23966, Germany
| | - May Hagiwara
- R&D, Global Evidence and Outcomes, Takeda Development Center Americas, Inc., Cambridge, MA 02139, United States
| | - Severin Baumann
- Real-World Evidence, Cytel Inc. Ingress-Health HWM GmbH, Wismar 23966, Germany
| | - Ed G Marins
- Global Medical Affairs, Takeda Development Center Americas, Inc., Cambridge, MA 02139, United States
| | - Thomas Wilke
- IPAM Institute, IPAM E.V., Wismar 23966, Germany
| | - Kaili Ren
- Statistics and Quantitative Sciences, Data Science Institute, Takeda Development Center Americas, Inc., Cambridge, MA 02139, United States
| | - Ulf Maywald
- Drug Department, AOK PLUS, Dresden 01058, Germany
| | - Chitra Karki
- R&D, Global Evidence and Outcomes, Takeda Development Center Americas, Inc., Cambridge, MA 02139, United States
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen 52074, Germany.
| |
Collapse
|
22
|
Abreu N, Pereira VM, Pestana M, Jasmins L. Future Perspectives in the Diagnosis and Treatment of Liver Disease Associated with Alpha-1 Antitrypsin Deficiency. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2023; 30:327-335. [PMID: 37868641 PMCID: PMC10586215 DOI: 10.1159/000528809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 10/24/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic diseases and is caused by mutations in the SERPINA1 gene. The homozygous Pi*Z variant is responsible for the majority of the classic severe form of alpha-1 antitrypsin deficiency, which is characterized by markedly decreased levels of serum alpha-1 antitrypsin (AAT) with a strong predisposition to lung and liver disease. The diagnosis and early treatment of AATD-associated liver disease are challenges in clinical practice. In this review, the authors aim to summarize the current evidence of the non-invasive methods in the assessment of liver fibrosis, as well as to elucidate the main therapeutic strategies under investigation that may emerge in the near future.
Collapse
Affiliation(s)
- Nélia Abreu
- Department of Gastroenterology, Hospital Central Do Funchal, Madeira, Portugal
| | - Vítor Magno Pereira
- Department of Gastroenterology, Hospital Central Do Funchal, Madeira, Portugal
| | - Madalena Pestana
- Department of Gastroenterology, Hospital Central Do Funchal, Madeira, Portugal
| | - Luís Jasmins
- Department of Gastroenterology, Hospital Central Do Funchal, Madeira, Portugal
| |
Collapse
|
23
|
Pastore N, Annunziata F, Colonna R, Maffia V, Giuliano T, Custode BM, Lombardi B, Polishchuk E, Cacace V, De Stefano L, Nusco E, Sorrentino NC, Piccolo P, Brunetti-Pierri N. Increased expression or activation of TRPML1 reduces hepatic storage of toxic Z alpha-1 antitrypsin. Mol Ther 2023; 31:2651-2661. [PMID: 37394797 PMCID: PMC10492024 DOI: 10.1016/j.ymthe.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.
Collapse
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy.
| | | | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bruno Maria Custode
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bernadette Lombardi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
24
|
Abstract
Clinical trials have been a central driver of change and have provided the evidence base necessary to advance new therapies for liver diseases. This review provides a perspective on the status of trials in hepatology and a vantage point into the emerging capabilities and external forces that will shape the conduct of clinical trials in the future. The adaptations to clinical trial operations in response to the disruptions by the COVID-19 pandemic and opportunities for innovation in hepatology trials are emphasized. Future trials in hepatology will be driven by unmet therapeutic needs and fueled by technological advances incorporating digital capabilities with expanded participant-derived data collection, computing, and analytics. Their design will embrace innovative trial designs adapted to these advances and that emphasize broader and more inclusive participant engagement. Their conduct will be further shaped by evolving regulatory needs and the emergence of new stakeholders in the clinical trials ecosystem. The evolution of clinical trials will offer unique opportunities to advance new therapeutics that will ultimately improve the lives of patients with liver diseases.
Collapse
Affiliation(s)
- Paul Y Kwo
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
25
|
Mornex JF, Traclet J, Guillaud O, Dechomet M, Lombard C, Ruiz M, Revel D, Reix P, Cottin V. Alpha1-antitrypsin deficiency: An updated review. Presse Med 2023; 52:104170. [PMID: 37517655 DOI: 10.1016/j.lpm.2023.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Alpha1-antitrypsin deficiency (AATD) is a rare autosomal recessive disease associated with the homozygous Z variant of the SERPINA1 gene. Clinical expression of AATD, reported 60 years ago associate a severe deficiency, pulmonary emphysema and/or liver fibrosis. Pulmonary emphysema is due to the severe alpha1-antitrypsin deficiency of the ZZ homozygous status and is favored by smoking. Liver fibrosis is due to the ZZ homozygous status and is favored by obesity and excessive chronic alcohol intake, with a risk of liver cancer. Diagnosis is based on serum level and either isoelectric focusing determination of the biochemical phenotype or PCR detection of some variants. SERPINA1 gene sequencing is necessary in case of discrepancies between the results of these tests. No treatment is available for the liver disease in AATD. Although no specific trial has been performed, COPD in AATD should be treated as per COPD recommendations. Based on a randomized clinical trial, augmentation therapy is indicated in non-smoking adults less than 70 years of age with emphysema at chest CT, confirmed homozygous AATD, and FEV1 between 35% and 70% of predicted. In contrast Z heterozygosis (MZ or SZ) brings a risk of lung or liver disease only in association with further risk factors. Early detection, in all patients with COPD and chronic liver disease, is critical for the correct information of Z variant carriers. News ways of correcting the liver production of alpha1-antitrypsin will modify the care of AATD patients.
Collapse
Affiliation(s)
- Jean-François Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 Lyon, France; Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France; Inserm, hospices civils de Lyon, CIC 1407, F-69500 Bron, France.
| | - Julie Traclet
- Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France
| | - Olivier Guillaud
- Ramsay générale de santé, clinique de la Sauvegarde, F-69009 Lyon, France; Hospices civils de Lyon, hôpital Edouard Herriot, Fédération des spécialités digestives, F-69003 Lyon, France
| | - Magali Dechomet
- Hospices civils de Lyon, hôpital Lyon sud, service d'immunologie biologique, F-69495 Pierre Bénite, France
| | - Christine Lombard
- Hospices civils de Lyon, hôpital Lyon sud, service d'immunologie biologique, F-69495 Pierre Bénite, France
| | - Mathias Ruiz
- Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FILFOIE, F-69500 Bron, France; Hospices civils de Lyon, hôpital femme mère enfant, service d'hépatologie, gastroentérologie et nutrition pédiatrique, F-69500 Bron, France
| | - Didier Revel
- Hospices civils de Lyon, hôpital Louis Pradel, service d'imagerie, F-69500 Bron, France
| | - Philippe Reix
- Service de pneumologie, allergologie pédiatrique. Hôpital Femme Mère Enfant. Hospices civils de Lyon, F-69500 Bron, France; Université de Lyon, université Lyon, CNRS, UMR 5558, équipe EMET, F-69100 Villeurbanne, France
| | - Vincent Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 Lyon, France; Centre de référence des maladies pulmonaires rares, Orphalung, RESPIFIL, ERN-LUNG, F-69500 Bron, France; Hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, F-69500 Bron, France
| |
Collapse
|
26
|
Schuler BA, Bastarache L, Wang J, He J, Van Driest SL, Denny JC. Population genetic testing and SERPINA1 sequencing identifies unidentified alpha-1 antitrypsin deficiency alleles and gene-environment interaction with hepatitis C infection. PLoS One 2023; 18:e0286469. [PMID: 37651384 PMCID: PMC10470904 DOI: 10.1371/journal.pone.0286469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD), a relatively common autosomal recessive genetic disorder, is underdiagnosed in symptomatic individuals. We sought to compare the risk of liver transplantation associated with hepatitis C infection with AATD heterozygotes and homozygotes and determine if SERPINA1 sequencing would identify undiagnosed AATD. We performed a retrospective cohort study in a deidentified Electronic Health Record (EHR)-linked DNA biobank with 72,027 individuals genotyped for the M, Z, and S alleles in SERPINA1. We investigated liver transplantation frequency by genotype group and compared with hepatitis C infection. We performed SERPINA1 sequencing in carriers of pathogenic AATD alleles who underwent liver transplantation. Liver transplantation was associated with the Z allele (ZZ: odds ratio [OR] = 1.31, p<2e-16; MZ: OR = 1.02, p = 1.2e-13) and with hepatitis C (OR = 1.20, p<2e-16). For liver transplantation, there was a significant interaction between genotype and hepatitis C (ZZ: interaction OR = 1.23, p = 4.7e-4; MZ: interaction OR = 1.11, p = 6.9e-13). Sequencing uncovered a second, rare, pathogenic SERPINA1 variant in six of 133 individuals with liver transplants and without hepatitis C. Liver transplantation was more common in individuals with AATD risk alleles (including heterozygotes), and AATD and hepatitis C demonstrated evidence of a gene-environment interaction in relation to liver transplantation. The current AATD screening strategy may miss diagnoses whereas SERPINA1 sequencing may increase diagnostic yield for AATD, stratify risk for liver disease, and inform clinical management for individuals with AATD risk alleles and liver disease risk factors.
Collapse
Affiliation(s)
- Bryce A. Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Janey Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joshua C. Denny
- All of Us Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Ruiz M, Lacaille F, Schrader C, Pons M, Socha P, Krag A, Sturm E, Bouchecareilh M, Strnad P. Pediatric and Adult Liver Disease in Alpha-1 Antitrypsin Deficiency. Semin Liver Dis 2023; 43:258-266. [PMID: 37402396 DOI: 10.1055/a-2122-7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises due to inherited variants in SERPINA1, the AAT gene that impairs the production or secretion of this hepatocellular protein and leads to a gain-of-function liver proteotoxicity. Homozygous Pi*Z pathogenic variant (Pi*ZZ genotype) is the leading cause of severe AATD. It manifests in 2 to 10% of carriers as neonatal cholestasis and 20 to 35% of adults as significant liver fibrosis. Both children and adults may develop an end-stage liver disease requiring liver transplantation. Heterozygous Pi*Z pathogenic variant (Pi*MZ genotype) constitutes an established disease modifier. Our review summarizes the natural history and management of subjects with both pediatric and adult AATD-associated liver disease. Current findings from a phase 2 clinical trial indicate that RNA silencing may constitute a viable therapeutic approach for adult AATD. In conclusion, AATD is an increasingly appreciated pediatric and adult liver disorder that is becoming an attractive target for modern pharmacologic strategies.
Collapse
Affiliation(s)
- Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Lyon, France
| | - Florence Lacaille
- Service de Gastroentérologie-Nutrition Pédiatriques et Unité d'Hépatologie Pédiatrique Hôpital Universitaire Necker-Enfants Malades, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Piotr Socha
- The Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Al. Dzieci Polskich, Warszawa, Poland
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Member Center of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Tübingen, Germany
| | | | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
28
|
Cornillet M, Zemack H, Jansson H, Sparrelid E, Ellis E, Björkström NK. Increased Prevalence of Alpha-1-Antitrypsin Deficiency in Patients with Biliary Tract Cancer and Its Associated Clinicopathological Features. Cells 2023; 12:1663. [PMID: 37371133 DOI: 10.3390/cells12121663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is underdiagnosed and associated with liver diseases. Here, we genotyped 130 patients with biliary tract cancer (BTC) scheduled for liver resection and found A1ATD in 10.8% of the patients. A1ATD was found in all BTC subtypes, and patients had similar clinical features as non-A1ATD BTC, not permitting their identification using clinical routine liver tests. In intrahepatic cholangiocarcinoma (iCCA), the abundance of A1AT protein was increased in the tumor and appeared to be influenced by the genomic alterations. On the one hand, BTC with A1ATD had lower perineural invasion at histopathology and displayed a longer survival, suggesting that a deficiency in this protein is associated with a less aggressive phenotype. On the other hand, iCCA with high A1AT expression had more advanced tumor staging and enriched pathways for complement system and extracellular matrix interactions, indicating that A1AT protein might contribute to a more aggressive phenotype. With increased awareness, screening, and basic studies, A1ATD could represent one more layer of stratification for future targeted therapies in BTC.
Collapse
Affiliation(s)
- Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Helen Zemack
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Hannes Jansson
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Ernesto Sparrelid
- Division of Surgery and Oncology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Ewa Ellis
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| |
Collapse
|
29
|
Rademacher L, Fromme M, Strnad P. Cleaning up alpha-1 antitrypsin deficiency related liver disease. Curr Opin Gastroenterol 2023; 39:163-168. [PMID: 37144533 DOI: 10.1097/mog.0000000000000919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic disorders arising due to mutations in alpha-1 antitrypsin (AAT) gene affecting primarily the lung and the liver. This review summarizes the pathophysiology and clinical manifestation of different AATD genotypes and discusses the recent therapeutic developments. The focus is on the severe, rare homozygous Pi∗ZZ and the common heterozygous Pi∗MZ genotype. RECENT FINDINGS Pi∗ZZ individuals harbor an up to 20 times higher risk of liver fibrosis and cirrhosis than noncarriers and liver transplantation is currently the only available therapeutic option. AATD constitutes a proteotoxic disorder arising from hepatic AAT accumulation and the currently most promising data come from a phase 2, open-label trial of fazirsiran, a hepatocyte-targeted siRNA. Pi∗MZ subjects display an increased risk of advanced liver disease and at the latter stage, a faster deterioration than individuals without AAT mutation. SUMMARY Although the fazirsiran data offer a glimpse of hope to AATD patients, a consensus on appropriate study endpoint, a careful patient selection as well as monitoring of long-term safety will be essential for an approval.
Collapse
Affiliation(s)
- Laura Rademacher
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Healthcare Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | | | | |
Collapse
|
30
|
Pires Ferreira D, Gruntman AM, Flotte TR. Gene therapy for alpha-1 antitrypsin deficiency: an update. Expert Opin Biol Ther 2023; 23:283-291. [PMID: 36825473 DOI: 10.1080/14712598.2023.2183771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Altering the human genetic code has been explored since the early 1990s as a definitive answer for the treatment of monogenic and acquired diseases which do not respond to conventional therapies. In Alpha-1 antitrypsin deficiency (AATD) the proper synthesis and secretion of alpha-1 antitrypsin (AAT) protein is impaired, leading to its toxic hepatic accumulation along with its pulmonary insufficiency, which is associated with parenchymal proteolytic destruction. Because AATD is caused by mutations in a single gene whose correction alone would normalize the mutant phenotype, it has become a popular target for both augmentation gene therapy and gene editing. Although gene therapy products are already a reality for the treatment of some pathologies, such as inherited retinal dystrophy and spinal muscular atrophy, AATD-related pulmonary and, especially, liver diseases still lack effective therapeutic options. AREAS COVERED Here, we review the course, challenges, and achievements of AATD gene therapy as well as update on new strategies being developed. EXPERT OPINION Reaching safe and clinically effective expression of the AAT is currently the greatest challenge for AATD gene therapy. The improvement and emergence of technologies that use gene introduction, silencing and correction hold promise for the treatment of AATD.
Collapse
Affiliation(s)
- Debora Pires Ferreira
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alisha M Gruntman
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Terence R Flotte
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
31
|
Guillaud O, Dumortier J, Couchonnal-Bedoya E, Ruiz M. Wilson Disease and Alpha1-Antitrypsin Deficiency: A Review of Non-Invasive Diagnostic Tests. Diagnostics (Basel) 2023; 13:diagnostics13020256. [PMID: 36673066 PMCID: PMC9857715 DOI: 10.3390/diagnostics13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Wilson disease and alpha1-antitrypsin deficiency are two rare genetic diseases that may impact predominantly the liver and/or the brain, and the liver and/or the lung, respectively. The early diagnosis of these diseases is important in order to initiate a specific treatment, when available, ideally before irreversible organ damage, but also to initiate family screening. This review focuses on the non-invasive diagnostic tests available for clinicians in both diseases. These tests are crucial at diagnosis to reduce the potential diagnostic delay and assess organ involvement. They also play a pivotal role during follow-up to monitor disease progression and evaluate treatment efficacy of current or emerging therapies.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Ramsay Générale de Santé, Clinique de la Sauvegarde, 69009 Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Correspondence: ; Tel.: +33-4-72-11-95-19
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Eduardo Couchonnal-Bedoya
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour l’Atrésie des Voies Biliaires et les Cholestases Génétiques, 69500 Bron, France
| |
Collapse
|
32
|
Balcar L, Scheiner B, Urheu M, Weinberger P, Paternostro R, Simbrunner B, Hartl L, Jachs M, Bauer D, Semmler G, Willheim C, Pinter M, Ferenci P, Trauner M, Reiberger T, Stättermayer AF, Mandorfer M. Alpha-1 antitrypsin Pi∗Z allele is an independent risk factor for liver transplantation and death in patients with advanced chronic liver disease. JHEP Rep 2022; 4:100562. [PMID: 36176936 PMCID: PMC9513767 DOI: 10.1016/j.jhepr.2022.100562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background & Aims Alpha-1 antitrypsin (AAT) deficiency causes/predisposes individuals to advanced chronic liver disease (ACLD). However, the role of the SERPINA1 Pi∗Z allele in patients who have already progressed to ACLD is unclear. Thus, we aimed to evaluate the impact of the Pi∗Z allele on the risk of liver transplantation/liver-related death in patients with ACLD, while adjusting for the severity of liver disease at inclusion. Methods A total of 1,118 patients with ACLD who underwent hepatic venous pressure gradient (HVPG) measurement and genotyping for the Pi∗Z/Pi∗S allele at the Vienna Hepatic Hemodynamic Lab were included in this retrospective analysis. The outcome of interest was liver transplantation/liver-related death, while non-liver-related death and removal/suppression of the primary etiological factor were considered as competing risks. Results Viral hepatitis was the most common etiology (44%), followed by alcohol-related (31%) and non-alcoholic fatty liver disease (11%). Forty-two (4%) and forty-six (4%) patients harboured the Pi∗Z and Pi∗S variants, respectively. Pi∗Z carriers had more severe portal hypertension (HVPG: 19±6 vs.15±7 mmHg; p <0.001) and hepatic dysfunction (Child-Turcotte-Pugh: 7.1±1.9 vs. 6.5±1.9 points; p = 0.050) at inclusion, compared to non-carriers. Contrarily, the Pi∗S allele was unrelated to liver disease severity. In competing risk regression analysis, harbouring the Pi∗Z allele was significantly associated with an increased probability of liver transplantation/liver-related death, even after adjusting for liver disease severity at inclusion. The detrimental impact of the common Pi∗MZ genotype (adjusted subdistribution hazard ratio: ≈1.56 vs. Pi∗MM) was confirmed in a fully adjusted subgroup analysis. In contrast, Pi∗S carriers had no increased risk of events. Conclusion Genotyping for the Pi∗Z allele identifies patients with ACLD at increased risk of adverse liver-related outcomes, thereby improving prognostication. Therapies targeting the accumulation of abnormal AAT should be evaluated as disease-modifying treatments in Pi∗Z allele carriers with ACLD. Lay summary Alpha-1 antitrypsin deficiency is a genetic disease that affects the lung and the liver. Carrying two dysfunctional copies of the gene causes advanced liver disease. Harbouring one dysfunctional copy increases disease severity in patients with other liver illness. However, the significance of this genetic defect in patients who already suffer from advanced liver disease is unclear. Our study found that harbouring at least one dysfunctional copy of the alpha-1 antitrypsin gene increases the risk of requiring a liver transplantation or dying from a liver disease. This indicates the need for medical therapies aimed at treating the hepatic consequences of this genetic defect. Pi∗Z allele is significantly associated with liver-related events in patients with ACLD. This finding extends to patients harbouring the Pi∗MZ genotype. Genotyping for the Pi∗Z allele might improve prognostication in patients with ACLD. Therapies targeting accumulation of abnormal AAT should be assessed in Pi∗Z carriers with ACLD.
Collapse
Key Words
- (a[S])HR, (Adjusted [subdistribution]) hazard ratio
- AAT, Alpha-1 antitrypsin
- AATD
- AATD, Alpha-1 antitrypsin deficiency
- ACLD, Advanced chronic liver disease
- CTP, Child-turcotte-pugh score
- ER, Endoplasmic reticulum
- GWAS, Genome wide association studies
- HCC, Hepatocellular carcinoma
- HVPG, Hepatic venous pressure gradient
- NAFLD, Non-alcoholic fatty liver disease
- SERPINA1, Serpin family a member 1
- UNOS MELD (2016), United network for organ sharing model for end-stage liver disease
- cirrhosis
- genetic risk
- prognostication
- rare disease
Collapse
Affiliation(s)
- Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Markus Urheu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Patrick Weinberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Claudia Willheim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Ferenci
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Comparative Proteomic Analysis of Liver Tissues and Serum in db/db Mice. Int J Mol Sci 2022; 23:ijms23179687. [PMID: 36077090 PMCID: PMC9455973 DOI: 10.3390/ijms23179687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. Results: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. Methods: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. Conclusion: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.
Collapse
|
34
|
Strnad P, Mandorfer M, Choudhury G, Griffiths W, Trautwein C, Loomba R, Schluep T, Chang T, Yi M, Given BD, Hamilton JC, San Martin J, Teckman JH. Fazirsiran for Liver Disease Associated with Alpha 1-Antitrypsin Deficiency. N Engl J Med 2022; 387:514-524. [PMID: 35748699 DOI: 10.1056/nejmoa2205416] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alpha1-antitrypsin (AAT) deficiency results from carriage of a homozygous SERPINA1 "Z" mutation (proteinase inhibitor [PI] ZZ). The Z allele produces a mutant AAT protein called Z-AAT, which accumulates in hepatocytes and can lead to progressive liver disease and fibrosis. This open-label, phase 2 trial investigated the safety and efficacy of fazirsiran, an RNA interference therapeutic, in patients with liver disease associated with AAT deficiency. METHODS We assigned adults with the PI ZZ genotype and liver fibrosis to receive fazirsiran at a dose of 200 mg (cohorts 1 [4 patients] and 2 [8 patients]) or 100 mg (cohort 1b [4 patients]) subcutaneously on day 1 and week 4 and then every 12 weeks. The primary end point was the change from baseline to week 24 (cohorts 1 and 1b) or week 48 (cohort 2) in liver Z-AAT concentrations, which were measured by means of liquid chromatography-mass spectrometry. RESULTS All the patients had reduced accumulation of Z-AAT in the liver (median reduction, 83% at week 24 or 48). The nadir in serum was a reduction of approximately 90%, and treatment was also associated with a reduction in histologic globule burden (from a mean score of 7.4 [scores range from 0 to 9, with higher scores indicating a greater globule burden] at baseline to 2.3 at week 24 or 48). All cohorts had reductions in liver enzyme concentrations. Fibrosis regression was observed in 7 of 15 patients and fibrosis progression in 2 of 15 patients after 24 or 48 weeks. There were no adverse events leading to trial or drug discontinuation. Four serious adverse events (viral myocarditis, diverticulitis, dyspnea, and vestibular neuronitis) resolved. CONCLUSIONS In this small trial, fazirsiran was associated with a strong reduction of Z-AAT concentrations in the serum and liver and concurrent improvements in liver enzyme concentrations. (Funded by Arrowhead Pharmaceuticals; AROAAT-2002 ClinicalTrials.gov number, NCT03946449.).
Collapse
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Mattias Mandorfer
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Gourab Choudhury
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - William Griffiths
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Christian Trautwein
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Rohit Loomba
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Thomas Schluep
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Ting Chang
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Min Yi
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Bruce D Given
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - James C Hamilton
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Javier San Martin
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| | - Jeffery H Teckman
- From the Department of Internal Medicine III, University Hospital, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE-LIVER), Aachen, Germany (P.S., C.T.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, ERN RARE-LIVER, Vienna (M.M.); the Department of Respiratory Medicine, Royal Infirmary of Edinburgh University Hospital, University of Edinburgh, Edinburgh (G.C.), and the Department of Hepatology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge (W.G.) - both in the United Kingdom; the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla (R.L.), and Arrowhead Pharmaceuticals, Pasadena (T.S., T.C., M.Y., B.D.G., J.C.H., J.S.M.) - both in California; and the Departments of Pediatrics and Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis (J.H.T.)
| |
Collapse
|
35
|
Squires JE, Horslen SP. CAQ Corner: Genetic liver disease. Liver Transpl 2022; 28:1231-1244. [PMID: 35377526 DOI: 10.1002/lt.26467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023]
Affiliation(s)
- James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon P Horslen
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Pathophysiology of Chronic Liver Disease Development. Int J Mol Sci 2022; 23:ijms23063385. [PMID: 35328801 PMCID: PMC8949302 DOI: 10.3390/ijms23063385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
|
37
|
The Relationship between Plasma Alpha-1-Antitrypsin Polymers and Lung or Liver Function in ZZ Alpha-1-Antitrypsin-Deficient Patients. Biomolecules 2022; 12:biom12030380. [PMID: 35327571 PMCID: PMC8945708 DOI: 10.3390/biom12030380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Alpha-1-Antitrypsin (AAT) is a protein of the SERPINA1 gene. A single amino acid mutation (Lys342Glu) results in an expression of misfolded Z-AAT protein, which has a high propensity to intra- and extra-cellular polymerization. Here, we asked whether levels of circulating Z-AAT polymers are associated with the severity of lung disease, liver disease, or both. We obtained cross sectional data from the Dutch part of the Alpha1 International Registry of 52 ZZ-AAT patients who performed a pulmonary function test and donated a blood sample on the same day. From the Alpha-1 Liver Aachen Registry, we obtained a cohort of 40 ZZ-AAT patients with available data on their liver function. The levels of plasma Z-AAT polymers were determined using a LG96 monoclonal antibody-based sandwich ELISA. In a Dutch cohort, the median plasma level of Z-AAT polymers of patients diagnosed for pulmonary disease was 947.5 µg/mL (733.6−1218 µg/mL (95% CI)), which did not correlate with airflow obstruction or gas transfer value. In the Alpha-1 liver patient cohort, the median polymer level was 1245.9 µg/mL (753−2034 µg/mL (95% CI)), which correlated with plasma gamma-glutamyl transferase (GGT, rs = 0.57, p = 0.001), glutamate dehydrogenase (GLDH, rs = 0.48, p = 0.002) and triglycerides (TG, rs = 0.48, p = 0.0046). A Wilcoxon rank test showed higher Z-AAT polymer values for the liver over the lung group (p < 0.0001). These correlations support a possible link between plasma Z-AAT polymers and the liver function.
Collapse
|
38
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|