1
|
Cichoń MA, Pfisterer K, Leitner J, Wagner L, Staud C, Steinberger P, Elbe-Bürger A. Interoperability of RTN1A in dendrite dynamics and immune functions in human Langerhans cells. eLife 2022; 11:e80578. [PMID: 36223176 PMCID: PMC9555864 DOI: 10.7554/elife.80578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is an active immune organ where professional antigen-presenting cells such as epidermal Langerhans cells (LCs) link innate and adaptive immune responses. While Reticulon 1A (RTN1A) was recently identified in LCs and dendritic cells in cutaneous and lymphoid tissues of humans and mice, its function is still unclear. Here, we studied the involvement of this protein in cytoskeletal remodeling and immune responses toward pathogens by stimulation of Toll-like receptors (TLRs) in resident LCs (rLCs) and emigrated LCs (eLCs) in human epidermis ex vivo and in a transgenic THP-1 RTN1A+ cell line. Hampering RTN1A functionality through an inhibitory antibody induced significant dendrite retraction of rLCs and inhibited their emigration. Similarly, expression of RTN1A in THP-1 cells significantly altered their morphology, enhanced aggregation potential, and inhibited the Ca2+ flux. Differentiated THP-1 RTN1A+ macrophages exhibited long cell protrusions and a larger cell body size in comparison to wild-type cells. Further, stimulation of epidermal sheets with bacterial lipoproteins (TLR1/2 and TLR2 agonists) and single-stranded RNA (TLR7 agonist) resulted in the formation of substantial clusters of rLCs and a significant decrease of RTN1A expression in eLCs. Together, our data indicate involvement of RTN1A in dendrite dynamics and structural plasticity of primary LCs. Moreover, we discovered a relation between activation of TLRs, clustering of LCs, and downregulation of RTN1A within the epidermis, thus indicating an important role of RTN1A in LC residency and maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Karin Pfisterer
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Lena Wagner
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of ViennaViennaAustria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | | |
Collapse
|
2
|
Pradhan LK, Das SK. The Regulatory Role of Reticulons in Neurodegeneration: Insights Underpinning Therapeutic Potential for Neurodegenerative Diseases. Cell Mol Neurobiol 2021; 41:1157-1174. [PMID: 32504327 DOI: 10.1007/s10571-020-00893-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
In the last few decades, cytoplasmic organellar dysfunction, such as that of the endoplasmic reticulum (ER), has created a new area of research interest towards the development of serious health maladies including neurodegenerative diseases. In this context, the extensively dispersed family of ER-localized proteins, i.e. reticulons (RTNs), is gaining interest because of its regulative control over neural regeneration. As most neurodegenerative diseases are pathologically manifested with the accretion of misfolded proteins with subsequent induction of ER stress, the regulatory role of RTNs in neural dysfunction cannot be ignored. With the limited information available in the literature, delineation of the functional connection between rising consequences of neurodegenerative diseases and RTNs need to be elucidated. In this review, we provide a broad overview on the recently revealed regulatory roles of reticulons in the pathophysiology of several health maladies, with special emphasis on neurodegeneration. Additionally, we have also recapitulated the decisive role of RTN4 in neurite regeneration and highlighted how neurodegeneration and proteinopathies are mechanistically linked with each other through specific RTN paralogues. With the recent findings advocating zebrafish Rtn4b (a mammalian Nogo-A homologue) downregulation following central nervous system (CNS) lesion, RTNs provides new insight into the CNS regeneration. However, there are controversies with respect to the role of Rtn4b in zebrafish CNS regeneration. Given these controversies, the connection between the unique regenerative capabilities of zebrafish CNS by distinct compensatory mechanisms and Rtn4b signalling pathway could shed light on the development of new therapeutic strategies against serious neurodegenerative diseases.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed To Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
3
|
Cichoń MA, Klas K, Buchberger M, Hammer M, Seré K, Zenke M, Tschachler E, Elbe-Bürger A. Distinct Distribution of RTN1A in Immune Cells in Mouse Skin and Lymphoid Organs. Front Cell Dev Biol 2021; 8:608876. [PMID: 33542915 PMCID: PMC7853085 DOI: 10.3389/fcell.2020.608876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum-associated protein reticulon 1A (RTN1A) is primarily expressed in neuronal tissues but was recently identified also specifically in cells of the dendritic cell (DC) lineage, including epidermal Langerhans cells (LCs) and dermal DCs in human skin. In this study, we found that in mice major histocompatibility complex class II (MHCII)+CD207+ LCs but not dermal DCs express RTN1A. Further, RTN1A expression was identified in CD45+MHCII+CD207+ cells of the lymph node and spleen but not in the thymus. Of note, RTN1A was expressed in CD207low LCs in adult skin as well as emigrated LCs and DCs in lymph nodes and marginally in CD207hi cells. Ontogeny studies revealed that RTN1A expression occurred before the appearance of the LC markers MHCII and CD207 in LC precursors, while dermal DC and T cell precursors remained negative during skin development. Analogous to the expression of RTN1A in neural tissue, we identified expression of RTN1A in skin nerves. Immunostaining revealed co-localization of RTN1A with nerve neurofilaments only in fetal but not in newborn or adult dermis. Our findings suggest that RTN1A might be involved in the LC differentiation process given its early expression in LC precursors and stable expression onward. Further analysis of the RTN1A expression pattern will enable the elucidation of the functional roles of RTN1A in both the immune and the nervous system of the skin.
Collapse
Affiliation(s)
| | - Katharina Klas
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martina Hammer
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Rakita A, Nikolić N, Mildner M, Matiasek J, Elbe-Bürger A. Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci Rep 2020; 10:1. [PMID: 31913322 PMCID: PMC6959339 DOI: 10.1038/s41598-019-56847-4] [Citation(s) in RCA: 5240] [Impact Index Per Article: 1310.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
Collapse
Affiliation(s)
- Ana Rakita
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nenad Nikolić
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Matiasek
- Department of Plastic, Aesthetic and Reconstructive Surgery, St. Josef Hospital, Vienna, Austria
| | | |
Collapse
|
5
|
Kienzl P, Polacek R, Reithofer M, Reitermaier R, Hagenbach P, Tajpara P, Vierhapper M, Gschwandtner M, Mildner M, Jahn-Schmid B, Elbe-Bürger A. The cytokine environment influence on human skin-derived T cells. FASEB J 2019; 33:6514-6525. [PMID: 30807238 PMCID: PMC6463918 DOI: 10.1096/fj.201801416r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skin resident T cells provide immediate immunologic responses at their specific location and play a role in the pathogenesis of skin diseases such as psoriasis. Recently, IL-9-producing T cells were described as a major T-cell subtype present in the skin, but knowledge on the biology and in situ regulation of this T-cell subtype is scarce. Here, we investigated the cytokine influence on skin T cells with focus on IL-9-producing T cells because a better understanding of their biology may identify novel therapeutic approaches. Healthy human skin biopsies were cultured either in the presence of IL-2, IL-4, and TGF-β [T helper (Th)9-promoting condition (Th9-PC)] or IL-2 and IL-15 [standard condition (SC)]. Paired analysis of enzymatically isolated skin T cells and emigrated T cells after 4 wk of skin culture showed significant alterations of T-cell phenotypes, cytokine production, and IL-9-producing T-cell frequency. RNA sequencing analysis revealed differentially regulated pathways and identified CXCL8 and CXCL13 as top up-regulated genes in Th9-PC compared with SC. Functionally supernatant of stimulated skin-derived T cells, CXCL8 and CXCL13 increased neutrophil survival. We report that the cytokine environment alters skin-derived T-cell phenotype and functional properties.-Kienzl, P., Polacek, R., Reithofer, M., Reitermaier, R., Hagenbach, P., Tajpara, P., Vierhapper, M., Gschwandtner, M., Mildner, M. Jahn-Schmid, B., Elbe-Bürger, A. The cytokine environment influence on human skin-derived T cells.
Collapse
Affiliation(s)
- Philip Kienzl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Romana Polacek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Manuel Reithofer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - René Reitermaier
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pia Hagenbach
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pooja Tajpara
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|