1
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2024; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
2
|
Dong L, Qiu X, Li Z, Ge W, Tang X, Zhou R, Chen W, Xu X, Wang K. Potential crosstalk between Naïve CD4 + T cells and SPP1 + Macrophages is associated with clinical outcome and therapeutic response in hepatocellular carcinoma. Int Immunopharmacol 2024; 142:113231. [PMID: 39332093 DOI: 10.1016/j.intimp.2024.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The highly heterogeneity of the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) results in diverse clinical outcomes and therapeutic responses. This study aimed to investigate potential intercellular crosstalk and its impact on clinical outcomes and therapeutic responses. METHODS Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST) and bulk RNA sequencing (RNA-seq) datasets were integrated to comprehensively analyze the intercellular interactions within the TME. Multiplex immunohistochemistry was conducted to validate the intercellular interactions. A machine learning-based integrative procedure was used in bulk RNA-seq datasets to generate a risk model to predict prognosis and therapeutic responses. RESULTS Survival analyses based on the bulk RNA-seq datasets revealed the negative impact of the naïve Cluster of Differentiation 4+ (CD4) T cells and Secreted Phosphoprotein 1+ (SPP1) macrophages on prognosis. Furthermore, their intricate intercellular crosstalk and spatial colocalization were also observed by scRNA-seq and ST analyses. Based on this crosstalk, a machine learning model, termed the naïve CD4+ T cell and SPP1+ macrophage prognostic score (TMPS), was established in the bulk-RNA seq datasets for prognostic prediction. The TMPS achieved C-index values of 0.785, 0.715, 0.692 and 0.857, respectively, across 4 independent cohorts. A low TMPS was associated with a significantly increased survival rates, improved response to immunotherapy and reduced infiltration of immunosuppressive cells, such as. regulatory T cells. Finally, 8 potential sensitive drugs and 6 potential targets were predicted for patients based on their TMPS. CONCLUSION The crosstalk between naïve CD4+ T cells and SPP1+ macrophages play a crucial role in the TME. TMPS can reflect this crosstalk and serve as a valuable tool for prognostic stratification and guiding clinical decision-making.
Collapse
Affiliation(s)
- Libin Dong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xun Qiu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zekuan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wenwen Ge
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Tang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| |
Collapse
|
3
|
Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, Cai Y, Jiang T, Zhang G. Machine Learning Integration with Single-Cell Transcriptome Sequencing Datasets Reveals the Impact of Tumor-Associated Neutrophils on the Immune Microenvironment and Immunotherapy Outcomes in Gastric Cancer. Int J Mol Sci 2024; 25:12715. [PMID: 39684426 DOI: 10.3390/ijms252312715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The characteristics of neutrophils play a crucial role in defining the tumor inflammatory environment. However, the function of tumor-associated neutrophils (TANs) in tumor immunity and their response to immune checkpoint inhibitors (ICIs) remains incompletely understood. By analyzing single-cell RNA sequencing data from over 600,000 cells in gastric cancer (GSE163558 and GSE183904), colorectal cancer (GSE205506), and lung cancer (GSE207422), we identified neutrophil subsets in primary gastric cancer that are associated with the treatment response to ICIs. Specifically, we focused on neutrophils with high expression of CD44 (CD44_NEU), which are abundant during tumor progression and exert significant influence on the gastric cancer immune microenvironment. Machine learning analysis revealed 22 core genes associated with CD44_NEU, impacting inflammation, proliferation, migration, and oxidative stress. In addition, multiple immunofluorescence staining and gastric cancer spatial transcriptome data (GSE203612) showed a correlation between CD44_NEU and T-cell infiltration in gastric cancer tissues. A risk score model derived from seven essential genes (AQP9, BASP1, BCL2A1, PLEK, PDE4B, PROK2, and ACSL1) showed better predictive capability for patient survival compared to clinical features alone, and integrating these scores with clinical variables resulted in a prognostic nomogram. Overall, this study highlights the heterogeneity of TANs, particularly the CD44_NEU critical influence on immunotherapy outcomes, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Jingcheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingsi Zhang
- Musculoskeletal Sport Science and Health, Loughborough University, Loughborough LE11 3TU, UK
| | - Jiaheng Lou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Linyue Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuo Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojuan Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yani Ke
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sicheng Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiyuan Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xing Bai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Cai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Li T, Guo S, Xu C, Zhang M, Lyu C, Xu H, Hou Z, Zhang M, Li X, Ren J, Liu C, Kong D, Hao D, Wang G. Integrated single-cell transcriptome and TCR profiles of hepatocellular carcinoma highlight the convergence on interferon signaling during immunotherapy. J Immunother Cancer 2024; 12:e010534. [PMID: 39581706 PMCID: PMC11590841 DOI: 10.1136/jitc-2024-010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite the success of immune checkpoint inhibitor (ICI)-based combination therapies in hepatocellular carcinoma (HCC), its effectiveness remains confined to a subset of patients. The development of reliable, predictive markers is important for accurate patient stratification and further mechanistic understanding of therapy response. METHODS We comprehensively analyzed paired single-cell RNA transcriptome and T-cell repertoire profiles from 14 HCC ascites samples, collected from 7 patients before and after treatment with the combination of sintilimab (anti-PD-1) and bevacizumab (anti-VEGF). RESULTS We identify a widespread convergence on interferon (IFN) signaling across various immune cell lineages in treatment-responsive patients with HCC, indicating a common transcriptional state transition in the immune microenvironment linked to immunotherapy response in HCC. Strong IFN signaling marks CD8+ T cells with larger clonal expansion and enhanced cytotoxicity, macrophages toward M1-like polarization and strong T-cell recruitment ability, dendritic cells with increased antigen presentation capacity, as well as highly cytotoxic natural killer cells and activated B cells. By translating our finding to cohorts of patients with HCC, we demonstrate the specificity of IFN-signaling in the prognosis of patients with HCC and its ability to predict immunotherapy response. CONCLUSIONS This study provides a unique single-cell resource with clonal and longitudinal resolution during ICI therapy and reveals IFN signaling as a biomarker of immunotherapy response in HCC, suggesting a beneficial effect by combining IFN inducers with ICIs for patients with HCC.
Collapse
Affiliation(s)
- Tianhao Li
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Chang Xu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Mingjie Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Lyu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Huanhuan Xu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Zepeng Hou
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Mingshuo Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaobo Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Jing Ren
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Changqing Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Dan Kong
- Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Dapeng Hao
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
5
|
Zhao Q, Xiao M, Ma J, Fu C, Gao Q, Bi Y. Reverse resistance to immune checkpoint inhibitor in a patient with recurrent cardia cancer by intratumoral injection of recombinant human adenovirus type 5: a case report and literature review. Front Oncol 2024; 14:1465664. [PMID: 39588306 PMCID: PMC11586230 DOI: 10.3389/fonc.2024.1465664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
Advanced metastatic cardia cancer is an intractable malignance with poor prognosis. It is often accompanied by upper digestive tract obstruction, which seriously affects the quality of patients. Therefore, effective relief of eating obstruction is an important goal in the treatment of cardia cancer. Immune checkpoint inhibitors (ICIs) have shown significant efficacy in cardia cancer, but only a small percentage of patients will benefit from them due to immune resistance. Oncolytic viruses have been shown to enhance the efficacy of ICIs by altering the immune microenvironment. This indicates that oncolytic virus has the potential value of overcoming the immune resistance of cardia cancer. Here, we present a case with local recurrent and multiple metastatic cardia cancer accompanied by eating obstruction. After 4 cycles of chemotherapy plus ICI therapy, the patient´s metastases were significant shrink, but the recurrent carida lesion were almost unchanged. Then we implemented exploratory local injection of recombinant human adenovirus type 5(H101) into recurrent cardia lesion by painless gastroscopy. Surprisingly, the cardia lesion shrank significantly, and the eating obstruction was greatly relieved. We also observed a significant increase of infiltrated CD4+T cells in biopsy tissues after H101 treatment. Our study not only conformed the value of oncolytic viruses to reverse ICI resistance in patients with gastric cancer, but also revealed its underlying impact on immune microenvironment.
Collapse
Affiliation(s)
- Qiu Zhao
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Min Xiao
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Jian Ma
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Cong Fu
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Qianqian Gao
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| | - Yanzhi Bi
- Department of Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
6
|
Li J, Cheng X, Huang D, Cui R. The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential. Biomed Pharmacother 2024; 180:117598. [PMID: 39461015 DOI: 10.1016/j.biopha.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianwang Li
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China.
| | - Xiaozhen Cheng
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Denggao Huang
- Department of Central Laboratory, Xiangya School of Medicine Affiliated Haikou Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Ronghua Cui
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| |
Collapse
|
7
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
8
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2024. [PMID: 39485719 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Linlin Ji
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Hu R, Li J, Huang Q, Zhong X, Sun J, Yi J, Peng L, Liu X, Yang Y, Yang W, Wang Y, Ma W, Feng W, Xu Y, Zhou X. Qizhu anticancer prescription enhances immunosurveillance of liver cancer cells by regulating p21-dependent secretory phenotypes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118400. [PMID: 38823657 DOI: 10.1016/j.jep.2024.118400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, largely due to the limitations of available therapeutic strategies. The traditional Chinese medicine Qizhu Anticancer Prescription (QZACP) can improve the quality of life and prolong the survival time of patients with HCC. However, the precise mechanisms underlying the anti-cancer properties of QZACP remain unclear. PURPOSE This study examined the anti-hepatocarcinogenic properties of QZACP, with a specific focus on its influence on the p21-activated secretory phenotype (PASP)-mediated immune surveillance, to elucidate the underlying molecular pathways involved in HCC. MATERIALS AND METHODS Cell proliferation was measured using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, and clonogenic assays. The cell cycle was evaluated using flow cytometry, and senescence was identified by staining with senescence-associated beta-galactosidase (SA-β-gal). A primary liver cancer model produced by diethylnitrosamine was established in C57 BL/6 mice to assess the tumor-inhibitory effect of QZACP. The liver's pathological characteristics were examined using hematoxylin and eosin staining. PASP screening was performed using GeneCards, DisGeNet, Online Mendelian Inheritance in Man, and The Cancer Genome Atlas databases. Western blot analysis, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and Transwell migration assays were performed. RESULTS Serum containing QZACP enhanced p21 expression, triggered cell cycle arrest, accelerated cell senescence, and suppressed cell proliferation in Huh7 and MHCC-97H liver cancer cells. QZACP reduced the quantity and dimensions of liver tumor nodules and enhanced p21 protein expression, SA-β-Gal staining in tumor lesions, and cytotoxic CD8+ T cell infiltration. Bioinformatic analyses indicated that PASP factors, including hepatocyte growth factor, decorin (DCN), dermatopontin, C-X-C motif chemokine ligand 14 (CXCL14), and Wnt family member 2 (WNT2), play an important role in the development of HCC. In addition, these factors are associated with the presence of natural killer cells and CD8+ T cells within tumors. Western blotting and ELISA confirmed that QZACP increased DCN, CXCL14, and WNT2 levels in tumor tissues and peripheral blood. CONCLUSIONS QZACP's suppression of HCC progression may involve cell senescence mediated via p21 upregulation, DCN, CXCL14, and WNT2 secretion, and reversal of the immunosuppressive microenvironment. This study provides insights that can be used in the development of new treatment strategies for HCC.
Collapse
Affiliation(s)
- Rui Hu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Jing Li
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Qi Huang
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Xin Zhong
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jialing Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Jinyu Yi
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Lanfen Peng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Xinning Liu
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Yuan Yang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Wenmin Yang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yan Wang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Wenfeng Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenxing Feng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China
| | - Youhua Xu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China
| | - Xiaozhou Zhou
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, 999078, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
10
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
11
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Kwantwi LB. SLAM family-mediated crosstalk between tumor and immune cells in the tumor microenvironment: a promising biomarker and a potential therapeutic target for immune checkpoint therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03675-2. [PMID: 39212911 DOI: 10.1007/s12094-024-03675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Immune cells infiltrating the tumor microenvironment are physiologically important in controlling cancers. However, emerging studies have shown that cancer cells can evade immune surveillance and establish a balance in which these immune cells support tumor progression and therapeutic resistance. The signaling lymphocytic activation molecule family members have been recognized as mediators of tumor microenvironment interactions, and a promising therapeutic target for cancer immunotherapy. This review is focused on the role of SLAM family in tumor and immune cell interactions and discusses how such crosstalk affects tumor behavior. This will shed insight into the next step toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
13
|
Yu Y, Zhang C, Dong B, Zhang Z, Li X, Huang S, Tang D, Jing X, Yu S, Zheng T, Wu D, Tai S. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2. Cancer Lett 2024; 598:217098. [PMID: 38969159 DOI: 10.1016/j.canlet.2024.217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Immune escape is the main reason that immunotherapy is ineffective in hepatocellular carcinoma (HCC). Here, this study illustrates a pathway mediated by neutrophil extracellular traps (NETs) that can promote immune escape of HCC. Mechanistically, we demonstrated that NETs up-regulated CD73 expression through activating Notch2 mediated nuclear factor kappa B (NF-κB) pathway, promoting regulatory T cells (Tregs) infiltration to mediate immune escape of HCC. In addition, we found the similar results in mouse HCC models by hydrodynamic plasmid transfection. The treatment of deoxyribonuclease I (DNase I) could inhibit the action of NETs and improve the therapeutic effect of anti-programmed cell death protein 1 (PD-1). In summary, our results revealed that targeting of NETs was a promising treatment to improve the therapeutic effect of anti-PD-1.
Collapse
Affiliation(s)
- Yang Yu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Congyi Zhang
- Key Laboratory of Precision Nutrition and Health of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Bowen Dong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Zhihua Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Daowei Tang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiaowei Jing
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Tongsen Zheng
- Heilongjiang Province Key Laboratory of Molecular Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
14
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
15
|
Provera A, Vecchio C, Sheferaw AN, Stoppa I, Pantham D, Dianzani U, Sutti S. From MASLD to HCC: What's in the middle? Heliyon 2024; 10:e35338. [PMID: 39170248 PMCID: PMC11336632 DOI: 10.1016/j.heliyon.2024.e35338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a progressive pathological condition characterized by the accumulation of triglycerides within hepatocytes that causes histological changes, which, in the long run, might compromise liver functional capacities. MASLD predisposes to metabolic dysfunction-associated steatohepatitis (MASH), in which the persistence of inflammatory reactions perpetuates tissue injury and induces alterations of the extracellular matrix, leading to liver fibrosis and cirrhosis. Furthermore, these processes are also fertile ground for the development of hepatocellular carcinoma (HCC). In this latter respect, growing evidence suggests that chronic inflammation not only acts as the primary stimulus for hepatocellular malignant transformation, cell proliferation and cancer cell progression but also reshapes the immune landscape, inducing immune system exhaustion and favoring the loss of cancer immune surveillance. Therefore, a thorough understanding of the cellular and molecular mechanisms orchestrating hepatic inflammatory responses may open the way for fine-tuning therapeutic interventions that could, from one side, counteract MASLD progression and, on the other one, effectively treat HCCs.
Collapse
Affiliation(s)
- Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Cristina Vecchio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Anteneh Nigussie Sheferaw
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
16
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Peeters F, Cappuyns S, Piqué-Gili M, Phillips G, Verslype C, Lambrechts D, Dekervel J. Applications of single-cell multi-omics in liver cancer. JHEP Rep 2024; 6:101094. [PMID: 39022385 PMCID: PMC11252522 DOI: 10.1016/j.jhepr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Marta Piqué-Gili
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Phillips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Zhang B, Su L, Lin Y. Efficacy and safety of lenvatinib combined with PD‑1/PD‑L1 inhibitors in the treatment of hepatocellular carcinoma: A meta‑analysis and systematic review. Oncol Lett 2024; 28:312. [PMID: 38803443 PMCID: PMC11129543 DOI: 10.3892/ol.2024.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
A meta-analysis of the clinical survival indicators, adverse reactions and safety of lenvatinib combined with programmed death-1 (PD-1) inhibitors in treating liver cancer was conducted, providing objective and effective evidence for clinical use. The present study is anticipated to guide the clinical application of lenvatinib. In the current meta-analysis, the PubMed, Embase and Cochrane Library databases were searched from inception to September 2023. Randomized controlled trials (RCTs), non-RCTs and single-arm trial studies related to the combined treatment of lenvatinib and PD-1/PD-ligand 1 (L1) inhibitors for hepatocellular carcinoma (HCC) were included, while published and unpublished literature on other study types, literature with incomplete or inadequate information, animal experiments, literature reviews and systematic studies were excluded. Data were processed using STATA 15.1. The pooled results showed that the objective response rate [ORR; odds ratio (OR), 3.36; 95% confidence interval (CI), 2.13-5.30; P<0.001], disease control rate (DCR; OR, 1.62; 95% CI, 1.03-2.57; P=0.038) and partial response (PR; OR, 3.81; 95% CI, 2.17-6.70; P<0.001) of combined lenvatinib and PD-1/PD-L1 inhibitor therapy were significantly higher than those of lenvatinib monotherapy. Additionally, subgroup analysis results showed that the DCR of combination therapy using lenvatinib and nivolumab was significantly higher than that of lenvatinib monotherapy (OR, 2.20; 95% CI; 1.07-4.51; P=0.032). The difference between combination therapy using lenvatinib and camrelizumab, and lenvatinib monotherapy was not significant. However, the complete response, stable disease, progression disease and incidence rate of adverse events between combination therapy and lenvatinib monotherapy were not significantly different. Compared with lenvatinib alone, lenvatinib combined with PD-1/PD-L1 inhibitors significantly improved ORR, mainly PR, and DCR in patients with HCC. At present, lenvatinib is mainly combined with nivolumab to increase the DCR of lenvatinib monotherapy for HCC. In addition, the incidence rate of adverse reactions between combination therapy and lenvatinib monotherapy was not significantly different for HCC.
Collapse
Affiliation(s)
- Baoyan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Linfeng Su
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yonghua Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
19
|
Mousset A, Bellone L, Gaggioli C, Albrengues J. NETscape or NEThance: tailoring anti-cancer therapy. Trends Cancer 2024; 10:655-667. [PMID: 38664080 DOI: 10.1016/j.trecan.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
Neutrophils, major regulators of innate immunity, have recently emerged as key components of the tumor microenvironment. The role of neutrophils in cancer has been linked to their ability to form neutrophil extracellular traps (NETs), structures composed of decondensed DNA decorated with enzymes that are released into the extracellular space. Here, we discuss the pivotal roles of NETs in influencing responses to anticancer therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Highlighting recent insights, we delve into the dual nature of NETs in the context of anticancer treatments, examining their potential to either counteract or enhance treatment outcomes. Strategic targeting of NETs may be a promising avenue for crafting combination therapies to counteract resistance or enhance anticancer treatments' efficacy.
Collapse
Affiliation(s)
- Alexandra Mousset
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Lola Bellone
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Cedric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Jean Albrengues
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
20
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
21
|
Horvath L, Puschmann C, Scheiber A, Martowicz A, Sturm G, Trajanoski Z, Wolf D, Pircher A, Salcher S. Beyond binary: bridging neutrophil diversity to new therapeutic approaches in NSCLC. Trends Cancer 2024; 10:457-474. [PMID: 38360439 DOI: 10.1016/j.trecan.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Neutrophils represent the most abundant myeloid cell subtype in the non-small-cell lung cancer (NSCLC) tumor microenvironment (TME). By anti- or protumor polarization, they impact multiple aspects of tumor biology and affect sensitivity to conventional therapies and immunotherapies. Single-cell RNA sequencing (scRNA-seq) analyses have unraveled an extensive neutrophil heterogeneity, helping our understanding of their pleiotropic role. In this review we summarize recent data and models on tumor-associated neutrophil (TAN) biology, focusing on the diversity that evolves in response to tumor-intrinsic cues. We categorize available transcriptomic profiles from different cancer entities into a defined set of neutrophil subclusters with distinct phenotypic properties, to step beyond the traditional binary N1/2 classification. Finally, we discuss potential ways to exploit these neutrophil states in the setting of anticancer therapy.
Collapse
Affiliation(s)
- Lena Horvath
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Constanze Puschmann
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Alexandra Scheiber
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria; Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Stefan Salcher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria.
| |
Collapse
|
22
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
23
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Zhang M, Zhang S, Guo W, He Y. Novel molecular hepatocellular carcinoma subtypes and RiskScore utilizing apoptosis-related genes. Sci Rep 2024; 14:3913. [PMID: 38365931 PMCID: PMC10873508 DOI: 10.1038/s41598-024-54673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of global cancer-related deaths. Despite immunotherapy offering hope for patients with HCC, only some respond to it. However, it remains unclear how to pre-screen eligible patients. Our study aimed to address this issue. In this study, we identified 13 prognostic genes through univariate Cox regression analysis of 87 apoptosis-related genes. Subsequently, these 13 genes were analyzed using ConsensusClusterPlus, and patients were categorized into three molecular types: C1, C2, and C3. A prognostic model and RiskScore were constructed using Lasso regression analysis of 132 significant genes identified between C1 and C3. We utilized quantitative polymerase chain reaction to confirm the model's transcript level in Huh7 and THLE2 cell lines. Both molecular subtypes and RiskScores effectively predicted patients benefiting from immunotherapy. Cox regression analysis revealed RiskScore as the most significant prognosis factor, suggesting its clinical application potential and providing a foundation for future experimental research.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China.
| |
Collapse
|
26
|
Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, Qin W, Fan J, Wang C, Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024; 42:180-197. [PMID: 38350421 DOI: 10.1016/j.ccell.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.
Collapse
Affiliation(s)
- Xupeng Yang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew X Zhu
- I-Mab Biopharma, Shanghai, China; Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|