1
|
Fiagbenu ME. Taking Stock and Looking Forward to the Future of Pathogen Politics in Light of New Insights and Recommendations: COVID-19 Threat Was Meaningfully Associated With Support for Liberal Policies in the United States. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2024:1461672241240903. [PMID: 38571398 DOI: 10.1177/01461672241240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Infectious disease outbreaks are expected to predict support for conservative policies. However, earlier studies (January-June, 2020) reached conflicting findings regarding the association between COVID-19 threat and policy preferences in the United States. We revisit this issue by analyzing five nationally representative surveys conducted during the relatively severe periods of the pandemic (August 2020-December, 2020; total N = 82,753). Using Bayesian inference, we find strong evidence that subjective (e.g., fear of infection and pandemic outrage) but not objective (e.g., local cases and deaths) threat predicted support for liberal policies (e.g., immigration and universal health care). Meta-analyses revealed that the estimates depend on the type of subjective (.05 ≥ r ≤ .60) or objective (.00 ≥ r ≤ .14) COVID-19 threat. We propose an emotion-mediated dual-process model of pathogen management suggesting that infectious disease outbreaks activate both avoidance and caregiving motives that translate, respectively, into support for right-wing and left-wing policies.
Collapse
|
2
|
Gilbert BLP, Kessler SE. Could care giving have altered the evolution of human immune strategies? Evol Med Public Health 2024; 12:33-49. [PMID: 38380131 PMCID: PMC10878251 DOI: 10.1093/emph/eoae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Life history theory indicates that individuals/species with a slow pace of life invest more in acquired than innate immunity. Factors that decrease the pace of life and predict greater investment in acquired immunity include increased nutritional resources, increased pathogen exposure and decreased risk of extrinsic mortality. Common care behaviors given to sick individuals produce exactly these effects: provisioning increases nutritional resources; hygiene assistance increases disease exposure of carers; and protection can reduce the risk of extrinsic mortality to sick individuals. This study, therefore, investigated under what conditions care giving behaviors might impact immune strategy and pace of life. The study employed an agent-based model approach that simulated populations with varying levels of care giving, disease mortality, disease transmissibility, and extrinsic mortality, enabling measurements of how the immune strategy and age structure of the populations changed over evolutionary time. We used multiple regressions to examine the effects of these variables on immune strategy and the age structure of the population. The findings supported our predictions that care was selected for an acquired immunity. However, the pace of life did not slow as expected. Instead, the population shifted to a faster, but also more cost-intensive reproductive strategy in which care improved child survival by subsidizing the development of acquired immune responses.
Collapse
Affiliation(s)
- Bethany L P Gilbert
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
3
|
Hansson LS, Lasselin J, Tognetti A, Axelsson J, Olsson MJ, Sundelin T, Lekander M. The walking sick: Perception of experimental sickness from biological motion. Brain Behav Immun 2023; 113:319-327. [PMID: 37517742 DOI: 10.1016/j.bbi.2023.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Identification of sick conspecifics allows for avoidance of infectious threats, and is therefore an important behavioral defense against diseases. Here, we investigated if humans can identify sick individuals solely from biological motion and posture (using point-light displays). Additionally, we sought to determine which movements and sickness parameters would predict such detection. We collected video clips and derived point-light displays (one stride presented in a loop) of sick walkers (injected with lipopolysaccharide at 2.0 ng/kg body weight) and the same walkers when healthy (injected with saline). We then presented these displays to two groups, one group classified each walker as sick or healthy (study 1, n = 106), and the other group scored the walkers' health on a visual analogue scale (study 2, n = 106). The raters were able to identify sick individuals above chance, and rated sick walkers as having worse health, both from observing video clips and point-light displays. Furthermore, both sickness detection and worse apparent health were predicted by inflammation-induced increase in rigidity and slower walking, but not other cues. Altogether, these findings indicate that biological motion can serve as a sickness cue, possibly allowing humans to identify sick conspecifics from a distance, and thereby allowing for disease avoidance.
Collapse
Affiliation(s)
- L S Hansson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - A Tognetti
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Axelsson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M J Olsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - T Sundelin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Health, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Steinkopf L. The suffering ape hypothesis. Behav Brain Sci 2023; 46:e78. [PMID: 37154368 DOI: 10.1017/s0140525x2200190x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The "fearful ape hypothesis" could be regarded as one aspect of a more general "suffering ape hypothesis": Humans are more likely to experience negative emotions (e.g., fear, sadness), aversive symptoms (e.g., pain, fever), and to engage in self-harming behavior (e.g., cutting, suicide attempts) because these might motivate affiliative, consolatory, and supportive behavior from their prosocial environment thereby enhancing evolutionary fitness.
Collapse
Affiliation(s)
- Leander Steinkopf
- Placebo Lab, Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany ; www.leandersteinkopf.de
| |
Collapse
|
5
|
Rifkin RF, Vikram S, Alcorta J, Ramond JB, Cowan DA, Jakobsson M, Schlebusch CM, Lombard M. Rickettsia felis DNA recovered from a child who lived in southern Africa 2000 years ago. Commun Biol 2023; 6:240. [PMID: 36869137 PMCID: PMC9984395 DOI: 10.1038/s42003-023-04582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
The Stone Age record of South Africa provides some of the earliest evidence for the biological and cultural origins of Homo sapiens. While there is extensive genomic evidence for the selection of polymorphisms in response to pathogen-pressure in sub-Saharan Africa, e.g., the sickle cell trait which provides protection against malaria, there is inadequate direct human genomic evidence for ancient human-pathogen infection in the region. Here, we analysed shotgun metagenome libraries derived from the sequencing of a Later Stone Age hunter-gatherer child who lived near Ballito Bay, South Africa, c. 2000 years ago. This resulted in the identification of ancient DNA sequence reads homologous to Rickettsia felis, the causative agent of typhus-like flea-borne rickettsioses, and the reconstruction of an ancient R. felis genome.
Collapse
Affiliation(s)
- Riaan F Rifkin
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK.
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Mattias Jakobsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
6
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Kessler SE, Aunger R. The evolution of the human healthcare system and implications for understanding our responses to COVID-19. Evol Med Public Health 2022; 10:87-107. [PMID: 35284079 PMCID: PMC8908543 DOI: 10.1093/emph/eoac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has revealed an urgent need for a comprehensive, multidisciplinary understanding of how healthcare systems respond successfully to infectious pathogens-and how they fail. This study contributes a novel perspective that focuses on the selective pressures that shape healthcare systems over evolutionary time. We use a comparative approach to trace the evolution of care-giving and disease control behaviours across species and then map their integration into the contemporary human healthcare system. Self-care and pro-health environmental modification are ubiquitous across animals, while derived behaviours like care for kin, for strangers, and group-level organizational responses have evolved via different selection pressures. We then apply this framework to our behavioural responses to COVID-19 and demonstrate that three types of conflicts are occurring: (1) conflicting selection pressures on individuals, (2) evolutionary mismatches between the context in which our healthcare behaviours evolved and our globalized world of today and (3) evolutionary displacements in which older forms of care are currently dispensed through more derived forms. We discuss the significance of understanding how healthcare systems evolve and change for thinking about the role of healthcare systems in society during and after the time of COVID-19-and for us as a species as we continue to face selection from infectious diseases.
Collapse
Affiliation(s)
- Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Robert Aunger
- Environmental Health Group, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Arshamian A, Sundelin T, Wnuk E, O'Meara C, Burenhult N, Rodriguez GG, Lekander M, Olsson MJ, Lasselin J, Axelsson J, Majid A. Human sickness detection is not dependent on cultural experience. Proc Biol Sci 2021; 288:20210922. [PMID: 34255999 PMCID: PMC8277478 DOI: 10.1098/rspb.2021.0922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals across phyla can detect early cues of infection in conspecifics, thereby reducing the risk of contamination. It is unknown, however, if humans can detect cues of sickness in people belonging to communities with whom they have limited or no experience. To test this, we presented Western faces photographed 2 h after the experimental induction of an acute immune response to one Western and five non-Western communities, including small-scale hunter-gatherer and large urban-dwelling communities. All communities could detect sick individuals. There were group differences in performance but Western participants, who observed faces from their own community, were not systematically better than all non-Western participants. At odds with the common belief that sickness detection of an out-group member should be biased to err on the side of caution, the majority of non-Western communities were unbiased. Our results show that subtle cues of a general immune response are recognized across cultures and may aid in detecting infectious threats.
Collapse
Affiliation(s)
- Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tina Sundelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Ewelina Wnuk
- Department of Anthropology, University College London, London, UK
| | - Carolyn O'Meara
- Instituto de Investigaciones Filológicas, National Autonomous University of Mexico in Mexico City, Mexico
| | - Niclas Burenhult
- Centre for Languages and Literature, Lund University, Sweden.,Lund University Humanities Laboratory, Lund University, Sweden
| | | | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Mats J Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lasselin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Asifa Majid
- Department of Psychology, University of York, York, UK
| |
Collapse
|
9
|
Spatial and Social Behavior of Single and Coupled Individuals of Both Sexes during COVID-19 Lockdown Regime in Russia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084283. [PMID: 33920747 PMCID: PMC8073311 DOI: 10.3390/ijerph18084283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
Abstract
Testing individual motivations for social activity in violation of the mandated lockdown regime is a challenging research topic for evolutionary psychology. To this purpose, we analyzed twenty popular weekly routes and the potential impact of sex and relationship status (single versus coupled) on the reported level of spatial-social activity during the quarantine in Russia between March and June 2020 (N = 492). Our study revealed a significant difference between men’s and women’s mobility: men, in general, tend to exhibit substantially higher spatial activity. The results have shown that individuals living on their own have more social interactions with friends and exhibit more profound spatial mobility via public transport. On the other hand, spatial activity of coupled individuals of both sexes were mostly devoted to solving a list of economic and matrimonial tasks. At the same time, men already cohabiting with a partner leave their homes for dating purposes more frequently than single men and women. We interpret these findings in the sense that both individual and sex-specific differences in observed sociality could be a result of a fine-tuned adaptive populational response to a contemporary virus threat, predominantly rooted in the evolution of behavioral strategies in the reproductive and economic spheres of each sex. Indeed, unlike women, coupled men have been preserving highly risky and intense social behavior during the COVID-19 pandemic.
Collapse
|
10
|
Stockmaier S, Stroeymeyt N, Shattuck EC, Hawley DM, Meyers LA, Bolnick DI. Infectious diseases and social distancing in nature. Science 2021; 371:371/6533/eabc8881. [PMID: 33674468 DOI: 10.1126/science.abc8881] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spread of contagious pathogens critically depends on the number and types of contacts between infectious and susceptible hosts. Changes in social behavior by susceptible, exposed, or sick individuals thus have far-reaching downstream consequences for infectious disease spread. Although "social distancing" is now an all too familiar strategy for managing COVID-19, nonhuman animals also exhibit pathogen-induced changes in social interactions. Here, we synthesize the effects of infectious pathogens on social interactions in animals (including humans), review what is known about underlying mechanisms, and consider implications for evolution and epidemiology.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA.
| | | | - Eric C Shattuck
- Institute for Health Disparities Research, University of Texas at San Antonio, San Antonio, TX, USA
| | - Dana M Hawley
- Virginia Tech, Department of Biological Sciences, Blacksburg, VA, USA
| | - Lauren Ancel Meyers
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Daniel I Bolnick
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, USA
| |
Collapse
|
11
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
12
|
Townsend AK, Hawley DM, Stephenson JF, Williams KEG. Emerging infectious disease and the challenges of social distancing in human and non-human animals. Proc Biol Sci 2020; 287:20201039. [PMID: 32781952 PMCID: PMC7575514 DOI: 10.1098/rspb.2020.1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
The 'social distancing' that occurred in response to the COVID-19 pandemic in humans provides a powerful illustration of the intimate relationship between infectious disease and social behaviour in animals. Indeed, directly transmitted pathogens have long been considered a major cost of group living in humans and other social animals, as well as a driver of the evolution of group size and social behaviour. As the risk and frequency of emerging infectious diseases rise, the ability of social taxa to respond appropriately to changing infectious disease pressures could mean the difference between persistence and extinction. Here, we examine changes in the social behaviour of humans and wildlife in response to infectious diseases and compare these responses to theoretical expectations. We consider constraints on altering social behaviour in the face of emerging diseases, including the lack of behavioural plasticity, environmental limitations and conflicting pressures from the many benefits of group living. We also explore the ways that social animals can minimize the costs of disease-induced changes to sociality and the unique advantages that humans may have in maintaining the benefits of sociality despite social distancing.
Collapse
Affiliation(s)
- Andrea K. Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, 4036 Derring Hall (MC 0406), 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, 403B Clapp Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Keelah E. G. Williams
- Department of Psychology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
13
|
Rifkin RF, Vikram S, Ramond JB, Rey-Iglesia A, Brand TB, Porraz G, Val A, Hall G, Woodborne S, Le Bailly M, Potgieter M, Underdown SJ, Koopman JE, Cowan DA, Van de Peer Y, Willerslev E, Hansen AJ. Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the 'ancestral' sub-Saharan African intestinal microbiome. MICROBIOME 2020; 8:62. [PMID: 32375874 PMCID: PMC7204047 DOI: 10.1186/s40168-020-00832-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/18/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The archaeological incidence of ancient human faecal material provides a rare opportunity to explore the taxonomic composition and metabolic capacity of the ancestral human intestinal microbiome (IM). Here, we report the results of the shotgun metagenomic analyses of an ancient South African palaeo-faecal specimen. METHODS Following the recovery of a single desiccated palaeo-faecal specimen from Bushman Rock Shelter in Limpopo Province, South Africa, we applied a multi-proxy analytical protocol to the sample. The extraction of ancient DNA from the specimen and its subsequent shotgun metagenomic sequencing facilitated the taxonomic and metabolic characterisation of this ancient human IM. RESULTS Our results indicate that the distal IM of the Neolithic 'Middle Iron Age' (c. AD 1460) Bantu-speaking individual exhibits features indicative of a largely mixed forager-agro-pastoralist diet. Subsequent comparison with the IMs of the Tyrolean Iceman (Ötzi) and contemporary Hadza hunter-gatherers, Malawian agro-pastoralists and Italians reveals that this IM precedes recent adaptation to 'Western' diets, including the consumption of coffee, tea, chocolate, citrus and soy, and the use of antibiotics, analgesics and also exposure to various toxic environmental pollutants. CONCLUSIONS Our analyses reveal some of the causes and means by which current human IMs are likely to have responded to recent dietary changes, prescription medications and environmental pollutants, providing rare insight into human IM evolution following the advent of the Neolithic c. 12,000 years ago. Video Abtract.
Collapse
Affiliation(s)
- Riaan F Rifkin
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK.
| | - Surendra Vikram
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Jean-Baptiste Ramond
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alba Rey-Iglesia
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
| | - Tina B Brand
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
| | - Guillaume Porraz
- CNRS, UMR 7041 ArScAn-AnTET, Université Paris-Nanterre, Paris, France
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein Johannesburg, South Africa
| | - Aurore Val
- Evolutionary Studies Institute, University of the Witwatersrand, Braamfontein Johannesburg, South Africa
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | - Grant Hall
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Stephan Woodborne
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
- iThemba LABS, Braamfontein Johannesburg, South Africa
| | - Matthieu Le Bailly
- University of Bourgogne France-Comte, CNRS UMR 6249 Chrono-environment, Besancon, France
| | - Marnie Potgieter
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Simon J Underdown
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
| | - Jessica E Koopman
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Don A Cowan
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Yves Van de Peer
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Eske Willerslev
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark
- GeoGenetics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Anders J Hansen
- Centre for GeoGenetics, GLOBE Institute, University of Copenhagen, Hatfield, Denmark.
| |
Collapse
|
14
|
Poirotte C, Charpentier MJE. Unconditional care from close maternal kin in the face of parasites. Biol Lett 2020; 16:20190869. [PMID: 32097598 DOI: 10.1098/rsbl.2019.0869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several species mitigate relationships according to their conspecifics' parasite status. Yet, this defence strategy comes with the costs of depriving individuals from valuable social bonds. Animals therefore face a trade-off between the costs of pathogen exposure and the benefits of social relationships. According to the models of social evolution, social bonds are highly kin-biased. However, whether kinship mitigates social avoidance of contagious individuals has never been tested so far. Here, we build on previous research to demonstrate that mandrills (Mandrillus sphinx) modulate social avoidance of contagious individuals according to kinship: individuals do not avoid grooming their close maternal kin when contagious (parasitized with oro-faecally transmitted protozoa), although they do for more distant or non-kin. While individuals' parasite status has seldom been considered as a trait impacting social relationships in animals, this study goes a step beyond by showing that kinship balances the effect of health status on social behaviour in a non-human primate.
Collapse
Affiliation(s)
- Clémence Poirotte
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Marie J E Charpentier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR 5554, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
15
|
Kessler SE. Why Care: Complex Evolutionary History of Human Healthcare Networks. Front Psychol 2020; 11:199. [PMID: 32116974 PMCID: PMC7031495 DOI: 10.3389/fpsyg.2020.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
One of the striking features of human social complexity is that we provide care to sick and contagious individuals, rather than avoiding them. Care-giving is a powerful strategy of disease control in human populations today; however, we are not the only species which provides care for the sick. Widespread reports occurring in distantly related species like cetaceans and insects suggest that the building blocks of care for the sick are older than the human lineage itself. This raises the question of what evolutionary processes drive the evolution of such care in animals, including humans. I synthesize data from the literature to evaluate the diversity of care-giving behaviors and conclude that across the animal kingdom there appear to be two distinct types of care-behaviors, both with separate evolutionary histories: (1) social care behaviors benefitting a sick individual by promoting healing and recovery and (2) community health behaviors that control pathogens in the environment and reduce transmission within the population. By synthesizing literature from psychology, anthropology, and biology, I develop a novel hypothesis (Hominin Pathogen Control Hypothesis) to explain how these two distinct sets of behaviors evolved independently then merged in the human lineage. The hypothesis suggests that social care evolved in association with offspring care systems whereas community health behaviors evolved as a type of niche construction. These two types of behaviors merged in humans to produce complex, multi-level healthcare networks in humans. Moreover, each type of care increases selection for the other, generating feedback loops that selected for increasing healthcare behaviors over time. Interestingly, domestication processes may have contributed to both social care and community health aspects of this process.
Collapse
Affiliation(s)
- Sharon E. Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Department of Anthropology, Durham University, Durham, United Kingdom
| |
Collapse
|
16
|
Social Structure Facilitated the Evolution of Care-giving as a Strategy for Disease Control in the Human Lineage. Sci Rep 2018; 8:13997. [PMID: 30262928 PMCID: PMC6160448 DOI: 10.1038/s41598-018-31568-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Humans are the only species to have evolved cooperative care-giving as a strategy for disease control. A synthesis of evidence from the fossil record, paleogenomics, human ecology, and disease transmission models, suggests that care-giving for the diseased evolved as part of the unique suite of cognitive and socio-cultural specializations that are attributed to the genus Homo. Here we demonstrate that the evolution of hominin social structure enabled the evolution of care-giving for the diseased. Using agent-based modeling, we simulate the evolution of care-giving in hominin networks derived from a basal primate social system and the three leading hypotheses of ancestral human social organization, each of which would have had to deal with the elevated disease spread associated with care-giving. We show that (1) care-giving is an evolutionarily stable strategy in kin-based cooperatively breeding groups, (2) care-giving can become established in small, low density groups, similar to communities that existed before the increases in community size and density that are associated with the advent of agriculture in the Neolithic, and (3) once established, care-giving became a successful method of disease control across social systems, even as community sizes and densities increased. We conclude that care-giving enabled hominins to suppress disease spread as social complexity, and thus socially-transmitted disease risk, increased.
Collapse
|