1
|
Murillo-Prieto N, Capote-Moreno A, Wix-Ramos R, Arjona BA, De Carlos Villafranca F, Rubio-Bueno P. Comprehensive 3D upper airway analysis in OSA patients after bilateral internal ramus distraction osteogenesis of the mandible (BIRD). J Craniomaxillofac Surg 2025; 53:734-742. [PMID: 39988532 DOI: 10.1016/j.jcms.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/02/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
Bilateral internal ramus mandibular distraction (BIRD) has recently been proposed as an effective surgical alternative for the treatment of obstructive sleep apnoea (OSA) in adults. This study analysed post-operative changes in the upper airway and key polysomnographic (PSG) indexes of 32 patients with moderate to severe OSA and aimed to determine if any morphological parameters could predict clinical improvement. All patients were evaluated by cone-beam computed tomography (CBCT) scans and PSG at three time points: pre-surgery (T1), post-BIRD (T2), and post-maxillary advancement (T3). Pairwise comparisons (Wilcoxon test, p<0.05) showed a reduction in the apnoea-hypopnoea index (AHI) from T1 (47.9 ± 23.1) to T2 (14.4 ± 14.3) and T3 (4.7 ± 5.6), with a final cure rate of 81.2% (defined as final AHI <5). All measured airway variables increased after T2 and T3, but only the changes after BIRD were statistically significant. Regression analysis revealed that counterclockwise rotation of the occlusal plane after BIRD correlated with all measured changes in airway parameters. The amount of sagittal advancement of the soft pogonion predicted success: for each mm of advancement, the AHI was reduced by 9.8%. Accurate pre-operative evaluation of soft pogonion advancement is essential for OSA patients considering BIRD. Further research is needed to confirm the findings' significance.
Collapse
Affiliation(s)
- Noemí Murillo-Prieto
- Department of Surgery and Medical-Surgical Specialities, Orthodontics Section, Faculty of Medicine, University of Oviedo, 33006, Oviedo, Spain
| | - Ana Capote-Moreno
- Department of Oral and Maxillofacial Surgery, University Hospital La Princesa, Diego de León 62, 28006, Madrid, Spain
| | - Rybel Wix-Ramos
- Department of Clinical Neurophysiology, Sleep Unit, University Hospital La Princesa, Diego de León 62, 28006, Madrid, Spain
| | - Beatriz Albarracín Arjona
- Department of Oral and Maxillofacial Surgery, Hospital Quirónsalud Infanta Luisa, San Jacinto 87, 41010, Sevilla, Spain
| | - Félix De Carlos Villafranca
- Department of Surgery and Medical-Surgical Specialities, Orthodontics Section, Faculty of Medicine, University of Oviedo, 33006, Oviedo, Spain.
| | - Pilar Rubio-Bueno
- Department of Oral and Maxillofacial Surgery, University Hospital La Princesa, Diego de León 62, 28006, Madrid, Spain
| |
Collapse
|
2
|
Schuh A, Gunz P, Villa C, Maureille B, Toussaint M, Abrams G, Hublin JJ, Freidline SE. Human midfacial growth pattern differs from that of Neanderthals and chimpanzees. J Hum Evol 2025; 202:103667. [PMID: 40132491 DOI: 10.1016/j.jhevol.2025.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Present-day humans have small and retracted midfaces, while Neanderthals possess large and forwardly projected midfaces. To understand the ontogenetic patterns underlying these characteristic morphologies, we compared maxillary growth and development from birth to adulthood in present-day humans (Homo sapiens; n = 128), Neanderthals (Homo neanderthalensis; n = 13), and chimpanzees (Pan troglodytes verus; n = 33) using macroscopic (i.e., geometric morphometrics) and microscopic (i.e., surface histology) approaches. Using geometric morphometrics to quantify macroscopic patterns of growth and development, we found that the midfaces of present-day humans are on average already smaller at birth than those of Neanderthals and grow more slowly after birth. In particular, we find an early cessation of growth around adolescence, which is unique to our species. Microscopically, this is reflected in reduced amounts of bone resorption, indicative of decreased cellular activities linked to bone development. Greater amounts of bone formation in the infraorbital and nasal regions and faster growth rates are responsible for the large Neanderthal midface. These results highlight the importance of postnatal ontogeny (especially in late stages) for explaining facial differences between Neanderthals and present-day humans, as well as part of the gracilization process characteristic of present-day humans.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Chiara Villa
- Department of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, DK-2100 Copenhagen, Denmark
| | - Bruno Maureille
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
| | - Michel Toussaint
- Association Wallonne d'Études Mégalithiques, 4000 Liège, Belgium; Department of Archaeology, Ghent University, 9000 Ghent, Belgium
| | - Grégory Abrams
- Department of Archaeology, Ghent University, 9000 Ghent, Belgium; Scladina Cave Archaeological Centre, Espace muséal d'Andenne, Rue Fond des Vaux 339D, 5300 Andenne, Belgium
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Sarah E Freidline
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Orlando, USA.
| |
Collapse
|
3
|
Bockow R. The three-dimensionality of the "gummy smile". J Prosthodont 2025; 34:35-40. [PMID: 39676471 DOI: 10.1111/jopr.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/02/2024] [Indexed: 12/17/2024] Open
Abstract
The "gummy smile" is a complex developmental issue that requires a three-dimensional approach to diagnosis and treatment. This article explores the multifaceted nature of the gummy smile, tracing its origins to early childhood growth patterns and breathing dysfunctions. It emphasizes the importance of understanding the interplay between skeletal development, soft tissue function, and breathing modalities in the formation of craniofacial structures. The article discusses how early mouth breathing and tongue dysfunction can lead to maladaptive skeletal growth, resulting in vertical maxillary excess and other facial imbalances. It highlights the critical role of nasal breathing and proper tongue posture in promoting healthy craniofacial development. Treatment options are presented for both growing children and adults, ranging from preventive measures to surgical interventions. For children, the focus is on early intervention to redirect growth patterns, while for adults, comprehensive treatment may include orthognathic surgery to correct established skeletal discrepancies. By providing an in-depth analysis of the three-dimensional aspects of the gummy smile, this article aims to equip interdisciplinary teams with the knowledge needed for accurate diagnosis and effective treatment planning. It underscores the importance of addressing underlying causes rather than merely treating symptoms, promoting a holistic approach to patient care in aesthetic dentistry.
Collapse
Affiliation(s)
- Rebecca Bockow
- Private practice, Inspired Orthodontics, Seattle, Washington, USA
| |
Collapse
|
4
|
Hamano S, Sawada M, Kubota N. Reply to the Letters by Louie and Pereira et al. Diabetes Obes Metab 2025; 27:1622-1625. [PMID: 39723475 DOI: 10.1111/dom.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Shoko Hamano
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Sawada
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Messina M, Messina V. Nova fails to appreciate the value of plant-based meat and dairy alternatives in the diet. J Food Sci 2025; 90:e70039. [PMID: 39929603 PMCID: PMC11810565 DOI: 10.1111/1750-3841.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Processed foods play an important role in achieving both food and nutrition security. However, in recent years, there has been increased concern about the health effects of food processing, in large part because of the emergence of the Nova food classification system. Nova classifies all foods into one of four groups purportedly based entirely on the extent to which they have been processed. Recommendations to limit intake of ultra-processed foods (UPF) (group 4) are based primarily on observational studies showing that their intake is associated with a range of adverse outcomes. Nearly all plant milks and the entire new generation of plant-based meat alternatives (PBMAs), which are made using concentrated sources of plant protein, are classified as UPFs. This classification may deter the public from consuming and health professionals from recommending these products even though they represent a convenient way to increase plant protein intake in high-income countries, which is recommended by health authorities. However, although total UPF intake is associated with adverse health outcomes, this is not the case for many subcategories of UPFs. Furthermore, in many instances, clinical research shows that PBMAs and plant milks have beneficial effects relative to their animal-based counterparts (Group 1). Collectively, the evidence leads to two conclusions. First, PBMAs represent a viable approach for lowering the dietary animal to plant protein ratio. Second, Nova paints with too broad a brush and is insufficiently nuanced to serve as a public guide for food purchasing decisions and may distract consumers from focusing on the importance of nutrient content.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute GlobalJefferson CityMissouriUSA
| | | |
Collapse
|
6
|
Chandler KE, Gálvez-López E, Black S, Kitchener AC, Hamill K, Roberts B, Doherty S, Cox PG. Morphological change in an isolated population of red squirrels ( Sciurus vulgaris) in Britain. ROYAL SOCIETY OPEN SCIENCE 2025; 12:240555. [PMID: 39816738 PMCID: PMC11732421 DOI: 10.1098/rsos.240555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The mechanical properties of dietary items are known to influence skull morphology, either through evolution or by phenotypic plasticity. Here, we investigated the impact of supplementary feeding of peanuts on the morphology of red squirrels (Sciurus vulgaris) from five populations in Britain (North Scotland, Borders, Jersey and two temporally distinct populations from Formby (Merseyside)). Stable isotope analysis confirmed dietary ecology in 58 specimens. Geometric morphometrics were used to analyse three-dimensional and two-dimensional shape variation across 113 crania and 388 mandibles, respectively. Nitrogen isotope ratios (δ15N) were lower in the 1990s and 2010s Formby squirrels (suggesting a diet with an increased proportion of peanuts), and higher in other populations. Significant differences in cranio-mandibular shape were found between all populations, with 1990s Formby red squirrels exhibiting a morphology associated with reduced masticatory efficiency. This effect was partially reversed following a reduction in supplementary feeding of peanuts. We propose that these morphological changes are related to the reduced mechanical effort needed to process peanuts relative to naturally occurring food items. This could be an example of diet-induced plastic changes to the skeleton in non-muroid wild mammals, although further research is needed to exclude other driving factors such as genetics.
Collapse
Affiliation(s)
- Kim E. Chandler
- Hull York Medical School, University of York, YorkYO10 5DD, UK
| | - Eloy Gálvez-López
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, LondonWC1E 6BT, UK
| | - Stuart Black
- Department of Geography and Environmental Science, University of Reading, ReadingRG6 6EJ, UK
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, EdinburghEH1 1JF, UK
- School of Geosciences, Institute of Geography, University of Edinburgh, EdinburghEH8 9XP, UK
| | - Kat Hamill
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, NottinghamNG25 0QF, UK
| | - Bethan Roberts
- Department of Archaeology and History, University of Exeter, ExeterEX4 4QJ, UK
| | - Sean Doherty
- Department of Archaeology and History, University of Exeter, ExeterEX4 4QJ, UK
| | - Philip G. Cox
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
7
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Sandel AA, Scott JE, Kamilar JM. Primate Behavior and the Importance of Comparative Studies in Biological Anthropology. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70009. [PMID: 40071872 DOI: 10.1002/ajpa.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 12/21/2024] [Indexed: 04/02/2025]
Abstract
Biological anthropology seeks to understand humans from an evolutionary perspective. Namely, what makes humans different from other animals, and how did we get this way? Many relevant traits are physical, but many others are behavioral. For example, when and why did our species develop complex cognition, enduring bonds, and intense cooperation? Given the importance of behavior, biological anthropologists have a long history of turning to our primate relatives to generate hypotheses about the evolutionary processes shaping humans. Indeed, primate behavior is foundational to our field. But not all biological anthropologists appreciate the value of primate behavior for understanding human evolution. Beyond lip service in introductory paragraphs and grant proposals, many primatologists do not make explicit how their work is relevant to human evolution. In this review, we have three main goals: (1) emphasize how comparative studies of primate behavior are crucial to biological anthropology; (2) outline how primatologists and biological anthropologists can improve their work by avoiding common problems that arise when making such comparisons; and (3) provide a primer on the concepts and methods underlying comparative analyses of traits. We provide examples to highlight these points related to cognition, sociality, and diet. We conclude with several recommendations including (1) detailed, high-quality studies of behavior that allow for appropriate comparisons within and across species; (2) using primates as a "gateway clade" and expanding our research to any relevant taxa; and (3) careful attention to the ethical implications of making comparisons to other primates given racist tropes and a history of eugenics.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Jason M Kamilar
- Department of Anthropology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Hamano S, Sawada M, Aihara M, Sakurai Y, Sekine R, Usami S, Kubota N, Yamauchi T. Ultra-processed foods cause weight gain and increased energy intake associated with reduced chewing frequency: A randomized, open-label, crossover study. Diabetes Obes Metab 2024; 26:5431-5443. [PMID: 39267249 DOI: 10.1111/dom.15922] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024]
Abstract
AIM To elucidate the effects of ultra-processed foods (UPFs) on body weight and ad libitum energy intake compared with non-UPFs. MATERIALS AND METHODS In this randomized, open-label crossover study conducted at the University of Tokyo Hospital, overweight/obese Japanese male participants were randomly assigned (1:1) to start the study with consumption of either UPFs or non-UPFs for 1 week, followed by a 2-week washout period, before crossing over to the alternate food diet for 1 week. Individuals with diabetes, hypertension or any other medical conditions who visited a hospital regularly were excluded. The meals were designed to be matched for the total energy and macronutrient levels. The primary outcome was the difference in the body weight change between the UPF and non-UPF periods. The differences in the average daily energy intake and chewing frequency were assessed as one of the prespecified secondary outcomes. RESULTS Nine eligible participants were randomly assigned to start the study with either UPFs or non-UPFs. All participants completed the study. During the UPF period, participants gained 1.1 kg more weight (95% confidence interval 0.2 to 2.0; P = .021) and consumed 813.5 kcal more per day (342.4 to 1284.7; P = .0041) compared with during the non-UPF period. Regarding the chewing frequency, the number of chews per calorie was significantly lower during the UPF period (P = .016). CONCLUSIONS Consumption of UPFs causes significant weight gain. Medical nutritional therapy focused on reducing the consumption of UPFs could be an effective strategy for preventing obesity.
Collapse
Affiliation(s)
- Shoko Hamano
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Sawada
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo, Japan
| | - Masakazu Aihara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sakurai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Sekine
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo, Japan
| | - Satoshi Usami
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Holmes MA, Terhune CE, Chalk-Wilayto J, Yoakum CB, Taylor P, Ramirez R, Solís MP, Polvadore TA, Ross CF, Taylor AB, Fogaca MD, Laird MF. Ontogenetic changes in jaw leverage and skull shape in tufted and untufted capuchins. J Morphol 2024; 285:e21705. [PMID: 38704727 DOI: 10.1002/jmor.21705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. Unlike Cebus, Sapajus have a mechanically challenging diet and behavioral observations of juvenile Sapajus suggest these foods are exploited early in development. Landmarks were placed on three-dimensional surface models of an ontogenetic series of Sapajus and Cebus skulls (n = 53) and used to generate shape data and jaw-leverage estimates across the tooth row for three jaw-closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different between Sapajus and Cebus throughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater in Sapajus compared to Cebus when calculated at the permanent dentition. We used two-block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates. Sapajus, but not Cebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show that Sapajus and Cebus exhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape in Sapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods in Sapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology.
Collapse
Affiliation(s)
- Megan A Holmes
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Janine Chalk-Wilayto
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Caitlin B Yoakum
- Department of Anatomy, Arkansas College of Health Education, Fort Smith, Arkansas, USA
| | - Parker Taylor
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Rocio Ramirez
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, California, USA
| | - Megan P Solís
- Department of Anthropology, Stony Brook University, Stony Brook, New York, USA
| | - Taylor A Polvadore
- Department of Anthropology, University of Arkansas, Fayetteville, North Carolina, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Andrea B Taylor
- Department of Foundational Biomedical Sciences, Touro University California, Vallejo, California, USA
| | | | - Myra F Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Van Ankum EM, Majcher KB, Dolovich AT, Johnston JD, Flegel KP, Boughner JC. Food texture and vitamin D influence mouse mandible form and molar roots. Anat Rec (Hoboken) 2024; 307:611-632. [PMID: 37702738 DOI: 10.1002/ar.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Industrialization influenced several facets of lifestyle, including softer nutrient-poor diets that contributed to vitamin D deficiency in post-industrzialized populations, with concomitantly increased dental problems. Here we simulated a post-industrialized diet in a mouse model to test the effects of diet texture and vitamin D level on mandible and third molar (M3) forms. Mice were raised on a soft diet with vitamin D (VitD) or without it (NoD), or on a hard diet with vitamin D. We hypothesized that a VitD/hard diet is optimal for normal mandible and tooth root form, as well as for timely M3 initiation. Subsets of adult NoD/soft and VitD/soft groups were bred to produce embryos that were micro-computed tomography (μCT) scanned to stage M3 development. M3 stage did not differ between embryos from mothers fed VitD and NoD diets, indicating that vitamin D does not affect timing of M3 onset. Sacrificed adult mice were μCT-scanned, their mandibles 3D-landmarked and M3 roots were measured. Principal component (PC) analysis described the largest proportion of mandible shape variance (PC1, 30.1%) related to diet texture, and nominal shape variance (PC2, 13.8%) related to vitamin D. Mice fed a soft diet had shorter, relatively narrower, and somewhat differently shaped mandibles that recapitulated findings in human populations. ANOVA and other multivariate tests found significantly wider M3 roots and larger root canals in mice fed a soft diet, with vitamin D having little effect. Altogether our experiments using a mouse model contribute new insights about how a post-industrial diet may influence human craniodental variation.
Collapse
Affiliation(s)
- Elsa M Van Ankum
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Kadin B Majcher
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Allan T Dolovich
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - James D Johnston
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Kennedy P Flegel
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
12
|
Byron C, Reed D, Iriarte-Diaz J, Wang Q, Strait D, Laird MF, Ross CF. Sagittal suture strain in capuchin monkeys (Sapajus and Cebus) during feeding. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:633-654. [PMID: 36790169 DOI: 10.1002/ajpa.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Morphological variation in cranial sutures is used to infer aspects of primate feeding behavior, including diet, but strain regimes across sutures are not well documented. Our aim is to test hypotheses about sagittal suture morphology, strain regime, feeding behavior, and muscle activity relationships in robust Sapajus and gracile Cebus capuchin primates. MATERIALS AND METHODS Morphometrics of sinuosity in three regions of the sagittal suture were compared among museum specimens of Sapajus and Cebus, as well as in robust and gracile lab specimens. In vivo strains and bilateral electromyographic (EMG) activity were recorded from these regions in the temporalis muscles of capuchin primates while they fed on mechanically-varying foods. RESULTS Sapajus and the anterior suture region exhibited greater sinuosity than Cebus and posterior regions. In vivo data reveal minor differences in strain regime between robust and gracile phenotypes but show higher strain magnitudes in the middle suture region and higher tensile strains anteriorly. After gage location, feeding behavior has the most consistent and strongest impact on strain regime in the sagittal suture. Strain in the anterior suture has a high tension to compression ratio compared to the posterior region, especially during forceful biting in the robust Sapajus-like individual. DISCUSSION Sagittal suture complexity in robust capuchins likely reflects feeding behaviors associated with mechanically challenging foods. Sutural strain regimes in other anthropoid primates may also be affected by activity in feeding muscles.
Collapse
Affiliation(s)
- Craig Byron
- Department of Biology, Mercer University, Macon, Georgia, USA
| | - David Reed
- Department of Oral Biology, University of Illinois, Chicago, Illinois, USA
| | - Jose Iriarte-Diaz
- Department of Biology, University of the South, Sewanee, Tennessee, USA
| | - Qian Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - David Strait
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Myra F Laird
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Callum F Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Dhawan SS, Yedavalli V, Massoud TF. Atavistic and vestigial anatomical structures in the head, neck, and spine: an overview. Anat Sci Int 2023:10.1007/s12565-022-00701-7. [PMID: 36680662 DOI: 10.1007/s12565-022-00701-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023]
Abstract
Organisms may retain nonfunctional anatomical features as a consequence of evolutionary natural selection. Resultant atavistic and vestigial anatomical structures have long been a source of perplexity. Atavism is when an ancestral trait reappears after loss through an evolutionary change in previous generations, whereas vestigial structures are remnants that are largely or entirely functionless relative to their original roles. While physicians are cognizant of their existence, atavistic and vestigial structures are rarely emphasized in anatomical curricula and can, therefore, be puzzling when discovered incidentally. In addition, the literature is replete with examples of the terms atavistic and vestigial being used interchangeably without careful distinction between them. We provide an overview of important atavistic and vestigial structures in the head, neck, and spine that can serve as a reference for anatomists and clinical neuroscientists. We review the literature on atavistic and vestigial anatomical structures of the head, neck, and spine that may be encountered in clinical practice. We define atavistic and vestigial structures and employ these definitions consistently when classifying anatomical structures. Pertinent anatomical structures are numerous and include human tails, plica semilunaris, the vomeronasal organ, levator claviculae, and external ear muscles, to name a few. Atavistic and vestigial structures are found throughout the head, neck, and spine. Some, such as human tails and branchial cysts may be clinically symptomatic. Literature reports indicate that their prevalence varies across populations. Knowledge of atavistic and vestigial anatomical structures can inform diagnoses, prevent misrecognition of variation for pathology, and guide clinical interventions.
Collapse
Affiliation(s)
- Siddhant Suri Dhawan
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, and Stanford Initiative for Multimodality Neuro-Imaging in Translational Anatomy Research (SIMITAR), Department of Radiology, Stanford University School of Medicine, Stanford, USA. .,Center for Academic Medicine, Radiology MC: 5659; 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
14
|
Kim SH, Kim S, Kim YS, Song MK, Kang JY. Application of sequential multimodal analgesia before and after impacted mandibular third molar extraction: Protocol for a randomized controlled trial. Contemp Clin Trials Commun 2023; 32:101078. [PMID: 36762120 PMCID: PMC9905937 DOI: 10.1016/j.conctc.2023.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Background Several analgesics have been applied under various protocols to control the moderate-to-severe postoperative pain caused by the surgical extraction of an impacted mandibular third molar. However, a consensus on optimal pain management while minimizing side effects is yet to be reached. Methods This multi-center, prospective, double-blind, randomized controlled trial aims to evaluate the efficacy and safety of sequential multimodal analgesia combined with postoperative zaltoprofen along with multiple preemptive analgesics. A total of 80 participants with bilateral impacted mandibular third molar from two hospitals were randomized into two groups. Two surgical extractions were performed at one-month intervals, and in a crossover design, celecoxib or tramadol/acetaminophen was administered before one extraction and placebo before the other extraction. Following extraction, all subjects took zaltoprofen for 5 days. The outcome measures included pain at specific times, time and intensity of the first pain onset after extraction, need of rescue drugs, and occurrence and frequency of side effects. Conclusions This ongoing clinical trial was designed to provide evidence regarding a new protocol for effective postoperative pain management of a commonly performed surgical extraction. The results of this study will provide guidance to clinicians regarding the timing and combination of oral analgesics in various oral surgeries performed under local anesthesia. Trial registration KCT0005450, registered on October 7, 2020.
Collapse
Affiliation(s)
- Soo-Ho Kim
- Department of Dentistry, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Somi Kim
- Department of Dentistry, Chungnam National University Sejong Hospital, 407, Dodam-dong, Sejong-si, 30099, South Korea
| | - Yoon-Seon Kim
- Department of Dentistry, Chungnam National University Sejong Hospital, 407, Dodam-dong, Sejong-si, 30099, South Korea
| | - Mi-Kyoung Song
- Department of Dentistry, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Ji-Yeon Kang
- Department of Dentistry, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea,Department of Oral & Maxillofacial Surgery, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea,Corresponding author. Department of Dentistry, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
| |
Collapse
|
15
|
Antonelli T, Leischner CL, Hartstone-Rose A. The Cranial Morphology of the Black-Footed Ferret: A Comparison of Wild and Captive Specimens. Animals (Basel) 2022; 12:ani12192708. [PMID: 36230449 PMCID: PMC9558532 DOI: 10.3390/ani12192708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The black-footed ferret (Mustela nigripes), a North American mustelid species, was once found abundantly throughout the Midwest until the extreme decline in prairie dogs (Cynomys spp.), the black-footed ferret's primary food source, brought the species to near-extinction. Subsequently, the Black-Footed Ferret Recovery Program was created in the 1980s with a goal of bringing all remaining individuals of the species into captivity in order to breed the species back to a sustainable population level for successful reintroduction into the wild. While many components of the ferrets' health were accounted for while in captivity-especially those affecting fecundity-this study aims to assess the effects that captivity may have had on their cranial morphology, something that has not been widely studied in the species. In a previous study, we showed that the captive ferrets had significant oral health problems, and here we aim to document how the captive diet also affected their skull shape. For this study, 23 cranial measurements were taken on the skulls of 271 adult black-footed ferrets and 53 specimens of two closely related species. Skulls were divided based on sex, species, captivity status and phase of captivity and compared for all measurements using stepwise discriminant analysis as well as principal component analysis derived from the combined variables. We found that there are significant differences between captive and wild specimens, some of which are larger than interspecific variation, and that a diet change in the captive specimens likely helped decrease some of these differences. The results suggest that captivity can cause unnatural cranial development and that diet likely has a major impact on cranial morphology.
Collapse
Affiliation(s)
- Tyler Antonelli
- Dental Education, University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA
| | - Carissa L. Leischner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +1-(919)-515-1761
| |
Collapse
|
16
|
Hardin AM, Knigge RP, Duren DL, Williams-Blangero S, Subedi J, Mahaney MC, Sherwood RJ. Genetic influences on dentognathic morphology in the Jirel population of Nepal. Anat Rec (Hoboken) 2022; 305:2137-2157. [PMID: 34981668 PMCID: PMC9250551 DOI: 10.1002/ar.24857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Patterns of genetic variation and covariation impact the evolution of the craniofacial complex and contribute to clinically significant malocclusions in modern human populations. Previous quantitative genetic studies have estimated the heritabilities and genetic correlations of skeletal and dental traits in humans and nonhuman primates, but none have estimated these quantitative genetic parameters across the dentognathic complex. A large and powerful pedigree from the Jirel population of Nepal was leveraged to estimate heritabilities and genetic correlations in 62 maxillary and mandibular arch dimensions, incisor and canine lengths, and post-canine tooth crown areas (N ≥ 739). Quantitative genetic parameter estimation was performed using maximum likelihood-based variance decomposition. Residual heritability estimates were significant for all traits, ranging from 0.269 to 0.898. Genetic correlations were positive for all trait pairs. Principal components analyses of the phenotypic and genetic correlation matrices indicate an overall size effect across all measurements on the first principal component. Additional principal components demonstrate positive relationships between post-canine tooth crown areas and arch lengths and negative relationships between post-canine tooth crown areas and arch widths, and between arch lengths and arch widths. Based on these findings, morphological variation in the human dentognathic complex may be constrained by genetic relationships between dental dimensions and arch lengths, with weaker genetic correlations between these traits and arch widths allowing for variation in arch shape. The patterns identified are expected to have impacted the evolution of the dentognathic complex and its genetic architecture as well as the prevalence of dental crowding in modern human populations.
Collapse
Affiliation(s)
- Anna M. Hardin
- Biology Department, Western Oregon University
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Ryan P. Knigge
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
- Department of Integrative Biology and Physiology, University of Minnesota Medical School
| | - Dana L. Duren
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley
| | - Richard J. Sherwood
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| |
Collapse
|
17
|
Zollikofer CPE, Bienvenu T, Beyene Y, Suwa G, Asfaw B, White TD, Ponce de León MS. Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia. Proc Natl Acad Sci U S A 2022; 119:e2123553119. [PMID: 35914174 PMCID: PMC9371682 DOI: 10.1073/pnas.2123553119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.
Collapse
Affiliation(s)
| | - Thibault Bienvenu
- Department of Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Yonas Beyene
- French Center for Ethiopian Studies (CFEE), Addis Ababa, Ethiopia
| | - Gen Suwa
- University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Tim D. White
- Human Evolution Research Center, The University of California at Berkeley, Berkeley, CA 94720
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos 09002, Spain
- Department of Integrative Biology, The University of California at Berkeley, Berkeley, CA 94720
| | | |
Collapse
|
18
|
Buikstra JE, DeWitte SN, Agarwal SC, Baker BJ, Bartelink EJ, Berger E, Blevins KE, Bolhofner K, Boutin AT, Brickley MB, Buzon MR, de la Cova C, Goldstein L, Gowland R, Grauer AL, Gregoricka LA, Halcrow SE, Hall SA, Hillson S, Kakaliouras AM, Klaus HD, Knudson KJ, Knüsel CJ, Larsen CS, Martin DL, Milner GR, Novak M, Nystrom KC, Pacheco-Forés SI, Prowse TL, Robbins Schug G, Roberts CA, Rothwell JE, Santos AL, Stojanowski C, Stone AC, Stull KE, Temple DH, Torres CM, Toyne JM, Tung TA, Ullinger J, Wiltschke-Schrotta K, Zakrzewski SR. Twenty-first century bioarchaeology: Taking stock and moving forward. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:54-114. [PMID: 36790761 DOI: 10.1002/ajpa.24494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
Abstract
This article presents outcomes from a Workshop entitled "Bioarchaeology: Taking Stock and Moving Forward," which was held at Arizona State University (ASU) on March 6-8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions.
Collapse
Affiliation(s)
- Jane E Buikstra
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Sharon N DeWitte
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Sabrina C Agarwal
- Department of Anthropology, University of California Berkeley, Berkeley, California, USA
| | - Brenda J Baker
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Eric J Bartelink
- Department of Anthropology, California State University, Chico, California, USA
| | - Elizabeth Berger
- Department of Anthropology, University of California, Riverside, California, USA
| | | | - Katelyn Bolhofner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Alexis T Boutin
- Department of Anthropology, Sonoma State University, Rohnert Park, California, USA
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Michele R Buzon
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - Carlina de la Cova
- Department of Anthropology, University of South Carolina, Columbia, South Carolina, USA
| | - Lynne Goldstein
- Department of Anthropology, Michigan State University, East Lansing, Michigan, USA
| | | | - Anne L Grauer
- Department of Anthropology, Loyola University Chicago, Chicago, Illinois, USA
| | - Lesley A Gregoricka
- Department of Sociology, Anthropology, & Social Work, University of South Alabama, Mobile, Alabama, USA
| | - Siân E Halcrow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah A Hall
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Simon Hillson
- Institute of Archaeology, University College London, London, UK
| | - Ann M Kakaliouras
- Department of Anthropology, Whittier College, Whittier, California, USA
| | - Haagen D Klaus
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Kelly J Knudson
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Christopher J Knüsel
- Préhistoire à l'Actuel: Culture, Environnement et Anthropologie, University of Bordeaux, CNRS, MC, PACEA, UMR5199, F-33615, Pessac, France
| | | | - Debra L Martin
- Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - George R Milner
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mario Novak
- Center for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kenneth C Nystrom
- Department of Anthropology, State University of New York at New Paltz, New Paltz, New York, USA
| | | | - Tracy L Prowse
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| | - Gwen Robbins Schug
- Environmental Health Program, University of North Carolina, Greensboro, North Carolina, USA
| | | | - Jessica E Rothwell
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Ana Luisa Santos
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christopher Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Anne C Stone
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kyra E Stull
- Department of Anthropology, University of Nevada, Reno, Reno, Nevada, USA
| | - Daniel H Temple
- Department of Sociology and Anthropology, George Mason University, Fairfax, Virginia, USA
| | - Christina M Torres
- Department of Anthropology and Heritage Studies, University of California, Merced, USA, and Instituto de Arqueología y Antropología, Universidad Católica del Norte, Antofagasta, Chile
| | - J Marla Toyne
- Department of Anthropology, University of Central Florida, Orlando, Florida, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaime Ullinger
- Bioanthropology Research Institute, Quinnipiac University, Hamden, Connecticut, USA
| | | | | |
Collapse
|
19
|
Neaux D, Louail M, Ferchaud S, Surault J, Merceron G. Experimental assessment of the relationship between diet and mandibular morphology using a pig model: new insights for paleodietary reconstructions. Anat Rec (Hoboken) 2022; 305:3150-3160. [PMID: 35142076 DOI: 10.1002/ar.24895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
Dietary habits exert significant selective pressures on anatomical structures in animals, leading to substantial morphological adaptations. Yet, the relationships between the mandible and diet are still unclear, raising issues for paleodietary reconstructions notably. To assess the impact of food hardness and size on morphological structures, we used an experimental baseline using a model based on the domestic pig, an omnivorous mammal with bunodont, thick-enameled dentition, and chewing movements similar to hominids. We hypothesized that the consumption of different types of seeds would result in substantial differences in the morphology of the mandible despite similar overall diets. The experiment was conducted on four groups of juvenile pigs fed with mixed cereal and soy flours. The control group received only flours. We supplemented the four others with either 10 hazelnuts, 30 hazelnuts, 30% barley seeds or 20% corn kernels per day. We investigated the shape differences between the controlled-fed groups using three-dimensional geometric morphometrics. Our results provide strong evidence that the supplemental consumption of a significant amount of seeds for a short period (95 days) substantially modify the mandibular morphology of pigs. Our analyses suggest that this shape differentiation is due to the size of the seeds, requiring high and repeated bite force, rather than their hardness. These results provide new perspectives for the use of mandibular morphology as a proxy in paleodietary reconstructions complementing dental microwear textures analyses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum national d'Histoire naturelle CNRS, Paris, France.,Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | - Margot Louail
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | | | - Jérôme Surault
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| | - Gildas Merceron
- Laboratoire PALEVOPRIM, UMR 7262 CNRS, Université de Poitiers, Poitiers, France
| |
Collapse
|
20
|
Mitchell DR, Wroe S, Ravosa MJ, Menegaz RA. More Challenging Diets Sustain Feeding Performance: Applications Toward the Captive Rearing of Wildlife. Integr Org Biol 2021; 3:obab030. [PMID: 34888486 PMCID: PMC8653637 DOI: 10.1093/iob/obab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
The rescue and rehabilitation of young fauna is of substantial importance to conservation. However, it has been suggested that incongruous diets offered in captive environments may alter craniofacial morphology and hinder the success of reintroduced animals. Despite these claims, to what extent dietary variation throughout ontogeny impacts intrapopulation cranial biomechanics has not yet been tested. Here, finite element models were generated from the adult crania of 40 rats (n = 10 per group) that were reared on 4 different diet regimes and stress magnitudes compared during incisor bite simulations. The diets consisted of (1) exclusively hard pellets from weaning, (2) exclusively soft ground pellet meal from weaning, (3) a juvenile switch from pellets to meal, and (4) a juvenile switch from meal to pellets. We hypothesized that a diet of exclusively soft meal would result in the weakest adult skulls, represented by significantly greater stress magnitudes at the muzzle, palate, and zygomatic arch. Our hypothesis was supported at the muzzle and palate, indicating that a diet limited to soft food inhibits bone deposition throughout ontogeny. This finding presents a strong case for a more variable and challenging diet during development. However, rather than the "soft" diet group resulting in the weakest zygomatic arch as predicted, this region instead showed the highest stress among rats that switched as juveniles from hard pellets to soft meal. We attribute this to a potential reduction in number and activity of osteoblasts, as demonstrated in studies of sudden and prolonged disuse of bone. A shift to softer foods in captivity, during rehabilitation after injury in the wild for example, can therefore be detrimental to healthy development of the skull in some growing animals, potentially increasing the risk of injury and impacting the ability to access full ranges of wild foods upon release. We suggest captive diet plans consider not just nutritional requirements but also food mechanical properties when rearing wildlife to adulthood for reintroduction.
Collapse
Affiliation(s)
- D Rex Mitchell
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stephen Wroe
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel A Menegaz
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
21
|
Relationship Between Masticatory Muscle Size and Bone Regeneration After Mandibular Angle Osteotomy. J Craniofac Surg 2021; 32:2784-2787. [PMID: 34727480 DOI: 10.1097/scs.0000000000007960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Mandibular angle osteotomy with outer cortex grinding has become the preferred cosmetic procedure for correcting square faces. After surgery, bone hyperplasia at the mandibular angle affects the operation result. This study evaluated the effect of the masticatory muscles on bone repair. From January 2016 to January 2019, patients who underwent mandibular angle osteotomy with outer cortex grinding were retrospectively reviewed. Computed tomography data of these patients were collected, and the bone volume of the mandibular angle changes and its correlation with masticatory muscle morphology were analyzed. Computed tomography data measurement results showed that a large amount of bone in the mandibular angle area was removed by the operation; however, the long-term follow-up results showed that there was bone hyperplasia in the mandibular angle areas. Compared with the immediate postoperative bone volume, the difference was statistically significant (P < 0.01). The thickness and cross-sectional area of the masseter muscle were significantly related to bone regeneration (P < 0.01). This study suggests that mandibular angle osteotomy with outer cortex grinding could ablate the symptoms of a prominent mandibular angle; however, muscle-related bone hyperplasia in the mandibular angle area after surgery was a non-negligible event, which may significantly compromise surgical outcomes.
Collapse
|
22
|
Cook RW, Vazzana A, Sorrentino R, Benazzi S, Smith AL, Strait DS, Ledogar JA. The cranial biomechanics and feeding performance of Homo floresiensis. Interface Focus 2021; 11:20200083. [PMID: 34938433 PMCID: PMC8361579 DOI: 10.1098/rsfs.2020.0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Homo floresiensis is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, H. floresiensis exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later Homo, suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the H. floresiensis cranium. We simulate premolar (P3) and molar (M2) biting in a finite-element model (FEM) of the H. floresiensis holotype cranium (LB1) and compare the mechanical results with FEMs of chimpanzees, modern humans and a sample of australopiths (MH1, Sts 5, OH5). With few exceptions, strain magnitudes in LB1 resemble elevated levels observed in modern Homo. Our analysis of LB1 suggests that H. floresiensis could produce bite forces with high mechanical efficiency, but was subject to tensile jaw joint reaction forces during molar biting, which perhaps constrained maximum postcanine bite force production. The inferred feeding biomechanics of H. floresiensis closely resemble modern humans, suggesting that this pattern may have been present in the last common ancestor of Homo sapiens and H. floresiensis.
Collapse
Affiliation(s)
- Rebecca W Cook
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Rita Sorrentino
- Department of Cultural Heritage, University of Bologna, Bologna, Italy.,Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Amanda L Smith
- Department of Anatomy, Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - David S Strait
- Department of Anthropology, Washington University in St Louis, St Louis, MO, USA
| | - Justin A Ledogar
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Geiger M. Pattern and pace of morphological change due to variable human impact: the case of Japanese macaques. Primates 2021; 62:955-970. [PMID: 34403015 PMCID: PMC8526449 DOI: 10.1007/s10329-021-00933-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Human impact influences morphological variation in animals, as documented in many captive and domestic animal populations. However, there are different levels of human impact, and their influence on the pattern and rate of morphological variation remains unclear. This study contributes to the ongoing debate via the examination of cranial and mandibular shape and size variation and pace of change in Japanese macaques (Macaca fuscata). This species is ideal for tackling such questions because different wild, wild-provisioned, and captive populations have been monitored and collected over seven decades. Linear measurements were taken on 70 skulls from five populations, grouped into three 'human impact groups' (wild, wild-provisioned, and captive). This made it possible to investigate the pattern and pace of skull form changes among the human impact groups as well as over time within the populations. It was found that the overall skull shape tends to differ among the human impact groups, with captive macaques having relatively longer rostra than wild ones. Whether these differences are a result of geographic variation or variable human impact, related to nutritional supply and mechanical properties of the diet, is unclear. However, this pattern of directed changes did not seem to hold when the single captive populations were examined in detail. Although environmental conditions have probably been similar for the two examined captive populations (same captive locality), skull shape changes over the first generations in captivity were mostly different. This varying pattern, together with a consistent decrease in body size in the captive populations over generations, points to genetic drift playing a role in shaping skull shape and body size in captivity. In the captive groups investigated here, the rates of change were found to be high compared to literature records from settings featuring different degrees of human impact in different species, although they still lie in the range of field studies in a natural context. This adds to the view that human impact might not necessarily lead to particularly fast rates of change.
Collapse
Affiliation(s)
- Madeleine Geiger
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, CH-8006, Zurich, Switzerland.
| |
Collapse
|
24
|
Nett EM, Jaglowski B, Ravosa LJ, Ravosa DD, Ravosa MJ. Mechanical properties of food and masticatory behavior in llamas, Llama glama. J Mammal 2021. [DOI: 10.1093/jmammal/gyab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mammals typically process food items more extensively in their oral cavities than do other vertebrates. Dental morphology, jaw-muscle activity patterns, mandibular movements, and tongue manipulation work to facilitate oral fragmentation of dietary items. While processing mechanically challenging foods, mammals modulate mandibular movements and bite forces via recruitment of greater jaw-adductor muscle forces and protracted biting or chewing. Because jaw-loading patterns are influenced by magnitude; frequency; and duration of muscular, bite, and reaction forces during routine feeding behaviors, relatively larger jaws are thought to be more characteristic of mammals that experience higher masticatory loads due to the processing of mechanically challenging foods. The ease of food fracture during post-canine biting and chewing is mainly determined by food stiffness and toughness. Such foods have been associated with increased loading magnitude and/or greater amounts of cyclical loading (i.e., chewing duration). Dietary properties are thought to modulate cyclical loading through changes in chewing frequency and chewing investment. On the other hand, chewing frequency has been found to be independent of dietary properties in rabbits and primates; however, little evidence exists regarding the influence of dietary properties on these parameters in a broader range of mammals. Here, we assessed chewing behavior in seven adult llamas (Llama glama) processing foods with a wide range of mechanical properties (grain, hay, carrots, and dried corn). Each subject was filmed at 60 frames/s, with video slowed for frame-by-frame computer analysis to obtain length of feeding bout and number of chewing cycles for each food type. These parameters were used to calculate chewing frequency (chews/s), chewing investment (chews/g), and chewing duration (s/g). Chewing frequency was not significantly related to mechanical properties of food, but chewing investment and chewing duration were significantly related to dietary stiffness and toughness. Therefore, cyclical loading is positively influenced by stiff and tough foods. This suggests that variation in jaw morphology in extinct and extant mammals is positively related to dietary stiffness and toughness, which requires greater chewing investment and increased chewing duration.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Brielle Jaglowski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luca J Ravosa
- Program in Graphic Design Technology, Southwestern Michigan College, Dowagiac, MI, USA
| | - Dominick D Ravosa
- Department of Geography, Western Michigan University, Kalamazoo, MI, USA
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
25
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
26
|
Computational biomechanical modelling of the rabbit cranium during mastication. Sci Rep 2021; 11:13196. [PMID: 34162932 PMCID: PMC8222361 DOI: 10.1038/s41598-021-92558-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, the rabbit is a particularly interesting species due to its uniquely fenestrated rostrum, the mechanical function of which is debated. In addition, the rabbit processes food through incisor and molar biting within a single bite cycle, and the potential influence of these bite modes on skull biomechanics remains unknown. This study combined the in silico methods of multi-body dynamics and finite element analysis to compute musculoskeletal forces associated with a range of incisor and molar biting, and to predict the associated strains. The results show that the majority of the cranium, including the fenestrated rostrum, transmits masticatory strains. The peak strains generated over all bites were found to be attributed to both incisor and molar biting. This could be a consequence of a skull shape adapted to promote an even strain distribution for a combination of infrequent incisor bites and cyclic molar bites. However, some regions, such as the supraorbital process, experienced low peak strain for all masticatory loads considered, suggesting such regions are not designed to resist masticatory forces.
Collapse
|
27
|
Wang C, Fang Y, Zhang L, Su Z, Xu J, Fu B. Enamel microstructural features of bovine and human incisors: A comparative study. Ann Anat 2021; 235:151700. [DOI: 10.1016/j.aanat.2021.151700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
|
28
|
Ozawa E, Honda EI, Tomizato H, Kurabayashi T, Nunthayanon K, Ohmori H, Shimazaki K, Ono T. Preliminary study of articulatory characteristics in open bite subjects revealed by 3T magnetic resonance imaging movies. APOS TRENDS IN ORTHODONTICS 2021. [DOI: 10.25259/apos_174_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objectives:
Previous studies have reported that articulatory dysfunction accompanied by a certain type of malocclusion can be improved by orthodontic treatment. We developed a 3-T magnetic resonance imaging (MRI) movie method with tooth visualization that can display the dynamic movement of articulation without radiation exposure. To the best of our knowledge, there is currently no report on the possible differences in articulatory movement between subjects with a normal occlusion and those with malocclusion using the 3T MRI movie method. Thus, the objective of this study was to examine the articulatory difference between subjects with a normal occlusion and those with an open bite using an MRI movie.
Materials and Methods:
Twenty healthy adult females, ten with a normal occlusion and ten with an anterior open bite were recruited. The overbite of the open bite subjects was zero or smaller, and all of them exhibited a tongue-thrusting habit during swallowing. A turbo spin echo image with a contrast medium was used to visualize the anterior teeth, and articulatory movement during articulation of the vowel-consonant-vowel syllable (/asa/) was scanned. The difference in tongue movement between subjects with a normal occlusion and those with an open bite was compared by measuring seven variables. Moreover, the distance between the incisal edge and the tongue apex during articulation of /s/ and the speech duration were compared. Furthermore, frequency analysis on /s/ by fast Fourier transform power spectrum was performed.
Results:
The tongue apex of the open bite subjects moved more anteriorly than that of the normal subjects. However, there was no significant difference in the phonetic analysis between subjects with a normal occlusion and those with an open bite.
Conclusion:
The 3-T MRI movie was an efficient method to quantify articulatory tongue movements. Although there was a difference in tongue movement during swallowing between subjects with a normal occlusion and those with an open bite, the difference in the articulatory tongue movements was minimal, suggesting it could be a functional compensation.
Collapse
Affiliation(s)
- Erika Ozawa
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Ei-ichi Honda
- Department of Oral and Maxillofacial Radiology, University of Tokushima, Tokushima-shi, Tokushima-kenn, Japan
| | - Hiroshi Tomizato
- Department of Oral and Maxillofacial Radiology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,
| | - Tohru Kurabayashi
- Department of Oral and Maxillofacial Radiology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,
| | - Kulthida Nunthayanon
- Department of Preventive Dentistry, Orthodontic Division, Naresuan University, Mueang Phitsanulok, Thailand,
| | - Hiroko Ohmori
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kazuo Shimazaki
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
29
|
Cheronet O, Ash A, Anders A, Dani J, Domboróczki L, Drozdova E, Francken M, Jovanovic M, Milasinovic L, Pap I, Raczky P, Teschler-Nicola M, Tvrdý Z, Wahl J, Zariņa G, Pinhasi R. Sagittal suture morphological variation in human archaeological populations. Anat Rec (Hoboken) 2021; 304:2811-2822. [PMID: 33773064 PMCID: PMC9291749 DOI: 10.1002/ar.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Cranial sutures join the many bones of the skull. They are therefore points of weakness and consequently subjected to the many mechanical stresses affecting the cranium. However, the way in which this impacts their morphological complexity remains unclear. We examine the intrinsic and extrinsic mechanisms of human sagittal sutures by quantifying the morphology from 107 individuals from archaeological populations spanning the Mesolithic to Middle ages, using standardized two‐dimensional photographs. Results show that the most important factor determining sutural complexity appears to be the position along the cranial vault from the junction with the coronal suture at its anterior‐most point to the junction with the lambdoid suture at its posterior‐most point. Conversely, factors such as age and lifeways show few trends in complexity, the most significant of which is a lower complexity in the sutures of Mesolithic individuals who consumed a tougher diet. The simple technique used in this study therefore allowed us to identify that, taken together, structural aspects play a more important role in defining the complexity of the human sagittal suture than extrinsic factors such as the mechanical forces imposed on the cranium by individuals' diet.
Collapse
Affiliation(s)
- Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Abigail Ash
- Department of Archaeology, University of York, York, UK
| | - Alexandra Anders
- Institute of Archeological Sciences, Eötvös Loránd University, Budapest, Hungary
| | | | | | - Eva Drozdova
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Laboratory of Biological and Molecular Anthropology, Faculty of Science, Masaryk Univerzity, Brno, Czech Republic
| | - Michael Francken
- Osteology, State Office for Cultural Heritage Baden-Wuerttemberg, Constance, Germany
| | | | | | - Ildiko Pap
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Pál Raczky
- Institute of Archeological Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Zdeněk Tvrdý
- Anthropos Institute, Moravian Museum, Brno, Czech Republic
| | - Joachim Wahl
- Institut für Naturwissenschaftliche Archäologie Abteilung Paläoanthropologie, University of Tübingen, Tübingen, Germany
| | - Gunita Zariņa
- University of Latvia, Institute of Latvian History, Riga, Latvia
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Katsube M, Yamada S, Utsunomiya N, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Vora SR, Morimoto N. A 3D analysis of growth trajectory and integration during early human prenatal facial growth. Sci Rep 2021; 11:6867. [PMID: 33767268 PMCID: PMC7994314 DOI: 10.1038/s41598-021-85543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 01/03/2023] Open
Abstract
Significant shape changes in the human facial skeleton occur in the early prenatal period, and understanding this process is critical for studying a myriad of congenital facial anomalies. However, quantifying and visualizing human fetal facial growth has been challenging. Here, we applied quantitative geometric morphometrics (GM) to high-resolution magnetic resonance images of human embryo and fetuses, to comprehensively analyze facial growth. We utilized non-linear growth estimation and GM methods to assess integrated epigenetic growth between masticatory muscles and associated bones. Our results show that the growth trajectory of the human face in the early prenatal period follows a curved line with three flexion points. Significant antero-posterior development occurs early, resulting in a shift from a mandibular prognathic to relatively orthognathic appearance, followed by expansion in the lateral direction. Furthermore, during this time, the development of the zygoma and the mandibular ramus is closely integrated with the masseter muscle.
Collapse
Affiliation(s)
- Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaka Yamaguchi
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsuya Takakuwa
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Saito
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, JBM 372-2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
31
|
Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R, Houssin C, Callou C, Cornette R, Herrel A. Masticatory system integration in a commensal canid: interrelationships between bones, muscles and bite force in the red fox. J Exp Biol 2021; 224:jeb.224394. [DOI: 10.1242/jeb.224394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT
The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
- Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Elodie Monchâtre-Leroy
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes Cedex 03, France
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Hélène Garès
- Direction des Services Vétérinaires – D.D.C.S.P.P. de la Dordogne, 24000 Périgueux, France
| | | | - Raymond Triquet
- Université de Lille III, Domaine Universitaire du Pont de Bois BP 60149, Villeneuve d'ascq Cedex 59653, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| |
Collapse
|
32
|
Lad SE, Anderson RJ, Cortese SA, Alvarez CE, Danison AD, Morris HM, Ravosa MJ. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus). Anat Rec (Hoboken) 2021; 304:1927-1936. [PMID: 33586861 DOI: 10.1002/ar.24599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022]
Abstract
Mammalian feeding behaviors are altered when mechanically challenging (e.g., tough, stiff) foods require large bite forces or prolonged mastication. Bony responses to high bite forces are well-documented for the mammalian skull, but osteogenesis due to cyclical loading, caused by repetitive chewing, is more poorly understood. Previous studies demonstrate that cyclical loading results in greater bone formation in the rabbit masticatory apparatus and in substantial Haversian remodeling in primate postcrania. Here we assess the relationship between cyclical loading and remodeling in the rabbit maxilla. Twenty male New Zealand white rabbits (Oryctolagus cuniculus) were raised on either an overuse or control diet (10 per group) for 48 weeks, beginning at weaning onset. The control group was raised on a diet of rabbit pellets (E = 29 MPa, R = 1031 J/m2 ), whereas the overuse group ate rabbit pellets and hay, which has high stiffness (E = 3336 MPa) and toughness (R = 2760 J/m2 ) properties. Hay requires greater chewing investment (475 chews/g) and longer chewing durations (568 s/g) than pellets (161 chews/g and 173 s/g), therefore causing cyclical loading of the jaws. Remodeling was measured as osteon population density (OPD), percent Haversian bone (%HAV), and osteon cross-sectional area (On.Ar). The only significant difference found was greater On.Ar in the alveolar region of the maxilla (p < 0.001) in the overuse group. The hypothesis that cyclical loading engenders Haversian remodeling in the developing maxilla is not supported. The continuation of modeling throughout the experimental duration may negate the need for remodeling as newly laid bone tends to be more compliant and resistant to crack propagation.
Collapse
Affiliation(s)
- Susan E Lad
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J Anderson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephen A Cortese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Carmen E Alvarez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Andrew D Danison
- Department of Biology, The College of Wooster, Wooster, Ohio, USA
| | - Hannah M Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew J Ravosa
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
33
|
Villamil CI. The role of developmental rate, body size, and positional behavior in the evolution of covariation and evolvability in the cranium of strepsirrhines and catarrhines. J Hum Evol 2021; 151:102941. [PMID: 33482561 DOI: 10.1016/j.jhevol.2020.102941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
Recent studies on hominin craniofacial evolution have focused on phenotypic integration or covariation among traits. Covariation is thought to significantly affect evolutionary trajectories, shaping the ways in which hominins and other primates could have evolved. However, the ways in which covariation itself evolves are not well understood. This study aims to investigate the role of phylogeny, development, body size, and positional behavior in shaping the strength of covariation in strepsirrhine and catarrhine primate crania (n = 1009, representing 11 genera). These factors may have been catalysts for change in the magnitude of covariation, and they have changed significantly during primate evolution and particularly hominin evolution. Modern humans in particular have slow developmental trajectories, large bodies, and a unique form of locomotion in the form of orthograde bipedalism. Variance of eigenvalues, mean integration, mean evolvability, and mean conditional evolvability was estimated and their relationship to the various factors described earlier was assessed using phylogenetic and nonphylogenetic analyses. Results indicate that some phylogenetic signal is present, but it is not equivalent across integration statistics or cranial regions. In particular, these results suggest that closely related species are more similar than more distantly related species in evolvability of the cranial base and integration of the face. Two divergent patterns were also identified, in which covariation and evolvability of the cranial base are linked to developmental rate, but those of the face are linked to body size. Neither locomotion nor posture appears related to covariation or evolvability of the primate cranium. These results suggest that overall low covariation observed in the hominin cranium may be a result of separate trends in different cranial regions.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central Del Caribe, PO Box 60327, Bayamón, PR, 00960-6032, USA; Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA.
| |
Collapse
|
34
|
Neaux D, Blanc B, Ortiz K, Locatelli Y, Laurens F, Baly I, Callou C, Lecompte F, Cornette R, Sansalone G, Haruda A, Schafberg R, Vigne JD, Debat V, Herrel A, Cucchi T. How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa). Evol Biol 2020. [DOI: 10.1007/s11692-020-09521-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kahn S, Ehrlich P, Feldman M, Sapolsky R, Wong S. The Jaw Epidemic: Recognition, Origins, Cures, and Prevention. Bioscience 2020; 70:759-771. [PMID: 32973408 PMCID: PMC7498344 DOI: 10.1093/biosci/biaa073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Contemporary humans are living very different lives from those of their ancestors, and some of the changes have had serious consequences for health. Multiple chronic "diseases of civilization," such as cardiovascular problems, cancers, ADHD, and dementias are prevalent, increasing morbidity rates. Stress, including the disruption of traditional sleep patterns by modern lifestyles, plays a prominent role in the etiology of these diseases, including obstructive sleep apnea. Surprisingly, jaw shrinkage since the agricultural revolution, leading to an epidemic of crooked teeth, a lack of adequate space for the last molars (wisdom teeth), and constricted airways, is a major cause of sleep-related stress. Despite claims that the cause of this jaw epidemic is somehow genetic, the speed with which human jaws have changed, especially in the last few centuries, is much too fast to be evolutionary. Correlation in time and space strongly suggests the symptoms are phenotypic responses to a vast natural experiment-rapid and dramatic modifications of human physical and cultural environments. The agricultural and industrial revolutions have produced smaller jaws and less-toned muscles of the face and oropharynx, which contribute to the serious health problems mentioned above. The mechanism of change, research and clinical trials suggest, lies in orofacial posture, the way people now hold their jaws when not voluntarily moving them in speaking or eating and especially when sleeping. The critical resting oral posture has been disrupted in societies no longer hunting and gathering. Virtually all aspects of how modern people function and rest are radically different from those of our ancestors. We also briefly discuss treatment of jaw symptoms and possible clinical cures for individuals, as well as changes in society that might lead to better care and, ultimately, prevention.
Collapse
|
36
|
Kilroy GS, Tallman SD, DiGangi EA. Secular change in morphological cranial and mandibular trait frequencies in European Americans born 1824-1987. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:589-605. [PMID: 33245566 DOI: 10.1002/ajpa.24115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Secular change in cranial and postcranial morphometrics and morphological traits has been documented in several studies. However, to date, few studies have addressed temporal changes occurring in the expression of cranial morphological traits commonly used in ancestry estimation. This study examines secular change in the expression of 23 cranial and mandibular morphological traits; accounting for age-at-death, sex, and year-of-birth. MATERIALS & METHODS Data were collected on 23 morphological cranial and mandibular traits for European American individuals (19-97 years of age) from the Hamann-Todd Skeletal Collection (n = 518) and the William M. Bass Donated Skeletal Collection (n = 602). Individuals were divided into six birth-year cohorts: 1824-1849 (Cohort 1), 1850-1874 (Cohort 2), 1875-1899 (Cohort 3), 1900-1924 (Cohort 4), 1925-1949 (Cohort 5), and 1950-1987 (Cohort 6). RESULTS Statistical analyses, including Pearson's chi-square, correspondence analysis, and ordinal regression, demonstrate that secular changes have occurred in 11 traits, including: anterior nasal spine (ANS); malar tubercle (MT); nasal bone contour (NBC); postbregmatic depression (PBD); supranasal suture (SPS); transverse palatine suture (TPS); zygomaticomaxillary suture (ZS); ascending ramus shape (ARS); gonial angle flare (GAF); mandibular tori (MDT); and posterior ramus edge inversion (PREI), with changes occurring in both sexes for ANS, MT, TPS, ZS, GAF, MDT, and PREI. Significant changes in trait expression were found predominately between Cohorts 3 and 4, and Cohorts 4 and 5. While the sex of an individual affected the expression of ANS, MT, NBC, PBD, SPS, ZS, ARS, GAF, and PREI, age-at-death only affected MT and PREI. DISCUSSION This study demonstrates that secular change in morphological cranial and mandibular traits has occurred over the last two centuries in European Americans, with the most considerable change appearing at the turn of the twentieth century. Changes in morphological trait expression over a relatively short period of time correspond with changes seen in craniometric analyses and correlate with the industrialization of society and environmental and cultural changes, such as medical advancements, nutrition, and population health/stress.
Collapse
Affiliation(s)
- Grace S Kilroy
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sean D Tallman
- Program in Forensic Anthropology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Anthropology, Boston University, Boston, Massachusetts, USA
| | - Elizabeth A DiGangi
- Department of Anthropology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
37
|
Marcé-Nogué J, Püschel TA, Daasch A, Kaiser TM. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage. Sci Rep 2020; 10:6793. [PMID: 32322020 PMCID: PMC7176708 DOI: 10.1038/s41598-020-63739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/01/2020] [Indexed: 11/14/2022] Open
Abstract
An on-going debate concerning the dietary adaptations of archaic hominins and early Homo has been fuelled by contradictory inferences obtained using different methodologies. This work presents an extensive comparative sample of 30 extant primate species that was assembled to perform a morpho-functional comparison of these taxa with 12 models corresponding to eight fossil hominin species. Finite Element Analysis and Geometric Morphometrics were employed to analyse chewing biomechanics and mandible morphology to, firstly, establish the variation of this clade, secondly, relate stress and shape variables, and finally, to classify fossil individuals into broad ingesta related hardness categories using a support vector machine algorithm. Our results suggest that some hominins previously assigned as hard food consumers (e.g. the members of the Paranthropus clade) in fact seem to rely more strongly on soft foods, which is consistent with most recent studies using either microwear or stable isotope analyses. By analysing morphometric and stress results in the context of the comparative framework, we conclude that in the hominin clade there were probably no hard-food specialists. Nonetheless, the biomechanical ability to comminute harder items, if required as fallback option, adds to their strategy of increased flexibility.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany.
- Institut Català de Paleontologia M. Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain.
| | - Thomas A Püschel
- Primate Models for Behavioural Evolution, Institute of Cognitive and Evolutionary Anthropology, University of Oxford, 64 Banbury Road, Oxford, OX2 6PN, United Kingdom
| | - Alexander Daasch
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| | - Thomas M Kaiser
- Centrum für Naturkunde, University of Hamburg, Martin-Luter-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
38
|
Terhune CE, Sylvester AD, Scott JE, Ravosa MJ. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J Exp Biol 2020; 223:jeb220988. [PMID: 32127379 DOI: 10.1242/jeb.220988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Although there is considerable evidence that bone responds to the loading environment in which it develops, few analyses have examined phenotypic plasticity or bone functional adaptation in the masticatory apparatus. Prior work suggests that masticatory morphology is sensitive to differences in food mechanical properties during development; however, the importance of the timing/duration of loading and variation in naturalistic diets is less clear. Here, we examined microstructural and macrostructural differences in the mandibular condyle in four groups of white rabbits (Oryctolagus cuniculus) raised for a year on diets that varied in mechanical properties and timing of the introduction of mechanically challenging foods, simulating seasonal variation in diet. We employed sliding semilandmarks to locate multiple volumes of interest deep to the mandibular condyle articular surface, and compared bone volume fraction, trabecular thickness and spacing, and condylar size/shape among experimental groups. The results reveal a shared pattern of bony architecture across the articular surface of all treatment groups, while also demonstrating significant among-group differences. Rabbits raised on mechanically challenging diets have significantly increased bone volume fraction relative to controls fed a less challenging diet. The post-weaning timing of the introduction of mechanically challenging foods also influences architectural properties, suggesting that bone plasticity can extend well into adulthood and that bony responses to changes in loading may be rapid. These findings demonstrate that bony architecture of the mandibular condyle in rabbits responds to variation in mechanical loading during an organism's lifetime and has the potential to track dietary variation within and among species.
Collapse
Affiliation(s)
- Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace & Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
39
|
|
40
|
Buvinic S, Balanta-Melo J, Kupczik K, Vásquez W, Beato C, Toro-Ibacache V. Muscle-Bone Crosstalk in the Masticatory System: From Biomechanical to Molecular Interactions. Front Endocrinol (Lausanne) 2020; 11:606947. [PMID: 33732211 PMCID: PMC7959242 DOI: 10.3389/fendo.2020.606947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The masticatory system is a complex and highly organized group of structures, including craniofacial bones (maxillae and mandible), muscles, teeth, joints, and neurovascular elements. While the musculoskeletal structures of the head and neck are known to have a different embryonic origin, morphology, biomechanical demands, and biochemical characteristics than the trunk and limbs, their particular molecular basis and cell biology have been much less explored. In the last decade, the concept of muscle-bone crosstalk has emerged, comprising both the loads generated during muscle contraction and a biochemical component through soluble molecules. Bone cells embedded in the mineralized tissue respond to the biomechanical input by releasing molecular factors that impact the homeostasis of the attaching skeletal muscle. In the same way, muscle-derived factors act as soluble signals that modulate the remodeling process of the underlying bones. This concept of muscle-bone crosstalk at a molecular level is particularly interesting in the mandible, due to its tight anatomical relationship with one of the biggest and strongest masticatory muscles, the masseter. However, despite the close physical and physiological interaction of both tissues for proper functioning, this topic has been poorly addressed. Here we present one of the most detailed reviews of the literature to date regarding the biomechanical and biochemical interaction between muscles and bones of the masticatory system, both during development and in physiological or pathological remodeling processes. Evidence related to how masticatory function shapes the craniofacial bones is discussed, and a proposal presented that the masticatory muscles and craniofacial bones serve as secretory tissues. We furthermore discuss our current findings of myokines-release from masseter muscle in physiological conditions, during functional adaptation or pathology, and their putative role as bone-modulators in the craniofacial system. Finally, we address the physiological implications of the crosstalk between muscles and bones in the masticatory system, analyzing pathologies or clinical procedures in which the alteration of one of them affects the homeostasis of the other. Unveiling the mechanisms of muscle-bone crosstalk in the masticatory system opens broad possibilities for understanding and treating temporomandibular disorders, which severely impair the quality of life, with a high cost for diagnosis and management.
Collapse
Affiliation(s)
- Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer Studies CEMC2016, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Sonja Buvinic,
| | - Julián Balanta-Melo
- School of Dentistry, Faculty of Health, Universidad del Valle, Cali, Colombia
- Evidence-Based Practice Unit Univalle, Hospital Universitario del Valle, Cali, Colombia
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Walter Vásquez
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carolina Beato
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana Toro-Ibacache
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
41
|
Abstract
This narrative review surveys current research demonstrating how oral dysfunction can escalate into malocclusion, acquired craniofacial disorder and contribute to generational dysfunction, disorder and disease. INTRODUCTION Baseline orthodontic consultations are generally recommended beginning age seven. However, the dysmorphic changes that result in malocclusion are often evident years earlier. Similarly, following orthodontic treatment, patients require permanent retention when the bite is not stable, and without such retention, the malocclusion can return. SETTING AND POPULATION Narrative review article including research on infants, children and adults. MATERIALS AND METHODS This review is a brief survey of the symptomology of orofacial myofunctional disorder and outlines 10 areas of oral function that impact occlusal and facial development: breastfeeding, airway obstruction, soft tissue restriction, mouth breathing, oral resting posture, oral habits, swallowing, chewing, the impact of orofacial myofunctional disorder (OMD) over time and maternal oral dysfunction on the developing foetus. CONCLUSION Malocclusions and their acquired craniofacial dysmorphology are the result of chronic oral dysfunction and OMD. In order to achieve long-term stability of the face, it is critical to understand the underlying pathologies contributing to malocclusion, open bite and hard palate collapse.
Collapse
Affiliation(s)
- Linda D'Onofrio
- Oregon Health and Sciences University School of Dentistry, Portland, Oregon
| |
Collapse
|
42
|
Arnaud-Brachet M, Foletti JM, Graillon N, Chaumoître K, Chossegros C, Guyot L. Could mastication modify the shape of the orbit? A scannographic study in humans. Surg Radiol Anat 2019; 42:63-67. [PMID: 31489469 DOI: 10.1007/s00276-019-02315-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Since prehistory, changes of the facial skeleton have been related to the modification of diet. More recent studies have shown changes in the morphology of the mandible and maxilla due to variations of strain during mastication. The temporal muscle (TM) is a strong masticatory muscle, with its insertions extending through the temporal fossa. Our objective is to observe the relations between the TM and the lateral orbital wall (LOW) which could indicate an influence of mastication on the shape of the LOW. METHODS We conducted a retrospective study using 100 CT scans. The length of the lateral orbital wall (LLOW), the angle between LOW and the medial orbital wall (MOW), the cross-sectional areas of LOW and of the TMs were measured on both sides of each CT scan. The correlation between TMs and other three parameters was studied by Pearson correlations. RESULTS A correlation was found between TMs and LOWs, a lower with LLOW, and a very weak and negative correlation between LOW/MOW angle. CONCLUSIONS Anatomical knowledge about TM and investigation of masticatory strains lead us to think that mastication have minimal effect on the morphology of the LOW, only on the frontal process of zygomatic. This may explain, in part, why the LOW is the strongest wall of the orbit.
Collapse
Affiliation(s)
- Melanie Arnaud-Brachet
- Department of Maxillofacial Surgery, Public Assistance Hospital,, University Hospital Center Conception, Marseille, France. .,Service de chirurgie Maxillofaciale et plastique de la face, Hôpital Nord, chemin des Bourrely, 13915, Marseille, France.
| | - Jean Marc Foletti
- Aix Marseille Univ, APHM, IFSTTAR, LBA, Pôle PROM, service de chirurgie maxillo-faciale, Marseille, France
| | - Nicolas Graillon
- Department of Maxillofacial Surgery, Public Assistance Hospital,, University Hospital Center Conception, Marseille, France.,Aix Marseille Univ, APHM, IFSTTAR, LBA, Pôle PROM, service de chirurgie maxillo-faciale, Marseille, France
| | - Katia Chaumoître
- Department of Radiology, Public Assistance Hospital of Marseille, University Hospital Center Nord, Marseille, France
| | - Cyrille Chossegros
- Department of Maxillofacial Surgery, Public Assistance Hospital,, University Hospital Center Conception, Marseille, France.,Aix Marseille Univ, APHM, IFSTTAR, LBA, Pôle PROM, service de chirurgie maxillo-faciale, Marseille, France
| | - Laurent Guyot
- Department of Maxillofacial Surgery, Public Assistance Hospital,, University Hospital Center Conception, Marseille, France
| |
Collapse
|
43
|
Joganic JL, Heuzé Y. Allometry and advancing age significantly structure craniofacial variation in adult female baboons. J Anat 2019; 235:217-232. [PMID: 31070786 PMCID: PMC6637449 DOI: 10.1111/joa.13005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Primate craniofacial growth is traditionally assumed to cease upon maturation or at least be negligible, whereas bony remodeling is typically associated with advanced adult age and, in particular, tooth loss. Therefore, size and shape of the craniofacial skeleton of young and middle-aged adults should be stable. However, research on both modern and historic human samples suggests that portions of the CFS exhibit age-related changes in mature individuals, both related to and independent of tooth loss. These results demonstrate that the age-category 'adult' is heterogeneous, containing individuals demonstrating post-maturational age-related variation, but the topic remains understudied outside of humans and in the cranial vault and base. Our research quantifies variation in a sample of captive adult female baboons (n = 97) in an effort to understand how advancing age alters the mature CFS. Craniometric landmarks and sliding semilandmarks were collected from computed tomography (CT) scans of adult baboons aged 7-32 years old. To determine whether craniofacial morphology is sensitive to aging mechanisms and whether any such effects are differentially distributed throughout the cranium, geometric morphometric techniques were employed to compare the shapes of various cranial regions among individuals of increasing age. Unexpectedly, the biggest form differences were observed between young and middle-aged adults, rather than between adults with full dentitions and those with some degree of tooth loss. Shape variation was greatest in masticatory and nuchal musculature attachment areas. Our results indicate that the craniofacial skeleton changes form during adulthood in baboons, raising interesting questions about the molecular and biological mechanisms governing these changes.
Collapse
Affiliation(s)
- Jessica L. Joganic
- CNRSMCCPACEAUMR5199University of BordeauxPessacFrance
- Department of AnthropologyWashington University in St. LouisSt. LouisMOUSA
| | - Yann Heuzé
- CNRSMCCPACEAUMR5199University of BordeauxPessacFrance
| |
Collapse
|
44
|
Pokhojaev A, Avni H, Sella-Tunis T, Sarig R, May H. Changes in human mandibular shape during the Terminal Pleistocene-Holocene Levant. Sci Rep 2019; 9:8799. [PMID: 31217474 PMCID: PMC6584575 DOI: 10.1038/s41598-019-45279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
The transition to food production, exploitation of 'secondary' products (e.g., milk), and advances in cookware technology have affected all aspects of human life. The aim of the present study was to follow changes in mandibular form and shape throughout the terminal Pleistocene-Holocene Levant. The hemimandibles of four populations were included in this study: Natufian hunter-gatherers (n = 10), Pre-pottery Neolithic early farmers (n = 6), Chalcolithic farmers (n = 9), Roman-Byzantine (n = 16), and modern (n = 63) populations. A surface mesh of each mandible was reconstructed from CT or surface scans. Changes in mandibular form and shape were studied using the Procrustes-based geometric morphometrics method. Univariate and multivariate analyses were carried out to examine differences in size and shape between the studied populations. Our results reveal considerable temporal changes in mandibular shape throughout the Holocene Levant, mainly between the pre-agricultural population (the Natufian) and the succeeding ones, and between the post-industrial (the Modern) and the pre-industrial populations. A tendency for a reduction in mandibular size was identified between the pre-agricultural population and the farmers. Most regions of the mandible underwent shape changes. In conclusion, substantial changes in mandibular shape occurred throughout the Holocene Levant, especially following the agricultural revolution. These changes can be explained by the "masticatory-functional hypothesis".
Collapse
Affiliation(s)
- Ariel Pokhojaev
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Hadas Avni
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Tatiana Sella-Tunis
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Rachel Sarig
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Departments of Orthodontics and Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
- Shmunis Family Anthropology Institute, Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Steinhardt Natural History Museum, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.
| |
Collapse
|
45
|
Marklein KE, Torres-Rouff C, King LM, Hubbe M. The Precarious State of Subsistence: Reevaluating Dental Pathological Lesions Associated with Agricultural and Hunter-Gatherer Lifeways. CURRENT ANTHROPOLOGY 2019. [DOI: 10.1086/703376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Bermejo-Fenoll A, Panchón-Ruíz A, Sánchez del Campo F. Homo sapiens, Chimpanzees and the Enigma of Language. Front Neurosci 2019; 13:558. [PMID: 31213975 PMCID: PMC6555268 DOI: 10.3389/fnins.2019.00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The present study explores the hypothesis that the anatomical bone structures of the oral cavity have probably evolved under the influence of language function. The possible changes have been evaluated by comparing two close species essentially differentiated from each other by spoken language. MATERIALS AND METHODS Twenty dry skulls and 20 mandibles of modern Caucasians were compared with 12 dry skulls and 12 mandibles of chimpanzees, with the analysis of 37 variables and the definition of new anatomical parameters. RESULTS A number of highly significant differences were found between humans and chimpanzees. The human temporomandibular joint is comparatively less flat and has a more limited excursive movement range, with structural elements that seem to be lighter. A significant difference is noted in mandibular alveolar vergency and in the internal slope of the mandibular symphysis where the oral cavity's morphology is modified, thereby increasing the free space for tongue movements in humans. The chin, which is unique to the human species, is quantified through the external slope of the mandibular symphysis with a lesser angle in humans. DISCUSSION It is obvious that there are differences between humans and chimpanzees in the bone morphology of the oral cavity structures. This has been confirmed with the analysis of new variables. Together with other factors (bipedalism, habits, and genetics) speech in humans must have played an important role in the aforementioned differences between humans and chimpanzees. The number of mandibular movements involved in speech is far greater than those used in chewing, which must have conditioned the evolution of the oral structures implicated in the development of language. On average, humans weigh 70 kg and chimpanzees 44 kg. However, the majority of the variables studied in skulls and mandibles are greater in chimpanzees, which suggests that the evolution of the oral zone in humans has suffered a reduction in size with changes in shape. The refinement of the supralaryngeal vocal tract in the human species must have co-evolved with speech fairly recently. The human skull has temporomandibular joints that are comparatively less flat with a more limited movement. There is a greater lingual space and there is also a chin that suggests a muscular stimulant. This leads to the conclusion that, at least in part, speech is behind all these changes, although it is difficult to establish a cause-effect relationship.
Collapse
|
47
|
Dental macrowear and cortical bone distribution of the Neanderthal mandible from Regourdou (Dordogne, Southwestern France). J Hum Evol 2019; 132:174-188. [PMID: 31203846 DOI: 10.1016/j.jhevol.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 01/10/2023]
Abstract
Tooth wear is an important feature for reconstructing diet, food processing and cultural habits of past human populations. In particular, occlusal wear facets can be extremely useful for detecting information about diet and non-masticatory behaviors. The aim of this study is to reconstruct the diet and cultural behavior of the Neanderthal specimen Regourdou 1 (Dordogne, Southern France) from the analysis of the macrowear pattern, using the occlusal fingerprint analysis method. In addition, we have also examined whether there is any association between the observed dental macrowear and mandibular bone distribution and root dentine thickness. The posterior dentition of Regourdou 1 is characterized by an asymmetric wear pattern, with the right side significantly more worn than the left. In contrast, the left lower P3 shows a more advanced wear than the right premolar, with unusual semicircular enamel wear facets. The results from occlusal fingerprint analysis of this unique pattern suggest tooth-tool uses for daily task activities. Moreover, the left buccal aspect of the mandibular cortical bone is thicker than its right counterpart, and the left P3 has a thicker radicular dentine layer than its antimere. These results show a certain degree of asymmetry in cortical bone topography and dentine tissue that could be associated with the observed dental macrowear pattern. The molar macrowear pattern also suggests that Regourdou 1 had a mixed diet typical of those populations living in temperate deciduous woodlands and Mediterranean habitats, including animal and plant foods. Although this study is limited to one Neanderthal individual, future analyses based on a larger sample may further assist us to better understand the existing relationship between mandibular architecture, occlusal wear and the masticatory apparatus in humans.
Collapse
|
48
|
Functional stability analyses of maxillofacial skeleton bearing cleft deformities. Sci Rep 2019; 9:4261. [PMID: 30862870 PMCID: PMC6414651 DOI: 10.1038/s41598-019-40478-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/29/2019] [Indexed: 02/05/2023] Open
Abstract
The symmetrically stable craniofacial bony structure supports the complex functions and delicate contour of the face. Congenital craniofacial deformities are often accompanied by bony defects and have been repetitively correlated with compromised dento-maxillary stability, but neither the extent nor the pattern of cleft-related maxillary instability has been explored in detail. Furthermore, it is largely unknown if the bony defect and related instability are correlated with secondary maxillary deformity common among patients with orofacial clefts. With the aid of finite element modeling, we studied the detailed relationship between cleft-related bony defect and maxillary stability under occlusal loading. Craniofacial models were generated based on cone-beam computed tomography data and loaded with mimicked bite forces along the axial axis of each tooth. Our data showed that all cleft models exhibited more asymmetrical deformations under mastication compared with the normal. Models with palatal cleft demonstrated greater asymmetry, greater dental arch contraction, and less maxillary protrusion compared to models with alveolar cleft only. For unilateral cleft models, alveolus on non-cleft side tended to be more protruded and lifted than the cleft side. For bilateral cleft models, the most prominent feature was the seriously contracted alveolar arch and curved and pitched premaxillae. These findings indicated cleft type-specific pattern of maxillary instability, which were largely in accordance with dentoalveolar morphological features among patients. Collectively, our study elucidated the detailed relationship between cleft bony defect and the pattern of maxillary instability, and suggested a prototype for studying the abnormal maxillary and dental arch growth among patients with craniofacial deformities.
Collapse
|
49
|
Pampush JD, Scott JE, Robinson CA, Delezene LK. Oblique human symphyseal angle is associated with an evolutionary rate-shift early in the hominin clade. J Hum Evol 2018; 123:84-95. [DOI: 10.1016/j.jhevol.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
|
50
|
Affiliation(s)
- Paul R Ehrlich
- Department of Biology at Stanford University, in California
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology at the University of California, Los Angeles
| |
Collapse
|