1
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
2
|
Schinzari F, Tesauro M, Cardillo C. Is endothelin targeting finally ready for prime time? Clin Sci (Lond) 2024; 138:635-644. [PMID: 38785409 DOI: 10.1042/cs20240607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The endothelin family of peptides has long been recognized as a physiological regulator of diverse biological functions and mechanistically involved in various disease states, encompassing, among others, the cardiovascular system, the kidney, and the nervous system. Pharmacological blockade of the endothelin system, however, has encountered strong obstacles in its entry into the clinical mainstream, having obtained only a few proven indications until recently. This translational gap has been attributable predominantly to the relevant side effects associated with endothelin receptor antagonism (ERA), particularly fluid retention. Of recent, however, an expanding understanding of the pathophysiological processes involving endothelin, in conjunction with the development of new antagonists of endothelin receptors or adjustment of their doses, has driven a flourish of new clinical trials. The favorable results of some of them have extended the proven indications for ET targeting to a variety of clinical conditions, including resistant arterial hypertension and glomerulopathies. In addition, on the ground of strong preclinical evidence, other studies are ongoing to test the potential benefits of ERA in combination with other treatments, such as sodium-glucose co-transporter 2 inhibition in fluid retentive states or anti-cancer therapies in solid tumors. Furthermore, antibodies providing long-term blockade of endothelin receptors are under testing to overcome the short half-life of most small molecule endothelin antagonists. These efforts may yet bring new life to the translation of endothelin targeting strategies in clinical practice.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, Università Tor Vergata, Roma, Italy
| | - Carmine Cardillo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
3
|
Singh S, Dwivedi S, Khan AA, Jain A, Dwivedi S, Yadav KK, Dubey I, Trivedi A, Trivedi SP, Kumar M. Oxidative stress, inflammation, and steatosis elucidate the complex dynamics of HgCl 2 induced liver damage in Channa punctata. Sci Rep 2024; 14:9161. [PMID: 38644412 PMCID: PMC11033285 DOI: 10.1038/s41598-024-59917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
Water bodies are highly pollution-prone areas in which mercury (Hg) is considered as a major menace to aquatic organisms. However, the information about the toxicity of mercuric chloride (HgCl2) in a vital organ such as the liver of fish is still inadequate. This study aimed to assess the impact of mercuric chloride (HgCl2) exposure on the liver of Channa punctata fish over 15, 30, and 45 days, at two different concentrations (0.039 mg/L and 0.078 mg/L). Mercury is known to be a significant threat to aquatic life, and yet, information regarding its effects on fish liver remains limited. The results of this study demonstrate that exposure to HgCl2 significantly increases oxidative stress markers, such as lipid peroxidation (LPO) and protein carbonyls (PC), as well as the levels of serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in the fish. Additionally, the transcriptional and protein analysis of specific genes and molecules associated with necroptosis and inflammation, such as ABCG2, TNF α, Caspase 3, RIPK 3, IL-1β, Caspase-1, IL-18, and RIPK1, confirm the occurrence of necroptosis and inflammation in the liver. Histopathological and ultrastructural examinations of the liver tissue further reveal a significant presence of liver steatosis. Interestingly, the upregulation of PPARα suggests that the fish's body is actively responding to counteract the effects of liver steatosis. This study provides a comprehensive analysis of oxidative stress, biochemical changes, gene expression, protein profiles, and histological findings in the liver tissue of fish exposed to mercury pollution in freshwater environments.
Collapse
Affiliation(s)
- Shefalee Singh
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shikha Dwivedi
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Adeel Ahmad Khan
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Anamika Jain
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shraddha Dwivedi
- Department of Zoology, Government Degree College, Haripur-Nihastha, Raebareli, 229208, India
| | - Kamlesh Kumar Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao, 209801, India
| | - Indrani Dubey
- Department of Zoology, DBS College, Kanpur, Uttar Pradesh, 208006, India
| | - Abha Trivedi
- Department of Zoology, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, Uttar Pradesh, 243006, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory (ETBL), Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
4
|
Zeng J, Fan JG, Francque SM. Therapeutic management of metabolic dysfunction associated steatotic liver disease. United European Gastroenterol J 2024; 12:177-186. [PMID: 38193865 PMCID: PMC10954426 DOI: 10.1002/ueg2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
The incidence and prevalence of non-alcoholic fatty liver disease (NAFLD) have been steadily increasing worldwide, with a huge societal and economic burden. Recently, NAFLD and non-alcoholic steatohepatitis have been renamed and redefined as metabolic dysfunction associated steatotic liver disease (MASLD) and steatohepatitis (Metabolic Dysfunction Associated Steatohepatitis (MASH)), which result from an imbalance between metabolic and inflammatory stress (mainly as a consequence of adipose tissue dysfunction and insulin resistance) and the defence and repair mechanisms of the steatotic liver. Once MASLD progresses to end-stage of liver disease, treatment efficacy becomes limited and may require liver transplantation. Early detection and intervention are crucial. Lifestyle modification is consequently the cornerstone of its management. Timely consideration of bariatric surgeries should be given to patients meeting specific criteria. A multidisciplinary approach is warranted, starting from the concept that MASLD/MASH is at the centre of the cardiovascular-liver-metabolic syndrome. In some cases, pharmacological treatment can complement lifestyle modification. Several drugs used to treat the cardiometabolic co-morbidities have some potential efficacy in slowing Down disease progression, and some have demonstrated efficacy on histological endpoints that are likely to translate into long-term clinical benefits. Optimising the use of these drugs within their licenced indications is thus paramount for patients with MASLD. Several MASH-specific drugs are on the horizon and are likely to enrich our therapeutic armamentarium in the near future, particularly in non-cirrhotic stages of the disease. Much work still needs to be done to understand the specific features of MASH cirrhosis and develop efficacious treatments for this disease stage.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium
- InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Driessen S, Francque SM, Anker SD, Castro Cabezas M, Grobbee DE, Tushuizen ME, Holleboom AG. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2023:01515467-990000000-00699. [PMID: 38147315 DOI: 10.1097/hep.0000000000000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) are increasing. Physicians who treat patients with MASLD may acknowledge the strong coincidence with cardiometabolic disease, including atherosclerotic cardiovascular disease (asCVD). This raises questions on co-occurrence, causality, and the need for screening and multidisciplinary care for MASLD in patients with asCVD, and vice versa. Here, we review the interrelations of MASLD and heart disease and formulate answers to these matters. Epidemiological studies scoring proxies for atherosclerosis and actual cardiovascular events indicate increased atherosclerosis in patients with MASLD, yet no increased risk of asCVD mortality. MASLD and asCVD share common drivers: obesity, insulin resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension, and sleep apnea syndrome. In addition, Mendelian randomization studies support that MASLD may cause atherosclerosis through mixed hyperlipidemia, while such evidence is lacking for liver-derived procoagulant factors. In the more advanced fibrotic stages, MASLD may contribute to heart failure with preserved ejection fraction by reduced filling of the right ventricle, which may induce fatigue upon exertion, often mentioned by patients with MASLD. Some evidence points to an association between MASLD and cardiac arrhythmias. Regarding treatment and given the strong co-occurrence of MASLD and asCVD, pharmacotherapy in development for advanced stages of MASLD would ideally also reduce cardiovascular events, as has been demonstrated for T2DM treatments. Given the common drivers, potential causal factors and especially given the increased rate of cardiovascular events, comprehensive cardiometabolic risk management is warranted in patients with MASLD, preferably in a multidisciplinary approach.
Collapse
Affiliation(s)
- Stan Driessen
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Manuel Castro Cabezas
- Julius Clinical, Zeist, The Netherlands
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick E Grobbee
- Julius Clinical, Zeist, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
7
|
Li D, Janmey PA, Wells RG. Local fat content determines global and local stiffness in livers with simple steatosis. FASEB Bioadv 2023; 5:251-261. [PMID: 37287868 PMCID: PMC10242205 DOI: 10.1096/fba.2022-00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023] Open
Abstract
Fat accumulation during liver steatosis precedes inflammation and fibrosis in fatty liver diseases, and is associated with disease progression. Despite a large body of evidence that liver mechanics play a major role in liver disease progression, the effect of fat accumulation by itself on liver mechanics remains unclear. Thus, we conducted ex vivo studies of liver mechanics in rodent models of simple steatosis to isolate and examine the mechanical effects of intrahepatic fat accumulation, and found that fat accumulation softens the liver. Using a novel adaptation of microindentation to permit association of local mechanics with microarchitectural features, we found evidence that the softening of fatty liver results from local softening of fatty regions rather than uniform softening of the liver. These results suggest that fat accumulation itself exerts a softening effect on liver tissue. This, along with the localized heterogeneity of softening within the liver, has implications in what mechanical mechanisms are involved in the progression of liver steatosis to more severe pathologies and disease. Finally, the ability to examine and associate local mechanics with microarchitectural features is potentially applicable to the study of the role of heterogeneous mechanical microenvironments in both other liver pathologies and other organ systems.
Collapse
Affiliation(s)
- David Li
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul A. Janmey
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca G. Wells
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- NSF Science and Technology Center for Engineering MechanoBiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Furuta K, Tang X, Islam S, Tapia A, Chen ZB, Ibrahim SH. Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications. Pharmacol Ther 2023; 244:108372. [PMID: 36894027 PMCID: PMC10084912 DOI: 10.1016/j.pharmthera.2023.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.
Collapse
Affiliation(s)
- Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiaofang Tang
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Alonso Tapia
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications & Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Samar H Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Paternostro R, Kwanten WJ, Reiberger T. Portal hypertension is a key determinant of the risk for liver-related events in non-alcoholic fatty liver disease. J Hepatol 2023; 78:e102-e104. [PMID: 36070837 DOI: 10.1016/j.jhep.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria
| | - Wilhelmus J Kwanten
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Wang A, Li Z, Sun Z, Wang Y, Fu S, Zhang D, Ma X. Heart failure with preserved ejection fraction and non-alcoholic fatty liver disease: new insights from bioinformatics. ESC Heart Fail 2023; 10:416-431. [PMID: 36266995 PMCID: PMC9871724 DOI: 10.1002/ehf2.14211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) are related conditions with an increasing incidence. The mechanism of their relationship remains undefined. Here, we aimed to explore the potential mechanisms, diagnostic markers, and therapeutic options for HFpEF and NAFLD. METHODS AND RESULTS HFpEF and NAFLD datasets were downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) were screened for functional annotation. A protein-protein interaction network was constructed based on the STRING database, and hub genes were analysed using GeneMANIA annotation. ImmuCellAI (Immune Cell Abundance Identifier) was employed for analysis of immune infiltration. We also used validation datasets to validate the expression levels of hub genes and the correlation of immune cells. To screen for diagnostic biomarkers, we employed the least absolute shrinkage and selection operator and support vector machine-recursive feature elimination. Drug signature database was used to predict potential therapeutic drugs. Our analyses identified a total of 33 DEGs. Inflammation and immune infiltration played important roles in the development of both diseases. The data showed a close relationship between chemokine signalling pathway, cytokine-cytokine receptor interaction, calcium signalling pathway, neuroactive ligand-receptor interaction, osteoclast differentiation, and cyclic guanosine monophosphate-protein kinase G signalling pathway. We demonstrated that PRF1 (perforin 1) and IL2RB (interleukin-2 receptor subunit beta) proteins were perturbed by the diseases and may be the hub genes. The analysis showed that miR-375 may be a potential diagnostic marker for both diseases. Our drug prediction analysis showed that bosentan, eldecalcitol, ramipril, and probucol could be potential therapeutic options for the diseases. CONCLUSIONS Our findings revealed common pathogenesis, diagnostic markers, and therapeutic agents for HFpEF and NAFLD. There is need for further experimental studies to validate our findings.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
- Graduate SchoolChina Academy of Chinese Medical SciencesBeijingChina
| | - Zhendong Li
- Qingdao West Coast New Area People's HospitalQingdaoChina
| | - Zhuo Sun
- Qingdao West Coast New Area People's HospitalQingdaoChina
| | - Yifei Wang
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
- Beijing University of Chinese MedicineBeijingChina
| | - Shuangqing Fu
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
- Beijing University of Chinese MedicineBeijingChina
| | - Dawu Zhang
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
- National Clinical Research Center for Chinese Medicine CardiologyBeijingChina
| | - Xiaochang Ma
- Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
- National Clinical Research Center for Chinese Medicine CardiologyBeijingChina
| |
Collapse
|
11
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
13
|
Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne) 2022; 13:1087260. [PMID: 36726464 PMCID: PMC9884828 DOI: 10.3389/fendo.2022.1087260] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.
Collapse
Affiliation(s)
- Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Junyan Zou
- Medical Research Institute, Southwest University, Chongqing, China
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Wei Ran
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Xiaohong Qi
- Department of General surgery, Baoshan People’s Hospital of Yunnan Province, Baoshan, Yunnan, China
| | - Yaokai Chen
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
- *Correspondence: Jinjun Guo,
| |
Collapse
|