1
|
Fucini GB, Geffers C, Schwab F, Behnke M, Sunder W, Moellmann J, Gastmeier P. Sinks in patient rooms in ICUs are associated with higher rates of hospital-acquired infection: a retrospective analysis of 552 ICUs. J Hosp Infect 2023; 139:99-105. [PMID: 37308060 DOI: 10.1016/j.jhin.2023.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sinks in hospitals are a possible reservoir for healthcare-related pathogens. They have been identified as a source of nosocomial outbreaks in intensive care units (ICU); however, their role in non-outbreak settings remains unclear. AIM To investigate whether sinks in ICU patient rooms are associated with a higher incidence of hospital-acquired infection (HAI). METHODS This analysis used surveillance data from the ICU component of the German nosocomial infection surveillance system (KISS) from 2017 to 2020. Between September and October 2021, all participating ICUs were surveyed about the presence of sinks in their patient rooms. The ICUs were then divided into two groups: the no-sink group (NSG) and the sink group (SG). Primary and secondary outcomes were total HAIs and HAIs associated with Pseudomonas aeruginosa (HAI-PA). FINDINGS In total, 552 ICUs (NSG N=80, SG N=472) provided data about sinks, total HAIs and HAI-PA. The incidence density per 1000 patient-days of total HAIs was higher in ICUs in the SG (3.97 vs 3.2). The incidence density of HAI-PA was also higher in the SG (0.43 vs 0.34). The risk of HAIs associated with all pathogens [incidence rate ratio (IRR)=1.24, 95% confidence interval (CI) 1.03-1.50] and the risk of lower respiratory tract infections associated with P. aeruginosa (IRR=1.44, 95% CI 1.10-1.90) were higher in ICUs with sinks in patient rooms. After adjusting for confounders, sinks were found to be an independent risk factor for HAI (adjusted IRR 1.21, 95% CI 1.01-1.45). CONCLUSIONS Sinks in patient rooms are associated with a higher number of HAIs per patient-day in the ICU. This should be considered when planning new ICUs or renovating existing ones.
Collapse
Affiliation(s)
- G-B Fucini
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany.
| | - C Geffers
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - F Schwab
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - M Behnke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| | - W Sunder
- Institute of Construction Design, Industrial and Health Care Building, Technische Universität Carolo Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - J Moellmann
- Institute of Construction Design, Industrial and Health Care Building, Technische Universität Carolo Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - P Gastmeier
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany; National Reference Centre for Surveillance of Nosocomial Infections, Berlin, Germany
| |
Collapse
|
2
|
Schärer V, Meier MT, Schuepbach RA, Zinkernagel AS, Boumasmoud M, Chakrakodi B, Brugger SD, Fröhlich MR, Wolfensberger A, Sax H, Kuster SP, Schreiber PW. An intensive care unit outbreak with multi-drug-resistant Pseudomonas aeruginosa - spotlight on sinks. J Hosp Infect 2023; 139:161-167. [PMID: 37343769 DOI: 10.1016/j.jhin.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa and other Gram-negative bacteria have the ability to persist in moist environments in healthcare settings, but their spread from these areas can result in outbreaks of healthcare-associated infections. METHODS This study reports the investigation and containment of a multi-drug-resistant P. aeruginosa outbreak in three intensive care units of a Swiss university hospital. In total, 255 patients and 276 environmental samples were screened for the multi-drug-resistant P. aeruginosa outbreak strain. The environmental sampling and molecular characterization of patient and environmental strains, and control strategies implemented, including waterless patient care, are described. RESULTS Between March and November 2019, the outbreak affected 29 patients. Environmental sampling detected the outbreak strain in nine samples of sink siphons of three different intensive care units with a common water sewage system, and on one gastroscope. Three weeks after replacement of the sink siphons, the outbreak strain re-grew in siphon-derived samples and newly affected patients were identified. The outbreak ceased after removal of all sinks in the proximity of patients and in medication preparation areas, and minimization of tap water use. Multi-locus sequence typing indicated clonality (sequence type 316) in 28/29 patient isolates and all 10 environmental samples. CONCLUSIONS Sink removal combined with the introduction of waterless patient care terminated the multi-drug-resistant P. aeruginosa outbreak. Sinks in intensive care units may pose a risk for point source outbreaks with P. aeruginosa and other bacteria persisting in moist environments.
Collapse
Affiliation(s)
- V Schärer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M-T Meier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - R A Schuepbach
- Institute for Intensive Care Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - A S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - B Chakrakodi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - S D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - M R Fröhlich
- Institute for Intensive Care Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Perioperative Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - A Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - H Sax
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - S P Kuster
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - P W Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Garvey MI, Williams N, Gardiner A, Ruston C, Wilkinson M, Kiernan M, Walker J, Holden E. The sink splash zone. J Hosp Infect 2023; 135:154-156. [PMID: 36870392 DOI: 10.1016/j.jhin.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 03/06/2023]
Affiliation(s)
- Mark I Garvey
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB; Hospital Infection Research Laboratory, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB; Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | - Nathan Williams
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB
| | - Alyson Gardiner
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB
| | - Charlotte Ruston
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB
| | - Martyn Wilkinson
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB; Hospital Infection Research Laboratory, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB
| | - Martin Kiernan
- University of West London, Richard Wells Research Centre, London, United Kingdom
| | | | - Elisabeth Holden
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB
| |
Collapse
|
4
|
Couchoud C, Bertrand X, Bourgeon M, Piton G, Valot B, Hocquet D. Genome-based typing reveals rare events of patient contamination with Pseudomonas aeruginosa from other patients and sink traps in a medical intensive care unit. J Hosp Infect 2023; 134:63-70. [PMID: 36738994 DOI: 10.1016/j.jhin.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
AIM We used genome-based typing data with the aim of identifying the routes of acquisition of Pseudomonas aeruginosa by patients hospitalized in a medical intensive care unit (MICU) over a long period in a non-epidemic context. METHODS This monocentric prospective study took place over 10 months in 2019 in a 15-bed MICU that applies standard precautions of hygiene. Lockable sink traps installed at all water points of use were bleach disinfected twice a week. We sampled all sink traps weekly to collect 404 P. aeruginosa environmental isolates and collected all P. aeruginosa isolates (N = 115) colonizing or infecting patients (N = 65). All isolates had their phenotypic resistance profile determined and their genome sequenced, from which we identified resistance determinants and assessed the population structure of the collection at the nucleotide level to identify events of P. aeruginosa transmission. FINDINGS All sink traps were positive for P. aeruginosa, each sink trap being colonized for several months by one or more clones. The combination of genomic and spatiotemporal data identified one potential event of P. aeruginosa transmission from a sink trap to a patient (1/65, 1.5%) and six events of patient cross-transmission, leading to the contamination of five patients (5/65, 7.7%). All transmitted isolates were fully susceptible to β-lactams and aminoglycosides. CONCLUSIONS Genome-based typing revealed the contamination of patients by P. aeruginosa originating from sink traps to be infrequent (1.5%) in an MICU with sink trap-bleaching measures, and that only 7.7% of the patients acquired P. aeruginosa originating from another patient.
Collapse
Affiliation(s)
- C Couchoud
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France
| | - X Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France
| | - M Bourgeon
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France
| | - G Piton
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire, Besançon, France; EA3920, Université de Franche-Comté, Besançon, France
| | - B Valot
- Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France; Bioinformatique et Big Data Au Service de La Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - D Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; Chrono-environnement UMR6249, CNRS Université de Franche-Comté, F-25000, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France; Bioinformatique et Big Data Au Service de La Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France.
| |
Collapse
|
5
|
Jabłońska-Trypuć A, Makuła M, Włodarczyk-Makuła M, Wołejko E, Wydro U, Serra-Majem L, Wiater J. Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8121. [PMID: 35805776 PMCID: PMC9265696 DOI: 10.3390/ijerph19138121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The carriers of nosocomial infections are the hands of medical personnel and inanimate surfaces. Both hands and surfaces may be contaminated as a result of contact with the patient, their body fluids, and touching contaminated surfaces in the patient's surroundings. Visually clean inanimate surfaces are an important source of pathogens. Microorganisms have properties thanks to which they can survive in unfavorable conditions, from a few days to several months. Bacteria, viruses and fungi are able to transmit from inanimate surfaces to the skin of the patient and the medical staff. These pathogens include SARS-CoV-2, which can survive on various types of inanimate surfaces, being a potential source of infection. By following the recommendations related to washing and disinfecting hands and surfaces, and using appropriate washing and disinfecting agents with a broad biocidal spectrum, high material compatibility and the shortest duration of action, we contribute to breaking the chain of nosocomial infections.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Marcin Makuła
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Traugutta sq.2, 41-800 Zabrze, Poland;
| | - Maria Włodarczyk-Makuła
- Faculty of Infrastructure and Environment, Częstochowa University of Technology, 69 Dabrowskiego Str., 42-201 Częstochowa, Poland;
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (U.W.)
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| |
Collapse
|
6
|
Qin M, Ma X, Fan S, Wu H, Yan W, Tian X, Lu J, Lyu M, Wang S. Rapid detection of Pseudomonas aeruginosa using a DNAzyme-based sensor. Food Sci Nutr 2021; 9:3873-3884. [PMID: 34262744 PMCID: PMC8269565 DOI: 10.1002/fsn3.2367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
In the present study, a DNAzyme was screened in vitro through the use of a DNA library and crude extracellular mixture (CEM) of Pseudomonas aeruginosa. Following eight rounds of selection, a DNAzyme termed PAE-1 was obtained, which displayed high rates of cleavage with strong specificity. A fluorescent biosensor was designed for the detection of P. aeruginosa in combination with the DNAzyme. A detection limit as low as 1.2 cfu/ml was observed. Using proteases and filtration, it was determined that the target was a protein with a molecular weight of 10 kDa-50 kDa. The DNAzyme was combined with a polystyrene board to construct a simple indicator plate sensor which produced a color that identified the target within 10 min. The results were reliable when tap water and food samples were tested. The present study provides a novel experimental strategy for the development of sensors based on a DNAzyme to rapidly detect P. aeruginosa in the field.
Collapse
Affiliation(s)
- Mingcan Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Xiaoyi Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Shihui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Hangjie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| |
Collapse
|
7
|
Halstead FD, Quick J, Niebel M, Garvey M, Cumley N, Smith R, Neal T, Roberts P, Hardy K, Shabir S, Walker JT, Hawkey P, Loman NJ. Pseudomonas aeruginosa infection in augmented care: the molecular ecology and transmission dynamics in four large UK hospitals. J Hosp Infect 2021; 111:162-168. [PMID: 33539934 DOI: 10.1016/j.jhin.2021.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a common opportunistic pathogen and molecular typing in outbreaks has linked patient acquisition to contaminated hospital water systems. AIM To elucidate the role of P. aeruginosa transmission rates in non-outbreak augmented care settings in the UK. METHODS Over a 16-week period, all water outlets in augmented care units of four hospitals were sampled for P. aeruginosa and clinical isolates were collected. Outlet and clinical P. aeruginosa isolates underwent whole-genome sequencing (WGS), which with epidemiological data identified acquisition from water as definite (level 1), probable (level 2), possible (level 3), and no evidence (level 4). FINDINGS Outlets were positive in each hospital on all three occasions: W (16%), X (2.5%), Y (0.9%) and Z (2%); and there were 51 persistently positive outlets in total. WGS identified likely transmission (at levels 1, 2 and 3) from outlets to patients in three hospitals for P. aeruginosa positive patients: W (63%), X (54.5%) and Z (26%). According to the criteria (intimate epidemiological link and no phylogenetic distance), approximately 5% of patients in the study 'definitely' acquired their P. aeruginosa from their water outlets in the intensive care unit. This study found extensive evidence of transmission from the outlet to the patients particularly in the newest hospital (W), which had the highest rate of positive outlets. CONCLUSIONS The overall findings suggest that water outlets are the most likely source of P. aeruginosa nosocomial infections in some settings, and that widespread introduction of control measures would have a substantial impact on infections.
Collapse
Affiliation(s)
- F D Halstead
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - J Quick
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - M Niebel
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - M Garvey
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - N Cumley
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - R Smith
- Royal Free London NHS Foundation Trust, Hampstead, London, UK
| | - T Neal
- Royal Liverpool University Hospital, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - P Roberts
- Royal Liverpool University Hospital, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - K Hardy
- Public Health England, Heartlands Hospital, University Hospitals Birmingham, Birmingham, UK
| | - S Shabir
- Public Health England, Heartlands Hospital, University Hospitals Birmingham, Birmingham, UK
| | | | - P Hawkey
- Department of Clinical Microbiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.
| | - N J Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Proctor CR, Rhoads WJ, Keane T, Salehi M, Hamilton K, Pieper KJ, Cwiertny DM, Prévost M, Whelton AJ. Considerations for large building water quality after extended stagnation. AWWA WATER SCIENCE 2020; 2:e1186. [PMID: 32838226 DOI: 10.31219/osf.io/qvj3b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 05/25/2023]
Abstract
The unprecedented number of building closures related to the coronavirus disease (COVID-19) pandemic is concerning because water stagnation will occur in many buildings that do not have water management plans in place. Stagnant water can have chemical and microbiological contaminants that pose potential health risks to occupants. Health officials, building owners, utilities, and other entities are rapidly developing guidance to address this issue, but the scope, applicability, and details included in the guidance vary widely. To provide a primer of large building water system preventative and remedial strategies, peer-reviewed, government, industry, and nonprofit literature relevant to water stagnation and decontamination practices for plumbing was synthesized. Preventative practices to help avoid the need for recommissioning (e.g., routine flushing) and specific actions, challenges, and limitations associated with recommissioning were identified and characterized. Considerations for worker and occupant safety were also indicated. The intended audience of this work includes organizations developing guidance.
Collapse
Affiliation(s)
- Caitlin R Proctor
- Division of Environmental and Ecological Engineering, Lyles School of Civil Engineering, Weldon School of Biomedical Engineering, School of Materials Engineering Purdue University West Lafayette Indiana
| | - William J Rhoads
- Department of Civil and Environmental Engineering Virginia Tech Blacksburg Virginia
| | - Tim Keane
- Legionella Risk Management, Inc. Chalfont Pennsylvania
| | - Maryam Salehi
- Department of Civil Engineering University of Memphis Memphis Tennessee
| | - Kerry Hamilton
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe Arizona
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering Northeastern University Boston Massachusetts
| | - David M Cwiertny
- Department of Civil and Environmental Engineering, Seamans Center for the Engineering Arts and Sciences University of Iowa Iowa City Iowa
- Center for Health Effects of Environmental Contamination University of Iowa Iowa City Iowa
- Public Policy Center University of Iowa Iowa City Iowa
| | - Michele Prévost
- Civil, Geological and Mining Engineering Polytechnique Montreal Montréal Québec Canada
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering Purdue University West Lafayette Indiana
| |
Collapse
|
9
|
Proctor CR, Rhoads WJ, Keane T, Salehi M, Hamilton K, Pieper KJ, Cwiertny DM, Prévost M, Whelton AJ. Considerations for Large Building Water Quality after Extended Stagnation. ACTA ACUST UNITED AC 2020; 2:e1186. [PMID: 32838226 PMCID: PMC7323006 DOI: 10.1002/aws2.1186] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
The unprecedented number of building closures related to the coronavirus disease (COVID‐19) pandemic is concerning because water stagnation will occur in many buildings that do not have water management plans in place. Stagnant water can have chemical and microbiological contaminants that pose potential health risks to occupants. Health officials, building owners, utilities, and other entities are rapidly developing guidance to address this issue, but the scope, applicability, and details included in the guidance vary widely. To provide a primer of large building water system preventative and remedial strategies, peer‐reviewed, government, industry, and nonprofit literature relevant to water stagnation and decontamination practices for plumbing was synthesized. Preventative practices to help avoid the need for recommissioning (e.g., routine flushing) and specific actions, challenges, and limitations associated with recommissioning were identified and characterized. Considerations for worker and occupant safety were also indicated. The intended audience of this work includes organizations developing guidance.
Collapse
Affiliation(s)
- Caitlin R Proctor
- Division of Environmental and Ecological Engineering, Lyles School of Civil Engineering, Weldon School of Biomedical Engineering, School of Materials Engineering Purdue University West Lafayette IN
| | - William J Rhoads
- Department of Civil and Environmental Engineering Virginia Tech Blacksburg VA
| | - Tim Keane
- Consulting Engineer, Legionella Risk Management, Inc PA
| | - Maryam Salehi
- Department of Civil Engineering University of Memphis Memphis TN
| | - Kerry Hamilton
- School of Sustainable Engineering and the Built Environment Arizona State University Tempe AZ
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering Northeastern University Boston MA
| | - David M Cwiertny
- Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts and Sciences University of Iowa Iowa City IA.,Center for Health Effects of Environmental Contamination, 251 North Capitol Street, Chemistry Building - Room W195 University of Iowa Iowa City IA.,Public Policy Center, 310 South Grand Ave, 209 South Quadrangle University of Iowa Iowa City IA
| | - Michele Prévost
- Professor and Principal Chairholder, NSERC Industrial Chair on Drinking Water, Civil, Geological and Mining Engineering, Polytechnique Montreal CP Québec Canada
| | - Andrew J Whelton
- Purdue University, Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering West Lafayette IN
| |
Collapse
|
10
|
Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnology 2020; 18:35. [PMID: 32070354 PMCID: PMC7029462 DOI: 10.1186/s12951-020-0588-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 01/29/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.
Collapse
Affiliation(s)
- Leisha M. Armijo
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Stephen J. Wawrzyniec
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Michael Kopciuch
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Yekaterina I. Brandt
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Antonio C. Rivera
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathan J. Withers
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathaniel C. Cook
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, 1000 Eubank SE, Albuquerque, NM 87123 USA
| | - Todd C. Monson
- Sandia National Laboratories, Nanomaterials Sciences, P.O. Box 5800, MS 1415, Albuquerque, NM 87185 USA
| | - Hugh D. C. Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Stop A1900, Austin, TX 78712 USA
| | - Marek Osiński
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| |
Collapse
|
11
|
Exogenous acquisition of Pseudomonas aeruginosa in intensive care units: a prospective multi-centre study (DYNAPYO study). J Hosp Infect 2020; 104:40-45. [DOI: 10.1016/j.jhin.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
|
12
|
Effects of a disinfection device on colonization of sink drains and patients during a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. J Hosp Infect 2019; 102:70-74. [PMID: 30639071 DOI: 10.1016/j.jhin.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Sink drains in intensive care units (ICUs) are frequently colonized with bacteria such as Pseudomonas aeruginosa. AIM To study the influence of installing disinfecting devices on sink drains on colonization of sinks and patients in an ICU during a prolonged outbreak of multidrug-resistant P. aeruginosa. METHODS From 2010, there was a clonal outbreak of multidrug-resistant P. aeruginosa (MDR-PA). In April 2013, in ICU subunit A, the siphons draining these sinks were replaced by devices applying heat and electromechanical vibration to disinfect the draining fluid. In the other units, siphons were replaced by new polyvinyl chloride plastic siphons (control). In February 2016 the disinfecting devices were also placed at ICU subunit B. FINDINGS Baseline colonization rate of sinks was 51% in ICU A and 46% in ICU B. In ICU A colonization decreased to 5% (P < 0.001) after the intervention whereas it was 62% in ICU B (control). After installing the disinfection devices in ICU B, colonization rate was 8.0 and 2.4% in ICU A and B, respectively (both P < 0.001 compared with baseline). Colonization in ICU patients decreased from 8.3 to 0 per 1000 admitted patients (P < 0.001) and from 2.7 to 0.5 per 1000 admitted patients (P = 0.1) in ICU A and B respectively. CONCLUSION Colonization with MDR-PA in sink drains in an ICU was effectively managed by installing disinfection devices to the siphons of sinks. Colonization of patients was also significantly reduced, suggesting that sink drains can be a source of clinical outbreaks with P. aeruginosa and that disinfecting devices may help to interrupt these outbreaks.
Collapse
|
13
|
Decraene V, Ghebrehewet S, Dardamissis E, Huyton R, Mortimer K, Wilkinson D, Shokrollahi K, Singleton S, Patel B, Turton J, Hoffman P, Puleston R. An outbreak of multidrug-resistant Pseudomonas aeruginosa in a burns service in the North of England: challenges of infection prevention and control in a complex setting. J Hosp Infect 2018; 100:e239-e245. [DOI: 10.1016/j.jhin.2018.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 11/30/2022]
|
14
|
Parkes LO, Hota SS. Sink-Related Outbreaks and Mitigation Strategies in Healthcare Facilities. Curr Infect Dis Rep 2018; 20:42. [PMID: 30128678 DOI: 10.1007/s11908-018-0648-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize recent outbreaks attributed to hospital sinks and examine design features and behaviors that contributed to these outbreaks. The effectiveness of various risk mitigation strategies is presented. Finally, we examine investigational strategies targeted at reducing the risk of sink-related infections. RECENT FINDINGS Outbreaks of hospital sink-related infections involve a diverse spectrum of microorganisms. They can be attributed to defects in sink design and hospital wastewater systems that promote the formation and dispersion of biofilm, as well as healthcare practitioner and patient behaviors. Risk mitigation strategies are often bundled; while they may reduce clinical cases, sink colonization may persist. Novel approaches targeting biofilms show promise but require more investigation. Emphasis should be placed on optimizing best practices in sink design and placement to prevent infections. Hospitals should consider developing a rational surveillance and prevention strategy based on the current design and state of their sinks.
Collapse
Affiliation(s)
- Leighanne O Parkes
- Department of Medicine, Division of Infectious Diseases, Jewish General Hospital, McGill University, Pavilion E-0054, 3755 Chemin de la Cote-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Susy S Hota
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, ON, Canada.
- Department of Infection Prevention and Control, University Health Network, 9th Floor - 8 PMB 102, 585 University Avenue, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
15
|
Tap out: reducing waterborne Pseudomonas aeruginosa transmission in an intensive care unit. J Hosp Infect 2018; 102:75-81. [PMID: 30071267 DOI: 10.1016/j.jhin.2018.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a ubiquitous and important opportunistic pathogen in immunocompromised or critically ill patients. Nosocomial P. aeruginosa outbreaks have been associated with hospital water sources. AIM To describe engineering interventions to minimize contamination of water outlets and the subsequent clinical impact. METHODS New tap outlets were fitted at selected outlets across the intensive care unit (ICU). Laboratory testing demonstrated that, following artificial contamination with P. aeruginosa, these taps could be effectively decontaminated using a thermal washer-disinfector. Water samples were collected weekly from new outlets on the ICU over an eight-month period and tested for the enumeration of P. aeruginosa via membrane filtration. Surveillance of P. aeruginosa from clinical specimens was routinely undertaken. FINDINGS Prior to the interventions, water sampling on ICU indicated that 30% of the outlets were positive for P. aeruginosa at any one time, and whole genome sequencing data suggested at least 30% transmission from water to patient. Since their installation, weekly sampling of the new tap outlets has been negative for P. aeruginosa, and the number of P. aeruginosa clinical isolates has fallen by 50%. CONCLUSION Installation and maintenance of tap outlets free of P. aeruginosa can substantially reduce the number of P. aeruginosa clinical isolates in an ICU.
Collapse
|
16
|
Garvey MI, Bradley CW, Holden E. Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control 2018; 46:383-386. [PMID: 29195780 DOI: 10.1016/j.ajic.2017.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important nosocomial pathogen that commonly colonizes hospital water supplies, including in taps and sinks. We report the transmission of P. aeruginosa from water to patients in a clinical hematology setting. METHODS P. aeruginosa from water samples were compared to clinical isolates from hematology ward patients, via molecular typing (pulsed field gel electrophoresis). RESULTS P. aeruginosa cultured from blood cultures from 3 patients was indistinguishable from water strains, by molecular typing. Based on infection control inspections, the transmission event was surmised to be due to cleaning of equipment, specifically an infusion therapy procedure tray used to transport intravenous drugs to patients, with water from an outlet colonized by P. aeruginosa. CONCLUSION We show the importance of holistic factors, such as disposal of patient waste water, cleaning of tap outlets, and cleaning of medical equipment, in the transmission of P. aeruginosa, and demonstrate that the role of waterborne transmission of this organism in a hematology setting cannot be overlooked. We suggest that appropriate management of water, including both holistic and engineering interventions, is needed to stop transmission of P. aeruginosa from water to patients.
Collapse
Affiliation(s)
- Mark I Garvey
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2WB, UK.
| | - Craig W Bradley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - Elisabeth Holden
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2WB, UK
| |
Collapse
|
17
|
Anesthesia in patients with infectious disease caused by multi-drug resistant bacteria. Curr Opin Anaesthesiol 2018; 30:426-434. [PMID: 28319476 DOI: 10.1097/aco.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Up to 50% of specific bacterial strains in healthcare admission facilities are multi-drug resistant organisms (MDROs). Involvement of anesthesiologists in management of patients carrying/at risk of carrying MDROs may decrease transmission in the Operating Room (OR). RECENT FINDINGS Anesthesiologists, their work area and tools have all been implicated in MDRO outbreaks. Causes include contamination of external ventilation circuits and noncontribution of filters to prevention, inappropriate decontamination procedures for nondisposable equipment (e.g. laryngoscopes, bronchoscopes and stethoscopes) and the anesthesia workplace (e.g. external surfaces of cart and anesthesia machine, telephones and computer keyboards) during OR cleaning and lack of training in sterile drug management. SUMMARY Discussions regarding the management of potential MDRO carriers must include anesthesia providers to optimize infection control interventions as well as the anesthesia method, the location of surgery and recovery and the details of patient transport. Anesthesia staff must learn to identify patients at risk for MDRO infection. Antibiotic prophylaxis, although not evidence based, should adhere to known best practices. Adjuvant therapies (e.g. intranasal Mupirocin and bathing with antiseptics) should be considered. Addition of nonmanual OR cleaning methods such as ultraviolet irradiation or gaseous decontamination is encouraged. Anesthesiologists must undergo formal training in sterile drug preparation and administration.
Collapse
|
18
|
Transcriptional Responses of Pseudomonas aeruginosa to Potable Water and Freshwater. Appl Environ Microbiol 2018; 84:AEM.02350-17. [PMID: 29305509 DOI: 10.1128/aem.02350-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/01/2018] [Indexed: 02/03/2023] Open
Abstract
Many Pseudomonas aeruginosa infections are derived from residential, recreational, or surface water sources; thus, these environments represent an important preinfection niche. To better understand P. aeruginosa biology in these environments, we quantified transcriptional changes by microarray after exposure to diluted LB, diluted R2B, potable tap water, and freshwater from a eutrophic pond. Quantitative reverse transcription-PCR (qRT-PCR) confirmed the conservation of these responses in other water sources, and competition experiments were used to test the importance of three implicated metabolic pathways. The global transcriptional responses in potable water and freshwater showed strong induction of genes involved in metabolism of the head groups and acyl tails of phospholipids, as well as nucleotide metabolism, with commensurate decreased transcript expression of genes encoding their synthetic pathways. These data suggest that phospholipids and nucleotides are part of the nutritional milieu of these two environments. A unique response in municipal-delivered potable water was to the metals in the piping system, particularly copper. To identify potential nutrient sources used by P. aeruginosa in these environments, we used competition assays between the wild-type and deletion mutant strains in three pathways induced under these conditions. For phospholipid head-group metabolism, ethanolamine utilization (eutB) was important for competition in potable water, while choline oxidation (betBA) was important for competition in freshwater. Nucleotide utilization, particularly pyrimidine metabolism (dht), showed a trend toward importance in freshwater but was not statistically significant. These findings provide new insights into the P. aeruginosa response to potable water and freshwater and led to the identification of potentially important nutrient sources in these environments.IMPORTANCE Much of our knowledge about Pseudomonas aeruginosa comes from the infection niche, and much less is known about its lifestyle in the environment. P. aeruginosa is an adaptable bacterium capable of growing in many environments but is particularly common in potable water systems and freshwater. We used the transcriptional responses of P. aeruginosa to these environments to identify important nutrient sources specific to either of these two environments. Additionally, these environments could provide experimental situations to understand gene function for the large number of transcripts with unknown functions induced under these conditions.
Collapse
|
19
|
Montgomery R, Boswell T, Mahida N. Pseudomonas aeruginosa control in healthcare settings: outpatient dialysis units are not augmented care units. J Hosp Infect 2018; 98:65-66. [DOI: 10.1016/j.jhin.2017.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
20
|
Garvey MI, Bradley CW, Biggs MJ, Holden E, Gill MJ. Selection of carbapenem-resistant Pseudomonas aeruginosa in a haematology unit? J Hosp Infect 2017; 98:238-240. [PMID: 29126992 DOI: 10.1016/j.jhin.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022]
Affiliation(s)
- M I Garvey
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK.
| | - C W Bradley
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - M J Biggs
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - E Holden
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - M J Gill
- Infection Prevention and Control Team, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
21
|
Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E, Prévost M, Bédard E. Hospital Drains as Reservoirs of Pseudomonas aeruginosa: Multiple-Locus Variable-Number of Tandem Repeats Analysis Genotypes Recovered from Faucets, Sink Surfaces and Patients. Pathogens 2017; 6:pathogens6030036. [PMID: 28792484 PMCID: PMC5617993 DOI: 10.3390/pathogens6030036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Identifying environmental sources of Pseudomonas aeruginosa (Pa) related to hospital-acquired infections represents a key challenge for public health. Biofilms in water systems offer protection and favorable growth conditions, and are prime reservoirs of microorganisms. A comparative genotyping survey assessing the relationship between Pa strains recovered in hospital sink biofilm and isolated in clinical specimens was conducted. Environmental strains from drain, faucet and sink-surface biofilm were recovered by a culture method after an incubation time ranging from 48 to 240 h. The genotyping of 38 environmental and 32 clinical isolates was performed using a multiple-locus variable-number of tandem repeats analysis (MLVA). More than one-third of Pa isolates were only cultivable following ≥48 h of incubation, and were predominantly from faucet and sink-surface biofilms. In total, 41/70 strains were grouped within eight genotypes (A to H). Genotype B grouped a clinical and an environmental strain isolated in the same ward, 5 months apart, suggesting this genotype could thrive in both contexts. Genotype E grouped environmental isolates that were highly prevalent throughout the hospital and that required a longer incubation time. The results from the multi-hospital follow-up study support the drain as an important reservoir of Pa dissemination to faucets, sink surfaces and patients. Optimizing the recovery of environmental strains will strengthen epidemiological investigations, facilitate pathway identification, and assist in identifying and controlling the reservoirs potentially associated to hospital-acquired infections.
Collapse
Affiliation(s)
| | - Dominique Charron
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Céline Laferrière
- Department of microbiology, infectious diseases and immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Patrick Dolcé
- Department of Medical Microbiology and Infectious Diseases, Centre Hospitalier Régional de Rimouski, Rimouski, QC G5L 5T1, Canada.
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Emilie Bédard
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada.
- Department of Civil Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
22
|
Abstract
Pseudomonas aeruginosa is an important nosocomial pathogen widely colonizing hospital water supplies. The Department of Health (England) Health Technical Memorandum (HTM) 04-01 addresses the risk posed by recommending water-testing in augmented care areas including outpatient haemodialysis. We discuss how two teaching hospitals independently reviewed the risk to outpatient haemodialysis patients, drawing the same conclusion. The highest number of infection episodes with P. aeruginosa was observed in critical care followed by burns and haematology, with the lowest in haemodialysis. Based on these results, we suggest that water sampling should be undertaken in areas such as critical care, burns, and haematology, but not in outpatient haemodialysis.
Collapse
|
23
|
Moremi N, Claus H, Vogel U, Mshana SE. Surveillance of surgical site infections by Pseudomonas aeruginosa and strain characterization in Tanzanian hospitals does not provide proof for a role of hospital water plumbing systems in transmission. Antimicrob Resist Infect Control 2017; 6:56. [PMID: 28593044 PMCID: PMC5461769 DOI: 10.1186/s13756-017-0216-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
Background The role of hospital water systems in the development of Pseudomonas aeruginosa (P. aeruginosa) surgical site infections (SSIs) in low-income countries is barely studied. This study characterized P. aeruginosa isolates from patients and water in order to establish possible epidemiological links. Methods Between December 2014 and September 2015, rectal and wound swabs, and water samples were collected in the frame of active surveillance for SSIs in the two Tanzanian hospitals. Typing of P. aeruginosa was done by multi-locus sequence typing. Results Of 930 enrolled patients, 536 were followed up, of whom 78 (14.6%, 95% CI; 11.6–17.5) developed SSIs. P. aeruginosa was found in eight (14%) of 57 investigated wounds. Of the 43 water sampling points, 29 were positive for P. aeruginosa. However, epidemiological links to wound infections were not confirmed. The P. aeruginosa carriage rate on admission was 0.9% (8/930). Of the 363 patients re-screened upon discharge, four (1.1%) possibly acquired P. aeruginosa during hospitalization. Wound infections of the three of the eight P. aeruginosa SSIs were caused by a strain of the same sequence type (ST) as the one from intestinal carriage. Isolates from patients were more resistant to antibiotics than water isolates. Conclusions The P. aeruginosa SSI rate was low. There was no evidence for transmission from tap water. Not all P. aeruginosa SSI were proven to be endogenous, pointing to other routes of transmission.
Collapse
Affiliation(s)
- Nyambura Moremi
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany.,Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Bugando, Mwanza, Tanzania
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Street 2 / Building E1, 97080 Wuerzburg, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Bugando, Mwanza, Tanzania
| |
Collapse
|
24
|
Engineering waterborne Pseudomonas aeruginosa out of a critical care unit. Int J Hyg Environ Health 2017; 220:1014-1019. [PMID: 28592358 DOI: 10.1016/j.ijheh.2017.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To describe engineering and holistic interventions on water outlets contaminated with Pseudomonas aeruginosa and the observed impact on clinical P. aeruginosa patient isolates in a large Intensive Care Unit (ICU). DESIGN Descriptive study. SETTING Queen Elizabeth Hospital Birmingham (QEHB), part of University Hospitals Birmingham (UHB) NHS Foundation Trust is a tertiary referral teaching hospital in Birmingham, UK and provides clinical services to nearly 1 million patients every year. METHODS Breakpoint models were used to detect any significant changes in the cumulative yearly rates of clinical P. aeruginosa patient isolates from August 2013-December 2016 across QEHB. RESULTS Water sampling undertaken on the ICU indicated 30% of the outlets were positive for P. aeruginosa at any one time. Molecular typing of patient and water isolates via Pulsed Field Gel Electrophoresis suggested there was a 30% transmission rate of P. aeruginosa from the water to patients on the ICU. From, February 2014, QEHB implemented engineering interventions, consisting of new tap outlets and PALL point-of-use filters; as well as holistic measures, from February 2016 including a revised tap cleaning method and appropriate disposal of patient waste water. Breakpoint models indicated the engineering and holistic interventions resulted in a significant (p<0.001) 50% reduction in the number of P. aeruginosa clinical patient isolates over a year. CONCLUSION Here we demonstrate that the role of waterborne transmission of P. aeruginosa in an ICU cannot be overlooked. We suggest both holistic and environmental factors are important in reducing transmission.
Collapse
|
25
|
Witkowska E, Szymborski T, Kamińska A, Waluk J. Polymer mat prepared via Forcespinning™ as a SERS platform for immobilization and detection of bacteria from blood plasma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:345-350. [PMID: 27987716 DOI: 10.1016/j.msec.2016.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 01/21/2023]
Abstract
One of potential applications of nano- and microscale polymer fibers is SERS-active platforms for the detection of biological compounds and microorganisms. This paper demonstrates the polymer mat obtained with Forcespinning™ technique used to detect the bacteria from blood plasma. Forcespinning™ is a new method of manufacturing of polymer fibers which can be applied to variety of polymer materials, e.g. polyethylene, nylon, PA6 and others. The method is based on the centrifugal force to draw fiber from molten polymer, which allows tuning the diameter of the fiber from tens of nanometers up to micrometers. Wide range of diameters makes the forcespun polymer mat an excellent material to filter bacteria from fluids (e.g. blood plasma, water). Covering the mat with Au:Ag alloy turns it into a SERS platform able to immobilize, detect, and identify bacteria. We provide proof-of-concept, showing detection of S. aureus, P. aeruginosa, and S. Typhimurium from blood plasma.
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
26
|
Next-Generation Epidemiology: Using Real-Time Core Genome Multilocus Sequence Typing To Support Infection Control Policy. J Clin Microbiol 2016; 54:2850-2853. [PMID: 27629902 DOI: 10.1128/jcm.01714-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant bacteria are responsible for substantial morbidity and mortality worldwide. Tracking the nosocomial spread of resistant bacteria is critical to infection control. Mellmann et al. (J. Clin. Microbiol. 54:2874-2881, 2016, http://dx.doi.org/10.1128/JCM.00790-16) have described prospective whole-genome sequencing with core genome multilocus sequencing typing (cgMLST) analysis for real-time surveillance and have addressed the practical aspects of implementing this type of operation in the hospital setting.
Collapse
|
27
|
Garvey M, Bradley C, Bradley C. Evaluating the risks of wash hand basin tap disinfection. J Hosp Infect 2016; 94:21-2. [DOI: 10.1016/j.jhin.2016.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 11/17/2022]
|
28
|
Garvey MI, Bradley CW, Jumaa P. The risks of contamination from tap end filters. J Hosp Infect 2016; 94:282-283. [PMID: 27613442 DOI: 10.1016/j.jhin.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022]
Affiliation(s)
- M I Garvey
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, Edgbaston, Birmingham, UK.
| | - C W Bradley
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, Edgbaston, Birmingham, UK
| | - P Jumaa
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|