1
|
Lainšček D, Forstnerič V, Miroševič Š. CTNNB1 syndrome mouse models. Mamm Genome 2025:10.1007/s00335-025-10105-3. [PMID: 39833474 DOI: 10.1007/s00335-025-10105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, 1000, Slovenia.
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, 1000, Slovenia.
| | - Špela Miroševič
- The Gene Therapy Research Institute, CTNNB1 Foundation, Ljubljana, 1000, Slovenia.
- Department of Family Medicine, Faculty of Medicine Ljubljana, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
2
|
Xu L, Liu Q, Liu H, Fan F, Li P, Yue S, Mo J, Liu Z, Dong R, Zhang X, Dong H, Liang H, Chen X, Zhang B, Chen L, Chen J. Disrupting CCDC137-mediated LZTS2 and β-TrCP interaction in the nucleus inhibits hepatocellular carcinoma development via β-catenin and AKT. Cell Death Differ 2025; 32:134-148. [PMID: 38918619 PMCID: PMC11742649 DOI: 10.1038/s41418-024-01328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor, with its biological characteristics intricately linked to the activation of oncogenes. This research specifically explored CCDC137, a molecule within the CCDC family exhibiting the closest association with HCC. Our investigation aimed to unravel the role, underlying mechanisms, and potential therapeutic implications of CCDC137 in the context of HCC. We observed a close correlation between elevated CCDC137 expression and poor prognosis in HCC patients, along with a promotive effect on HCC progression in vitro and in vivo. Mechanistically, we identified LZTS2, a negative regulator of β-catenin, as the binding protein of CCDC137. CCDC137 facilitated K48-linked poly-ubiquitination of LZTS2 at lysine 467 via recruiting E3 ubiquitin ligase β-TrCP in the nucleus, triggering AKT phosphorylation and activation of β-catenin pathway. Moreover, the 1-75 domain of CCDC137 was responsible for the formation of the CCDC137-LZTS2-β-TrCP complex. Subsequently, designed peptides targeting the 1-75 domain of CCDC137 to disrupt CCDC137-LZTS2 interaction demonstrated efficacy in inhibiting HCC progression. This promising outcome was further supported by HCC organoids and patient-derived xenograft (PDX) models, underscoring the potential clinical utility of the peptides. This study elucidated the mechanism of the CCDC137-LZTS2-β-TrCP protein complex in HCC and offered clinically significant therapeutic strategies targeting this complex.
Collapse
Affiliation(s)
- Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hailing Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Pengcheng Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Renshun Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Zhang Y, Yang J, Shao T, Chen J, Shu Q, Shou L. Exploration of genetic characterization in hyperprogressive disease after immunotherapy retreatment in a patient with LCNEC: A case report. Hum Vaccin Immunother 2024; 20:2313281. [PMID: 38348622 PMCID: PMC10865920 DOI: 10.1080/21645515.2024.2313281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as a promising therapeutic option for large cell neuroendocrine carcinoma (LCNEC). However, various studies have suggested a potential risk of hyperprogressive disease (HPD) in patients receiving ICI, which might be associated with gene alterations. Here, this is the first report on an unknown primary LCNEC patient who had achieved a long-term response from ICI treatment (atezolizumab), but developed HPD after tumor progression due to receiving another ICI agent (serplulimab). The mutation region of FAT4, SMARCA4, CYLD, CTNNB1, and KIT was altered prior to serplulimab treatment compared to before atezolizumab treatment. This case suggested a potential association between these mutated genes and HPD. Patients with the aforementioned genes should caution when selecting ICI treatment. These findings required further confirmation in a larger study cohort.
Collapse
Affiliation(s)
- Yao Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiayao Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyu Shao
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialu Chen
- Department of Oncology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Liumei Shou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
5
|
VanSant-Webb C, Low HK, Kuramoto J, Stanley CE, Qiang H, Su AY, Ross AN, Cooper CG, Cox JE, Summers SA, Evason KJ, Ducker GS. Phospholipid isotope tracing suggests β-catenin-driven suppression of phosphatidylcholine metabolism in hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159514. [PMID: 38795827 PMCID: PMC11864496 DOI: 10.1016/j.bbalip.2024.159514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Activating mutations in the CTNNB1 gene encoding β-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). Profound alterations in lipid metabolism, including increases in fatty acid oxidation and transformation of the phospholipidome, occur in HCC with CTNNB1 mutations, but it is unclear what mechanisms give rise to these changes. We employed untargeted lipidomics and targeted isotope tracing to measure phospholipid synthesis activity in an inducible human liver cell line expressing mutant β-catenin, as well as in transgenic zebrafish with activated β-catenin-driven HCC. In both models, activated β-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid isotope tracing analysis in human cells revealed a reduction in phosphatidylcholine (PC) production rates as assayed by choline incorporation. We developed lipid isotope tracing analysis for zebrafish tumors and observed reductions in phosphatidylcholine synthesis by both the CDP-choline and PEMT pathways. The observed changes in the β-catenin-driven HCC phospholipidome suggest that zebrafish can recapitulate conserved features of HCC lipid metabolism and may serve as a model for identifying future HCC-specific lipid metabolic targets.
Collapse
Affiliation(s)
- Chad VanSant-Webb
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Hayden K Low
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Junko Kuramoto
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Claire E Stanley
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hantao Qiang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Audrey Y Su
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexis N Ross
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Chad G Cooper
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA
| | - Kimberley J Evason
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Gregory S Ducker
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Xu Y, Yu Y, Yan R, Ke X, Qu Y. Modulating β-catenin homeostasis for cancer therapy. Trends Cancer 2024; 10:507-518. [PMID: 38521655 DOI: 10.1016/j.trecan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
β-Catenin is a well-established driver of many cancers; however, there are challenges in developing agents targeting β-catenin for clinical use. Recent progress has indicated that most of the pathological changes in β-catenin may be commonly caused by loss of protein homeostasis. Modulation of β-catenin homeostasis, especially by hyperactivation of β-catenin, potentially leads to robust antitumor outcomes. Here, we comprehensively dissect the protein homeostasis of β-catenin in terms of time, compartmentalization, supramolecular assemblies, and dynamics, with emphasis on changes in β-catenin homeostasis upon oncogenic mutations. We propose that altered β-catenin homeostasis could be deleterious for β-catenin-dependent cancers and that modulation of β-catenin homeostasis offers a novel avenue for targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yu Xu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Ying Yu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
7
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
8
|
Mouillet-Richard S, Gougelet A, Passet B, Brochard C, Le Corre D, Pitasi CL, Joubel C, Sroussi M, Gallois C, Lavergne J, Castille J, Vilotte M, Daniel-Carlier N, Pilati C, de Reyniès A, Djouadi F, Colnot S, André T, Taieb J, Vilotte JL, Romagnolo B, Laurent-Puig P. Wnt, glucocorticoid and cellular prion protein cooperate to drive a mesenchymal phenotype with poor prognosis in colon cancer. J Transl Med 2024; 22:337. [PMID: 38589873 PMCID: PMC11003154 DOI: 10.1186/s12967-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS In silico analyses combined with cell-based assays identified the Wnt-β-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, β-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| | - Angélique Gougelet
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camille Brochard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Pathology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Camille Joubel
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Marine Sroussi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Claire Gallois
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Lavergne
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Histology, Imaging and Cytometry Center (CHIC), Paris, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel-Carlier
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Sabine Colnot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Thierry André
- Saint-Antoine Hospital, INSERM, Unité Mixte de Recherche Scientifique 938, Sorbonne Université, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France.
| |
Collapse
|
9
|
Sanceau J, Poupel L, Joubel C, Lagoutte I, Caruso S, Pinto S, Desbois-Mouthon C, Godard C, Hamimi A, Montmory E, Dulary C, Chantalat S, Roehrig A, Muret K, Saint-Pierre B, Deleuze JF, Mouillet-Richard S, Forné T, Grosset CF, Zucman-Rossi J, Colnot S, Gougelet A. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol Ther 2024; 32:1125-1143. [PMID: 38311851 PMCID: PMC11163201 DOI: 10.1016/j.ymthe.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (β-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and β-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during β-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Lucie Poupel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France; Inovarion, F-75005 Paris, France
| | - Camille Joubel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Isabelle Lagoutte
- University Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sandra Pinto
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Godard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Akila Hamimi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Enzo Montmory
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Dulary
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Sophie Chantalat
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Kevin Muret
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | | | | | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Thierry Forné
- IGMM, University Montpellier, CNRS, F-34293 Montpellier, France
| | - Christophe F Grosset
- University Bordeaux, INSERM, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, BMGIC, U1035, MIRCADE team, F-33076 Bordeaux, France; University Bordeaux, INSERM, Bordeaux Institute in Oncology, BRIC, U1312, MIRCADE team, F-33076 Bordeaux, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France.
| |
Collapse
|
10
|
Wang B, Shen H, Wei Y, Liu F, Yang Y, Yu H, Fu J, Cui X, Yu T, Xu Y, Liu Y, Dong H, Shen F, Zhou W, Liu H, Chen Y, Wang H. Balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution in postoperative liver regeneration. J Hepatol 2024; 80:309-321. [PMID: 37918568 DOI: 10.1016/j.jhep.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND & AIMS Post-hepatectomy liver failure (PHLF) leads to poor prognosis in patients undergoing hepatectomy, with hepatic vascular reconstitution playing a critical role. However, the regulators of hepatic vascular reconstitution remain unclear. In this study, we aimed to investigate the regulatory mechanisms of hepatic vascular reconstitution and identify biomarkers predicting PHLF in patients undergoing hepatectomy. METHODS Candidate genes that were associated with hepatic vascular reconstitution were screened using adeno-associated virus vectors in Alb-Cre-CRISPR/Cas9 mice subjected to partial hepatectomy. The biological activities of candidate genes were estimated using endothelial precursor transfusion and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) models. The level of candidates was detected in biopsies from patients undergoing ALPPS. Risk factors for PHLF were also screened using retrospective data. RESULTS Downregulation of Gata3 and upregulation of Ramp2 in hepatocytes promoted the proliferation of liver sinusoidal endothelial cells and hepatic revascularization. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor A (VEGFA) played opposite roles in regulating the migration of endothelial precursors from bone marrow and the formation of new sinusoids after hepatectomy. Gata3 restricted endothelial cell function in patient-derived hepatic organoids, which was abrogated by a Gata3 inhibitor. Moreover, overexpression of Gata3 led to higher mortality in ALPPS mice, which was improved by a PEDF-neutralizing antibody. The expression of Gata3/RAMP and PEDF/VEGFA tended to have a negative correlation in patients undergoing ALPPS. A nomogram incorporating multiple factors, such as serum PEDF/VEGF index, was constructed and could efficiently predict the risk of PHLF. CONCLUSIONS The balance of Gata3 and Ramp2 in hepatocytes regulates the proliferation of liver sinusoidal endothelial cells and hepatic revascularization via changes in the expression of PEDF and VEGFA, revealing potential targets for the prevention and treatment of PHLF. IMPACT AND IMPLICATIONS In this study, we show that the balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution by promoting a shift from pigment epithelium-derived factor (PEDF) to vascular endothelial growth factor A (VEGFA) expression during hepatectomy- or ALLPS (associating liver partition and portal vein ligation for staged hepatectomy)-induced liver regeneration. We also identified serum PEDF/VEGFA index as a potential predictor of post-hepatectomy liver failure in patients who underwent hepatectomy. This study improves our understanding of how hepatocytes contribute to liver regeneration and provides new targets for the prevention and treatment of post-hepatectomy liver failure.
Collapse
Affiliation(s)
- Bibo Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Hao Shen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yating Wei
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Han Yu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Ting Yu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Department of Hepatology, Fuling Hospital, Chongqing University, Chongqing, China
| | - Ying Xu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Yitian Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Hui Dong
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China
| | - Feng Shen
- The Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai, China.
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Liu F, Wu Y, Zhang B, Yang S, Shang K, Li J, Zhang P, Deng W, Chen L, Zheng L, Gai X, Zhang H. Oncogenic β-catenin-driven liver cancer is susceptible to methotrexate-mediated disruption of nucleotide synthesis. Chin Med J (Engl) 2024; 137:181-189. [PMID: 37612257 PMCID: PMC10798734 DOI: 10.1097/cm9.0000000000002816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for β-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS Constitutive β-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( β-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited β-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on β-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with β-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); β-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of β-catenin mutant liver cancer. RESULTS MTX was identified and validated as a preferential agent against the proliferation and tumor formation of β-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in β-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; β-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION MTX is a promising chemotherapeutic agent for β-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuting Wu
- Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhui Yang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kezhuo Shang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Li
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Pengju Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Linlin Chen
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Xiaochen Gai
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
12
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
13
|
López-Pérez A, Remeseiro S, Hörnblad A. Diet-induced rewiring of the Wnt gene regulatory network connects aberrant splicing to fatty liver and liver cancer in DIAMOND mice. Sci Rep 2023; 13:18666. [PMID: 37907668 PMCID: PMC10618177 DOI: 10.1038/s41598-023-45614-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
Several preclinical models have been recently developed for metabolic associated fatty liver disease (MAFLD) and associated hepatocellular carcinoma (HCC) but comprehensive analysis of the regulatory and transcriptional landscapes underlying disease in these models are still missing. We investigated the regulatory and transcriptional landscape in fatty livers and liver tumours from DIAMOND mice that faithfully mimic human HCC development in the context of MAFLD. RNA-sequencing and ChIP-sequencing revealed rewiring of the Wnt/β-catenin regulatory network in DIAMOND tumours, as manifested by chromatin remodelling and associated switching in the expression of the canonical TCF/LEF downstream effectors. We identified splicing as a major mechanism leading to constitutive oncogenic activation of β-catenin in a large subset of DIAMOND tumours, a mechanism that is independent on somatic mutations in the locus and that has not been previously shown. Similar splicing events were found in a fraction of human HCC and hepatoblastoma samples.
Collapse
Affiliation(s)
- Ana López-Pérez
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187, Umeå, Sweden
| | - Andreas Hörnblad
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
14
|
Zhang L, Zhang Q, Teng D, Guo M, Tang K, Wang Z, Wei X, Lin L, Zhang X, Wang X, Huang D, Ren C, Yang Q, Zhang W, Gao Y, Chen W, Chang Y, Zhang H. FGF9 Recruits β-Catenin to Increase Hepatic ECM Synthesis and Promote NASH-Driven HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301166. [PMID: 37566761 PMCID: PMC10558677 DOI: 10.1002/advs.202301166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Most nonalcoholic steatohepatitis (NASH) patients develop severe fibrosis through extracellular matrix (ECM) accumulation, which can lead to hepatocellular carcinoma (HCC). Fibroblast growth factor 9 (FGF9) is involved in serial types of cancer; however, the specific role of FGF9 in NASH-driven HCC is not fully understood. This study finds that FGF9 is increased in patients with NASH-associated HCC. Furthermore, NASH-driven HCC mice models by feeding wildtype mice with high-fat/high-cholesterol (HFHC) diet and low dose carbon tetrachloride (CCl4 ) treatment is established; and identified that hepatic FGF9 is increased; with severe fibrosis. Additionally, AAV-mediated knockdown of FGF9 reduced the hepatic tumor burden of NASH-driven HCC mice models. Hepatocyte-specific FGF9 transgenic mice (FGF9Alb ) fed with a HFHC diet without CCl4 treatment exhibited an increased hepatic ECM and tumor burden. However, XAV-939 treatment blocked ECM accumulation and NASH-driven HCC in FGF9Alb mice fed with HFHC diet. Molecular mechanism studies show that FGF9 stimulated the expression of ECM related genes in a β-catenin dependent manner; and FGF9 exerts its effect on β-catenin stability via the ERK1/2-GSK-3β signaling pathway. In summary, the data provides evidence for the critical role of FGF9 in NASH-driven HCC pathogenesis; wherein it promotes the tumors formation through the ECM pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Qing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Da Teng
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Manyu Guo
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Kechao Tang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Zhenglin Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Xiang Wei
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Li Lin
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Xiuyun Wang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Dake Huang
- Synthetic Laboratory of School of Basic Medicine SciencesAnhui Medical University230032HefeiChina
| | - Cuiping Ren
- Department of Microbiology and ParasitologySchool of Basic MedicineAnhui Medical University230032HefeiChina
| | - Qingsong Yang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Wenjun Zhang
- Department of Hepatopancreatobiliary SurgeryAffifiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| | - Yong Gao
- Science and Technology Innovation CenterGuangzhou University of Chinese Medicine510006GuangzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University230022HefeiChina
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)Tianjin Key of Cellular Homeostasis and DiseaseDepartment of Physiology and PathophysiologyTianjin Medical University300070TianjinChina
| | - Huabing Zhang
- Department of Biochemistry and Molecular BiologyMetabolic Disease Research CenterSchool of Basic MedicineAnhui Medical University230032HefeiChina
- The Affiliated Chuzhou Hospital of Anhui Medical University (The First People's Hospital of Chuzhou)Chuzhou239001China
| |
Collapse
|
15
|
Wang Q, Liang N, Liu C, Li J, Bai Y, Lei S, Huang Q, Sun L, Tang L, Zeng C, Tang Y, He X, Yang T, Wang G. BEX1 supports the stemness of hepatoblastoma by facilitating Warburg effect in a PPARγ/PDK1 dependent manner. Br J Cancer 2023; 129:1477-1489. [PMID: 37715024 PMCID: PMC10628275 DOI: 10.1038/s41416-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is a highly aggressive paediatric malignancy that exhibits a high presence of cancer stem cells (CSCs), which related to tumour recurrence and chemotherapy resistance. Brain expressed X-linked protein 1 (BEX1) plays a pivotal role in ciliogenesis, axon regeneration and differentiation of neural stem cells. However, the role of BEX1 in metabolic and stemness programs in HB remains unclear. METHODS BEX1 expression in human and mouse HB was analyzed using gene expression profile data from NCBI GEO and immunohistochemical validation. Seahorse extracellular flux analyzer, ultra-high-performance liquid-chromatography mass spectrometry (LC-MS), flow cytometry, qRT-PCR, Western Blot, sphere formation assay, and diluted xenograft tumour formation assay were used to analyze metabolic and stemness features. RESULTS Our results indicated that overexpression of BEX1 significantly enhanced the Warburg effect in HB cells. Furthermore, glycolysis inhibition largely attenuated the effects of BEX1 on HB cell growth and self-renewal, suggesting that BEX1 promotes stemness maintenance of HB cells by regulating the Warburg effect. Mechanistically, BEX1 enhances Warburg effect through the downregulation of peroxisome proliferator-activated receptor-gamma (PPARγ). Furthermore, pyruvate dehydrogenase kinase isozyme 1 (PDK1) is required for PPARγ-induced inhibition of Warburg effect in HB. In addition, BEX1 supports the stemness of HB by enhancing Warburg effect in a PPARγ/PDK1 dependent manner. CONCLUSIONS HB patients with high BEX1 and PDK1 expression had a poor prognosis. BEX1 promotes the stemness maintenance of HB cells via modulating the Warburg effect, which depends on PPARγ/PDK1 axis. Pioglitazone could be used to target BEX1-mediated stemness properties in HB by upregulating PPARγ.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Chaoxu Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310006, China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Stomatology, Shaanxi Province People's Hospital, Xi'an, 710068, China
| | - Yaxing Bai
- Department of Dermatology, XiJing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuanghong Lei
- Anorectal Department, The First People's Hospital of Longnan, Longnan, 742500, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, The 75th Group Army Hospital, Dali, Yunnan, 671000, China
| | - Ligang Sun
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Liangke Tang
- Department of General Surgery, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Chao Zeng
- Department of Neurology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Yuqun Tang
- Minimally Invasive tumour Comprehensive Therapy Center, Second People's Hospital of Guangdong Province, Guangzhou, 510310, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710038, China.
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, China.
- Department of General Surgery, Affiliated Jiangmen Hospital, Southern Medical University, Jiangmen, 529000, China.
| |
Collapse
|
16
|
Gest C, Sena S, Dif L, Neaud V, Loesch R, Dugot-Senant N, Paysan L, Piquet L, Robbe T, Allain N, Dembele D, Guettier C, Bioulac-Sage P, Rullier A, Le Bail B, Grosset CF, Saltel F, Lagrée V, Colnot S, Moreau V. Antagonism between wild-type and mutant β-catenin controls hepatoblastoma differentiation via fascin-1. JHEP Rep 2023; 5:100691. [PMID: 37153687 PMCID: PMC10159820 DOI: 10.1016/j.jhepr.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/10/2023] Open
Abstract
Background & Aims β-catenin is a well-known effector of the Wnt pathway, and a key player in cadherin-mediated cell adhesion. Oncogenic mutations of β-catenin are very frequent in paediatric liver primary tumours. Those mutations are mostly heterozygous, which allows the co-expression of wild-type (WT) and mutated β-catenins in tumour cells. We investigated the interplay between WT and mutated β-catenins in liver tumour cells, and searched for new actors of the β-catenin pathway. Methods Using an RNAi strategy in β-catenin-mutated hepatoblastoma (HB) cells, we dissociated the structural and transcriptional activities of β-catenin, which are carried mainly by WT and mutated proteins, respectively. Their impact was characterised using transcriptomic and functional analyses. We studied mice that develop liver tumours upon activation of β-catenin in hepatocytes (APCKO and β-cateninΔexon3 mice). We used transcriptomic data from mouse and human HB specimens, and used immunohistochemistry to analyse samples. Results We highlighted an antagonistic role of WT and mutated β-catenins with regard to hepatocyte differentiation, as attested by alterations in the expression of hepatocyte markers and the formation of bile canaliculi. We characterised fascin-1 as a transcriptional target of mutated β-catenin involved in tumour cell differentiation. Using mouse models, we found that fascin-1 is highly expressed in undifferentiated tumours. Finally, we found that fascin-1 is a specific marker of primitive cells including embryonal and blastemal cells in human HBs. Conclusions Fascin-1 expression is linked to a loss of differentiation and polarity of hepatocytes. We present fascin-1 as a previously unrecognised factor in the modulation of hepatocyte differentiation associated with β-catenin pathway alteration in the liver, and as a new potential target in HB. Impact and implications The FSCN1 gene, encoding fascin-1, was reported to be a metastasis-related gene in various cancers. Herein, we uncover its expression in poor-prognosis hepatoblastomas, a paediatric liver cancer. We show that fascin-1 expression is driven by the mutated beta-catenin in liver tumour cells. We provide new insights on the impact of fascin-1 expression on tumour cell differentiation. We highlight fascin-1 as a marker of immature cells in mouse and human hepatoblastomas.
Collapse
Affiliation(s)
- Caroline Gest
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sandra Sena
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Lydia Dif
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Véronique Neaud
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Robin Loesch
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | | | - Lisa Paysan
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Léo Piquet
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Terezinha Robbe
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Nathalie Allain
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Doulaye Dembele
- IGBMC, CNRS UMR 7104 – INSERM U 1258 – Université de Strasbourg, Illkirch, France
| | - Catherine Guettier
- Department of Pathology, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | | | - Anne Rullier
- Department of Pathology, University Bordeaux Hospital, Bordeaux, France
| | - Brigitte Le Bail
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- Department of Pathology, University Bordeaux Hospital, Bordeaux, France
| | | | - Frédéric Saltel
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Valérie Lagrée
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Violaine Moreau
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- Corresponding author. Address: 146 Rue Léo Saignat, F-33076, Bordeaux, France. Tel.: +33-5-57-57-12-72.
| |
Collapse
|
17
|
Mou H, Eskiocak O, Özler KA, Gorman M, Yue J, Jin Y, Wang Z, Gao Y, Janowitz T, Meyer HV, Yu T, Wilkinson JE, Kucukural A, Ozata DM, Beyaz S. CRISPR-induced exon skipping of β-catenin reveals tumorigenic mutants driving distinct subtypes of liver cancer. J Pathol 2023; 259:415-427. [PMID: 36641763 PMCID: PMC10273193 DOI: 10.1002/path.6054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
CRISPR/Cas9-driven cancer modeling studies are based on the disruption of tumor suppressor genes by small insertions or deletions (indels) that lead to frame-shift mutations. In addition, CRISPR/Cas9 is widely used to define the significance of cancer oncogenes and genetic dependencies in loss-of-function studies. However, how CRISPR/Cas9 influences gain-of-function oncogenic mutations is elusive. Here, we demonstrate that single guide RNA targeting exon 3 of Ctnnb1 (encoding β-catenin) results in exon skipping and generates gain-of-function isoforms in vivo. CRISPR/Cas9-mediated exon skipping of Ctnnb1 induces liver tumor formation in synergy with YAPS127A in mice. We define two distinct exon skipping-induced tumor subtypes with different histological and transcriptional features. Notably, ectopic expression of two exon-skipped β-catenin transcript isoforms together with YAPS127A phenocopies the two distinct subtypes of liver cancer. Moreover, we identify similar CTNNB1 exon-skipping events in patients with hepatocellular carcinoma. Collectively, our findings advance our understanding of β-catenin-related tumorigenesis and reveal that CRISPR/Cas9 can be repurposed, in vivo, to study gain-of-function mutations of oncogenes in cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Haiwei Mou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kadir A. Özler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Megan Gorman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Junjiayu Yue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ying Jin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ya Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John E Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Alper Kucukural
- Bioinformatics Core, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
18
|
Zhou Y, Li J, Ma Y, Tang M, Yuan X, Shen L. Elevated serum uric acid is associated with the risk of advanced staging and vascular involvement in patients with hepatoblastoma: a 14-year retrospective study. Front Oncol 2023; 13:1144349. [PMID: 37124543 PMCID: PMC10140562 DOI: 10.3389/fonc.2023.1144349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Background Uric acid is the end product of the purine metabolism pathway, and has been linked to cancer risks and prognosis, but its relationship with hepatoblastoma (HB) remains unclear. This study aims to investigate the association between serum uric acid (SUA) and the advanced tumor staging and unfavorable extra-parenchymal tumor characteristics in patients with HB. Methods This study enrolled pediatric patients from Xinhua Hospital between 2007 to 2021. A total of 101 participants with newly diagnosed HB were recruited in the study. PRETreatment EXTent of disease (PRETEXT)/PostTreatment Extent of disease (POSTTEXT) staging were evaluated at diagnosis and following neoadjuvant chemotherapy (NAC). Adjusted smoothing spline plots, subgroup analysis and multivariate logistic regression analysis were conducted to estimate the association of different levels of SUA with the advanced tumor staging and present annotation factors. Results In accordance with SUA tertiles, those patients with higher pretreatment SUA levels showed increased percentages of PRETEXT group IV, vessel involvement and multifocality of tumors. After fully adjustment with the confounding factors, SUA was positively associated with advanced PRETEXT stage IV (OR: 1.72, 95%CI 1.15-2.57, p=0.0080), as well as vascular invasion (OR: 1.29, 95%CI 1.01-1.64, p=0.0396). Compared with the lowest SUA concentration tertile, the highest tertile were independently associated with vessel involvement of tumor in all of the adjusted models. Following NAC, SUA levels were significantly reduced in response to the downstaging of tumors. SUA remained positively associated with advanced POSTTEXT staging and vessel involvement in adjusted models. Patients with highest tertile of posttreatment SUA showed worse 5-year EFS and OS. Conclusion Elevated SUA were associated with an increased occurrence of advanced PRETEXT/POSTTEXT staging and unfavorable vessel involvement at diagnosis and following NAC in patients with HB. High posttreatment SUA reflected poor tumor responses to NAC. This study linked SUA, a non-invasive laboratory test, with tumor staging and risk prediction for HB.
Collapse
Affiliation(s)
- Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengjie Tang
- Department of Pediatric Hematology/Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Yuan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Lisong Shen, ; Xiaojun Yuan,
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, China
- *Correspondence: Lisong Shen, ; Xiaojun Yuan,
| |
Collapse
|
19
|
Liu F, Gai X, Wu Y, Zhang B, Wu X, Cheng R, Tang B, Shang K, Zhao N, Deng W, Chen J, Zhang Z, Gu S, Zheng L, Zhang H. Oncogenic β-catenin stimulation of AKT2-CAD-mediated pyrimidine synthesis is targetable vulnerability in liver cancer. Proc Natl Acad Sci U S A 2022; 119:e2202157119. [PMID: 36122209 PMCID: PMC9522414 DOI: 10.1073/pnas.2202157119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
CTNNB1, encoding β-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated β-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in β-catenin mutant cell lines and livers. Oncogenic β-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of β-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed β-catenin mutant cell proliferation and tumor formation. Therefore, β-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of β-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Fangming Liu
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaochen Gai
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuting Wu
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyu Wu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Rongrong Cheng
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Bufu Tang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Kezhuo Shang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Na Zhao
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Weiwei Deng
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhengyi Zhang
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liang Zheng
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Fujian Branch of Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Fujian Children's Hospital, Fuzhou, Fujian 350014, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
20
|
Pérez-García J, Martel-Martel A, García-Vallés P, Corchete LA, García JL, Gestoso-Uzal N, Vidal-Tocino R, Blanco Ó, Méndez L, Sánchez-Martín M, Fuentes M, Herrero AB, Holowatyj AN, Perea J, González-Sarmiento R. Recurrent NOMO1 Gene Deletion Is a Potential Clinical Marker in Early-Onset Colorectal Cancer and Is Involved in the Regulation of Cell Migration. Cancers (Basel) 2022; 14:4029. [PMID: 36011023 PMCID: PMC9406593 DOI: 10.3390/cancers14164029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of early-onset colorectal cancer (EOCRC; age younger than 50 years) has been progressively increasing over the last decades globally, with causes unexplained. A distinct molecular feature of EOCRC is that compared with cases of late-onset colorectal cancer, in EOCRC cases, there is a higher incidence of Nodal Modulator 1 (NOMO1) somatic deletions. However, the mechanisms of NOMO1 in early-onset colorectal carcinogenesis are currently unknown. In this study, we show that in 30% of EOCRCs with heterozygous deletion of NOMO1, there were pathogenic mutations in this gene, suggesting that NOMO1 can be inactivated by deletion or mutation in EOCRC. To study the role of NOMO1 in EOCRC, CRISPR/cas9 technology was employed to generate NOMO1 knockout HCT-116 (EOCRC) and HS-5 (bone marrow) cell lines. NOMO1 loss in these cell lines did not perturb Nodal pathway signaling nor cell proliferation. Expression microarrays, RNA sequencing, and protein expression analysis by LC-IMS/MS showed that NOMO1 inactivation deregulates other signaling pathways independent of the Nodal pathway, such as epithelial-mesenchymal transition and cell migration. Significantly, NOMO1 loss increased the migration capacity of CRC cells. Additionally, a gut-specific conditional NOMO1 KO mouse model revealed no subsequent tumor development in mice. Overall, these findings suggest that NOMO1 could play a secondary role in early-onset colorectal carcinogenesis because its loss increases the migration capacity of CRC cells. Therefore, further study is warranted to explore other signalling pathways deregulated by NOMO1 loss that may play a significant role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jésica Pérez-García
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Abel Martel-Martel
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain
| | - Paula García-Vallés
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Luis A. Corchete
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan L. García
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Nerea Gestoso-Uzal
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Rosario Vidal-Tocino
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain
| | - Óscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Anatomy Pathology Service, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Lucía Méndez
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Transgenic Service, Nucleus, University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Transgenic Service, Nucleus, University of Salamanca, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Ana B. Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Andreana N. Holowatyj
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - José Perea
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), SACYL-University of Salamanca-CSIC, 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Zhangyuan G. Is β-catenin mutation in murine hepatocytes sufficient to induce liver tumorigenesis? J Hepatol 2022; 77:559-560. [PMID: 35452695 DOI: 10.1016/j.jhep.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Guangyan Zhangyuan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|