1
|
Zeyer KA, Bornert O, Nelea V, Bao X, Leytens A, Sharoyan S, Sengle G, Antonyan A, Bruckner-Tuderman L, Dengjel J, Reinhardt DP, Nyström A. Dipeptidyl Peptidase-4-Mediated Fibronectin Processing Evokes a Profibrotic Extracellular Matrix. J Invest Dermatol 2024; 144:2477-2487.e13. [PMID: 38570029 DOI: 10.1016/j.jid.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.
Collapse
Affiliation(s)
- Karina A Zeyer
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentin Nelea
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Xinyi Bao
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Primerano A, De Domenico E, Cianfarani F, De Luca N, Floriddia G, Teson M, Cristofoletti C, Cardarelli S, Scaglione GL, Baldini E, Cangelosi D, Uva P, Reinoso Sánchez JF, Roubaty C, Dengjel J, Nyström A, Mastroeni S, Ulisse S, Castiglia D, Odorisio T. Histone deacetylase inhibition mitigates fibrosis-driven disease progression in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:568-579. [PMID: 38820176 DOI: 10.1093/bjd/ljae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in siblings with RDEB suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACi) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by enzyme-linked immunosorbent assay (ELISA). The effects of givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by a collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, and ELISA for released transforming growth factor (TGF)-β1. RNA sequencing was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACi lowered fibrotic traits, including contractility, TGF-β1 release and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting the eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalized protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections seen in people with RDEB. CONCLUSIONS Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments in RDEB.
Collapse
Affiliation(s)
| | | | | | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Massimo Teson
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Silvia Cardarelli
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Enke Baldini
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Carole Roubaty
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexander Nyström
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| | | | - Salvatore Ulisse
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| |
Collapse
|
3
|
South AP. Stopping a runaway train: targeting fibrosis in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:482-483. [PMID: 39026423 DOI: 10.1093/bjd/ljae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 05/03/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
6
|
Aravena-Canales D, Valenzuela-Muñoz V, Gallardo-Escarate C, Molina A, Valdés JA. Transcriptomic and Epigenomic Responses to Cortisol-Mediated Stress in Rainbow Trout ( Oncorhynchus mykiss) Skeletal Muscle. Int J Mol Sci 2024; 25:7586. [PMID: 39062828 PMCID: PMC11276852 DOI: 10.3390/ijms25147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Collapse
Affiliation(s)
- Daniela Aravena-Canales
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escarate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| | - Juan Antonio Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile; (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (V.V.-M.); (C.G.-E.)
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay 2340000, Chile
| |
Collapse
|
7
|
Nyström A, Dengjel J. A Top-Notch Target. J Invest Dermatol 2024; 144:1421-1423. [PMID: 38363271 DOI: 10.1016/j.jid.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/17/2024]
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
9
|
Condorelli AG, Nobili R, Muglia A, Scarpelli G, Marzuolo E, De Stefanis C, Rota R, Diociaiuti A, Alaggio R, Castiglia D, Odorisio T, El Hachem M, Zambruno G. Gamma-Secretase Inhibitors Downregulate the Profibrotic NOTCH Signaling Pathway in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1522-1533.e10. [PMID: 38237731 DOI: 10.1016/j.jid.2023.10.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 03/03/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare skin fragility disorder caused by mutations in COL7A1. RDEB is hallmarked by trauma-induced unremitting blistering, chronic wounds with inflammation, and progressive fibrosis, leading to severe disease complications. There is currently no cure for RDEB-associated fibrosis. Our previous studies and increasing evidence highlighted the profibrotic role of NOTCH pathway in different skin disorders, including RDEB. In this study, we further investigated the role of NOTCH signaling in RDEB pathogenesis and explored the effects of its inhibition by γ-secretase inhibitors DAPT and PF-03084014 (nirogacestat). Our analyses demonstrated that JAG1 and cleaved NOTCH1 are upregulated in primary RDEB fibroblasts (ie, RDEB-derived fibroblasts) compared with controls, and their protein levels are further increased by TGF-β1 stimulation. Functional assays unveiled the involvement of JAG1/NOTCH1 axis in RDEB fibrosis and demonstrated that its blockade counteracts a variety of fibrotic traits. In particular, RDEB-derived fibroblasts treated with PF-03084014 showed (i) a significant reduction of contractility, (ii) a diminished secretion of TGF-β1 and collagens, and (iii) the downregulation of several fibrotic proteins. Although less marked than PF-03084014-treated cells, RDEB-derived fibroblasts exhibited a reduction of fibrotic traits also upon DAPT treatment. This study provides potential therapeutic strategies to antagonize RDEB fibrosis onset and progression.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Rebecca Nobili
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anita Muglia
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Scarpelli
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - May El Hachem
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Li J, Huang Z, Wang P, Li R, Gao L, Lai KP. Therapeutic targets of formononetin for treating prostate cancer at the single-cell level. Aging (Albany NY) 2024; 16:10380-10401. [PMID: 38874510 PMCID: PMC11236323 DOI: 10.18632/aging.205935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer is one of the serious health problems of older male, about 13% of male was affected by prostate cancer. Prostate cancer is highly heterogeneity disease with complex molecular and genetic alterations. So, targeting the gene candidates in prostate cancer in single-cell level can be a promising approach for treating prostate cancer. In the present study, we analyzed the single cell sequencing data obtained from 2 previous reports to determine the differential gene expression of prostate cancer in single-cell level. By using the network pharmacology analysis, we identified the therapeutic targets of formononetin in immune cells and tissue cells of prostate cancer. We then applied molecular docking to determine the possible direct binding of formononetin to its target proteins. Our result identified a cluster of differential gene expression in prostate cancer which can serve as novel biomarkers such as immunoglobulin kappa C for prostate cancer prognosis. The result of network pharmacology delineated the roles of formononetin's targets such CD74 and THBS1 in immune cells' function of prostate cancer. Also, formononetin targeted insulin receptor and zinc-alpha-2-glycoprotein which play important roles in metabolisms of tissue cells of prostate cancer. The result of molecular docking suggested the direct binding of formononetin to its target proteins including INSR, TNF, and CXCR4. Finally, we validated our findings by using formononetin-treated human prostate cancer cell DU145. For the first time, our result suggested the use of formononetin for treating prostate cancer through targeting different cell types in a single-cell level.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | | | - Ping Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, PR China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| |
Collapse
|
11
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
12
|
Tartaglia G, Fuentes I, Patel N, Varughese A, Israel LE, Park PH, Alexander MH, Poojan S, Cao Q, Solomon B, Padron ZM, Dyer JA, Mellerio JE, McGrath JA, Palisson F, Salas-Alanis J, Han L, South AP. Antiviral drugs prolong survival in murine recessive dystrophic epidermolysis bullosa. EMBO Mol Med 2024; 16:870-884. [PMID: 38462666 PMCID: PMC11018630 DOI: 10.1038/s44321-024-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFβ pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ignacia Fuentes
- DEBRA Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Abigail Varughese
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lauren E Israel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pyung Hun Park
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael H Alexander
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Poojan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qingqing Cao
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brenda Solomon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zachary M Padron
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan A Dyer
- Department of Dermatology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Francis Palisson
- DEBRA Chile, Santiago, Chile
- Servicio de Dermatologia, Facultad de Medicina Clínica Alemana-Universidad de Desarrollo, Santiago, Chile
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Otolaryngology Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Li Y, Zhao L, Li S, Ruan D, Xiong L, Tang J, Hu M, Wang Y, Huang W, Li L, Zhao Z. Skin-derived precursor conditioned medium alleviated photoaging via early activation of TGF-β/Smad signaling pathway by thrombospondin1: In vitro and in vivo studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112873. [PMID: 38412778 DOI: 10.1016/j.jphotobiol.2024.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Photoaging is one major exogenous factor of skin aging. Efficacy and safety of current anti-photoaging therapies remained to be improved. Our previous studies indicated that skin-derived precursors (SKPs) alleviated photodamage by early activation of TGF-β/Smad signaling pathway via thrombospondin1 (TSP1). However, the research concerning SKP conditioned medium (SKP-CM) has never been reported. In the current study, we aimed to explore the anti-photoaging effects of SKP-CM both in vitro and in vivo, and to elucidate the possible mechanisms. Mouse SKP-CM (mSKP-CM) collection was optimized by a comparative method. The concentration of protein and growth factors in mSKP-CM was detected using BCA protein assay kit and growth factor protein chip. The anti-photoaging effects of mSKP-CM and its regulation of key factors in the TGF-β/Smad signaling pathway were explored using UVA + UVB photoaged mouse fibroblasts (mFBs) and nude mice dorsal skin. The research revealed that mSKP-CM contained significantly higher-concentration of protein and growth factors than mouse mesenchymal stem cell conditioned medium (mDMSC-CM). mSKP-CM alleviated mFBs photoaging by restoring cell viability and relieving senescence and death. ELISA, qRT-PCR, and western blot results implied the potential mechanisms were associated with the early activation of TGF-β/Smad signaling pathway by TSP1. In vivo experiments demonstrated that compared with the topical intradermal mDMSC-CM injection and retinoic acid cream application, the photodamaged mice dorsal skin intradermally injected with mSKP-CM showed significantly better improvement. Consistent with the in vitro results, both western blot and immunohistochemistry results confirmed that protein expression of TSP1, smad2/3, p-smad2/3, TGF-β1, and collagen I increased, and matrix metalloproteinases decreased. In summary, both in vitro and in vivo experiments demonstrated that mSKP-CM alleviated photoaging through an early activation of TGF-β/Smad signaling pathway via TSP1. SKP-CM may serve as a novel and promising cell-free therapeutical approach for anti-photoaging treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology, Sichuan Second Hospital of TCM, Chengdu, Sichuan 610041, China; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingyun Zhao
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Danhua Ruan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lidan Xiong
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Tang
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Wang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiwei Zhao
- Department of Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Yang Q, Lin Z, Xue M, Jiang Y, Chen L, Chen J, Liao Y, Lv J, Guo B, Zheng P, Huang H, Sun B. Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways. J Transl Med 2024; 22:219. [PMID: 38424541 PMCID: PMC10905948 DOI: 10.1186/s12967-024-05022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.
Collapse
Affiliation(s)
- Qianyue Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhiwei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Respiratory Mechanics Laboratory, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Yueting Jiang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Libing Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiahong Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuhong Liao
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiali Lv
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baojun Guo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
16
|
Pei L, Ouyang Z, Zhang H, Huang S, Jiang R, Liu B, Tang Y, Feng M, Yuan M, Wang H, Yao S, Shi S, Yu Z, Xu D, Gong G, Wei K. Thrombospondin 1 and Reelin act through Vldlr to regulate cardiac growth and repair. Basic Res Cardiol 2024; 119:169-192. [PMID: 38147128 DOI: 10.1007/s00395-023-01021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/27/2023]
Abstract
Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation. Thrombospondin1 (TSP-1), another ligand of Vldlr highly expressed in adult heart, was then found to inhibit cardiomyocyte proliferation through Vldlr, and may contribute to Vldlr's overall repression on proliferation. Mechanistically, Rac1 and subsequent Yap phosphorylation and nucleus translocation mediate the regulation of the cardiomyocyte cell cycle by TSP-1/Reelin-Vldlr signaling. Importantly, Reln mutant neonatal mice displayed impaired cardiomyocyte proliferation and cardiac regeneration after apical resection, while cardiac-specific Thbs1 deletion and cardiomyocyte-specific Vldlr deletion promote cardiomyocyte proliferation and are cardioprotective after myocardial infarction. Our results identified a novel role of Vldlr in consolidating extracellular signals to regulate cardiomyocyte cell cycle activity and survival, and the overall suppressive TSP-1-Vldlr signal may contribute to the poor cardiac repair capacity of adult mammals.
Collapse
Affiliation(s)
- Lijuan Pei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhaohui Ouyang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hongjie Zhang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shiqi Huang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Rui Jiang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Yansong Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengying Feng
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Min Yuan
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haocun Wang
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Su Yao
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhao Yu
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guohua Gong
- Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ke Wei
- School of Life Sciences and Technology, Institute for Regenerative Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
17
|
Lee SM, Han Y, Cho KH. Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells. iScience 2023; 26:108377. [PMID: 38034356 PMCID: PMC10682260 DOI: 10.1016/j.isci.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings reveal that the TGF-β signaling pathway, alongside the p53 signaling pathway, mediates the resistance, with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer cells confirms the effects of THBS1 on responsiveness to a p53 reactivator. We further discovered the positive feedback loop between THBS1 and the TGF-β pathway as the main source of resistance. This study enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.
Collapse
Affiliation(s)
- Soo Min Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younghyun Han
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
19
|
Song A, Zhang S, Zhao X, Wu S, Qi X, Gao S, Qi J, Li P, Tan J. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomed Pharmacother 2023; 166:115319. [PMID: 37573658 DOI: 10.1016/j.biopha.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Aixin Song
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Xiaohan Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shan Gao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| |
Collapse
|
20
|
Zhao H, Du C, Yang G, Wang Y. Diagnosis, treatment, and research status of rare diseases related to birth defects. Intractable Rare Dis Res 2023; 12:148-160. [PMID: 37662624 PMCID: PMC10468410 DOI: 10.5582/irdr.2023.01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Rare diseases are diseases that occur at low prevalence, and most of them are chronic and serious diseases that are often life-threatening. Currently, there is no unified definition for rare diseases. The diagnosis, treatment, and research of rare diseases have become the focus of medicine and biopharmacology, as well as the breakthrough point of clinical and basic research. Birth defects are the hard-hit area of rare diseases and the frontiers of its research. Since most of these defects have a genetic basis, early screening and diagnosis have important scientific value and social significance for the prevention and control of such diseases. At present, there is no effective treatment for most rare diseases, but progress in prenatal diagnosis and screening can prevent the occurrence of diseases and help prevent and treat rare diseases. This article discusses the progress in genetic-related birth defects and rare diseases.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Gynecology and Obstetrics, Shandong Provincial Third Hospital, Shandong University, Ji'nan, China
| | - Chen Du
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| | - Guang Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gynecology and Obstetrics, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China
| |
Collapse
|
21
|
De Gregorio C, Catalán E, Garrido G, Morandé P, Bennett JC, Muñoz C, Cofré G, Huang YL, Cuadra B, Murgas P, Calvo M, Altermatt F, Yubero MJ, Palisson F, South AP, Ezquer M, Fuentes I. Maintenance of chronicity signatures in fibroblasts isolated from recessive dystrophic epidermolysis bullosa chronic wound dressings under culture conditions. Biol Res 2023; 56:23. [PMID: 37161592 PMCID: PMC10170710 DOI: 10.1186/s40659-023-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Evelyng Catalán
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Gabriel Garrido
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Pilar Morandé
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | | | - Catalina Muñoz
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Glenda Cofré
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Bárbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile
| | - Paola Murgas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margarita Calvo
- Facultad de Ciencias Biológicas y División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Núcleo milenio para el estudio del dolor MINUSPAIN, Santiago, Chile
| | - Fernando Altermatt
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Joao Yubero
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Pediatrics and Pediatric Infectious Diseases of Clínica Alemana, Facultad de Medicina Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Francis Palisson
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile
- Servicio de Dermatología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrew P South
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
| | - Ignacia Fuentes
- DEBRA Chile, Francisco de Villagra 392, Ñuñoa, Santiago, Chile.
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, 7610658, Chile.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Oldakovskiy V, Murashkin N, Lokhmatov M, Gusev A, Tupylenko A, Budkina T, Yatzik S, Dyakonova E, Abaykhanov R, Fisenko A. Our experience of using Losartan for esophageal stenosis in children with dystrophic form of congenital epidermolysis bullosa. J Pediatr Surg 2023; 58:619-623. [PMID: 36566169 DOI: 10.1016/j.jpedsurg.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Dystrophic epidermolysis bullosa (DEB) is one of the most severe forms of congenital epidermolysis bullosa and characterized by the formation of many surgical complications. Esophageal stenosis is a common complication of DEB and occurs in almost 76% of cases. Balloon dilatation (BD) under X-ray control is the main therapeutic technique, however conservative treatment is necessary to prevent restenosis. The use of the drug losartan is promising due to its antifibrotic effect through the suppression of transforming growth factor-β1 (TGF-β1). PURPOSE To evaluate the efficacy of losartan in the prevention of restenosis after BD of esophageal stenosis in children with DEB. MATERIALS AND METHODS The study included 19 children from 2 to 16 years old (mean age 9.2 ± 3.58 years) with DEB and X-ray confirmed esophageal stenosis. All children underwent BD. In the main group 9 children after BD have received losartan, in the control group of 10 children - only standard therapy. The observation period was 12 months. RESULTS In the main group, 1 child (11.1%) required repeated dilatation, in the control group - 4 children (40%). Indicators of nutritional deficiency (THINC scale) and the disease severity index (EBDASI) were significantly lower in the group of children treated with losartan. No undesirable actions of the drug were recorded. CONCLUSIONS In this study losartan showed its safety, contributed to a decrease in the restenosis frequency and an improvement in the nutritional status of children with DEB after BD. However, further studies are required to confirm its effectiveness. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Vladislav Oldakovskiy
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Nikolay Murashkin
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Maksim Lokhmatov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Aleksey Gusev
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198, Moscow, Russia.
| | - Artem Tupylenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Tatiana Budkina
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Sergey Yatzik
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Elena Dyakonova
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Rasul Abaykhanov
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| | - Andrey Fisenko
- The National Medical Research Center of Children's Health, Lomonosovskiy prospect, 2/1, 119991, Moscow, Russia
| |
Collapse
|
23
|
Zhang Z, Li H, Wang G, Zhao G, Li C, Cao Y. Thrombospondin-1 and prolyl 4-hydroxylase subunit alpha 3 as potential biomarkers of salivary gland fibrosis. J Dent Sci 2023. [DOI: 10.1016/j.jds.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
24
|
Embryonic organizer formation disorder leads to multiorgan dysplasia in Down syndrome. Cell Death Dis 2022; 13:1054. [PMID: 36535930 PMCID: PMC9763398 DOI: 10.1038/s41419-022-05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Despite the high prevalence of Down syndrome (DS) and early identification of the cause (trisomy 21), its molecular pathogenesis has been poorly understood and specific treatments have consequently been practically unavailable. A number of medical conditions throughout the body associated with DS have prompted us to investigate its molecular etiology from the viewpoint of the embryonic organizer, which can steer the development of surrounding cells into specific organs and tissues. We established a DS zebrafish model by overexpressing the human DYRK1A gene, a highly haploinsufficient gene located at the "critical region" within 21q22. We found that both embryonic organizer and body axis were significantly impaired during early embryogenesis, producing abnormalities of the nervous, heart, visceral, and blood systems, similar to those observed with DS. Quantitative phosphoproteome analysis and related assays demonstrated that the DYRK1A-overexpressed zebrafish embryos had anomalous phosphorylation of β-catenin and Hsp90ab1, resulting in Wnt signaling enhancement and TGF-β inhibition. We found an uncovered ectopic molecular mechanism present in amniocytes from fetuses diagnosed with DS and isolated hematopoietic stem cells (HSCs) of DS patients. Importantly, the abnormal proliferation of DS HSCs could be recovered by switching the balance between Wnt and TGF-β signaling in vitro. Our findings provide a novel molecular pathogenic mechanism in which ectopic Wnt and TGF-β lead to DS physical dysplasia, suggesting potential targeted therapies for DS.
Collapse
|
25
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Cao Q, Tartaglia G, Alexander M, Park PH, Poojan S, Farshchian M, Fuentes I, Chen M, McGrath JA, Palisson F, Salas-Alanis J, South AP. A role for Collagen VII in matrix protein secretion. Matrix Biol 2022; 111:226-244. [PMID: 35779741 DOI: 10.1016/j.matbio.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Lack of type VII collagen (C7) disrupts cellular proteostasis yet the mechanism remains undescribed. By studying the relationship between C7 and the extracellular matrix (ECM)-associated proteins thrombospondin-1 (TSP1), type XII collagen (C12) and tissue transglutaminase (TGM2) in primary human dermal fibroblasts from multiple donors with or without the genetic disease recessive dystrophic epidermolysis bullosa (RDEB) (n=31), we demonstrate that secretion of each of these proteins is increased in the presence of C7. In dermal fibroblasts isolated from patients with RDEB, where C7 is absent or defective, association with the COPII outer coat protein SEC31 and ultimately secretion of each of these ECM-associated proteins is reduced and intracellular levels are increased. In RDEB fibroblasts, overall collagen secretion (as determined by the levels of hydroxyproline in the media) is unchanged while traffic from the ER to Golgi of TSP1, C12 and TGM2 occurs in a type I collagen (C1) dependent manner. In normal fibroblasts association of TSP1, C12 and TGM2 with the ER exit site transmembrane protein Transport ANd Golgi Organization-1 (TANGO1) as determined by proximity ligation assays, requires C7. In the absence of wild-type C7, or when ECM-associated proteins are overexpressed, C1 proximity and intracellular levels increase resulting in elevated cellular stress responses and elevated TGFβ signaling. Collectively, these data demonstrate a role for C7 in loading COPII vesicle cargo and provides a mechanism for disrupted proteostasis, elevated cellular stress and increased TGFβ signaling in patients with RDEB. Furthermore, our data point to a threshold of cargo loading that can be exceeded with increased protein levels leading to pathological outcomes in otherwise normal cells.
Collapse
Affiliation(s)
- Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Michael Alexander
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Pyung Hung Park
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Shiv Poojan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Mehdi Farshchian
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Ignacia Fuentes
- DEBRA Chile, Santiago, Chile; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine at the University of Southern California, Los Angeles, CA
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), UK
| | - Francis Palisson
- DEBRA Chile, Santiago, Chile; Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago, Chile
| | | | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA; The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
27
|
Machol K, Polak U, Weisz-Hubshman M, Song IW, Chen S, Jiang MM, Chen-Evenson Y, Weis MAE, Keene DR, Eyre DR, Lee BH. Molecular alterations due to Col5a1 haploinsufficiency in a mouse model of classic Ehlers-Danlos syndrome. Hum Mol Genet 2022; 31:1325-1335. [PMID: 34740257 PMCID: PMC9029232 DOI: 10.1093/hmg/ddab323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023] Open
Abstract
Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix (ECM). Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers-Danlos syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation are not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/-) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of ECM components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/- mice when compared with control. We also identified upregulation of transforming growth factor β1 (Tgf-β) in serum and increased expression of pSmad2 in skin from Col5a1+/- mice, suggesting Tgf-β dysregulation is a contributor to abnormal wound healing and atrophic scarring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for the treatment of this disease.
Collapse
Affiliation(s)
- Keren Machol
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Urszula Polak
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Shan Chen
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen-Evenson
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| | - Mary Ann E Weis
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington Seattle, WA 98195, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor college of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Corgnac S, Damei I, Gros G, Caidi A, Terry S, Chouaib S, Deloger M, Mami-Chouaib F. Cancer stem-like cells evade CD8 +CD103 + tumor-resident memory T (T RM) lymphocytes by initiating an epithelial-to-mesenchymal transition program in a human lung tumor model. J Immunother Cancer 2022; 10:jitc-2022-004527. [PMID: 35418483 PMCID: PMC9014106 DOI: 10.1136/jitc-2022-004527] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Cancer stem cells (CSC) define a population of rare malignant cells endowed with ‘stemness’ properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. Methods We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103− non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. Results Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3β and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. Conclusion Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.
Collapse
Affiliation(s)
- Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Isabelle Damei
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Aziza Caidi
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS 3655, Villejuif, France
| | - Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE
| | - Marc Deloger
- Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS 3655, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
29
|
Sun J, Ge X, Wang Y, Niu L, Tang L, Pan S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res 2022; 176:105962. [PMID: 34756923 DOI: 10.1016/j.phrs.2021.105962] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a serious complication of sepsis. This study was performed to explore the mechanism that THBS1 mediated pyroptosis by regulating the TGF-β signaling pathway in sepsis-induced AKI. METHODS Gene expression microarray related to sepsis-induced AKI was obtained from the GEO database, and the mechanism in sepsis-induced AKI was predicted by bioinformatics analysis. qRT-PCR and ELISA were performed to detect expressions of THBS1, USF2, TNF-α, IL-1β, and IL-18 in sepsis-induced AKI patients and healthy volunteers. The mouse model of sepsis-induced AKI was established, with serum creatinine, urea nitrogen, 24-h urine output measured, and renal tissue lesions observed by HE staining. The cell model of sepsis-induced AKI was cultured in vitro, with expressions of TNF-α, IL-1β, and IL-18, pyroptosis, Caspase-1 and GSDMD-N, and activation of TGF-β/Smad3 pathway detected. The upstream transcription factor USF2 was knocked down in cells to explore its effect on sepsis-induced AKI. RESULTS THBS1 and USF2 were highly expressed in patients with sepsis-induced AKI. Silencing THBS1 protected mice against sepsis-induced AKI, and significantly decreased the expressions of NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18, increased cell viability, and decreased LDH activity, thus partially reversing the changes in cell morphology. Mechanistically, USF2 promoted oxidative stress responses by transcriptionally activating THBS1 to activate the TGF-β/Smad3/NLRP3/Caspase-1 signaling pathway and stimulate pyroptosis, and finally exacerbated sepsis-induced AKI. CONCLUSION USF2 knockdown downregulates THBS1 to inhibit the TGF-β/Smad3 signaling pathway and reduce pyroptosis and further ameliorate sepsis-induced AKI.
Collapse
Affiliation(s)
- Jian Sun
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lei Niu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lujia Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China.
| |
Collapse
|
30
|
Tadijan A, Humphries JD, Samaržija I, Stojanović N, Zha J, Čuljak K, Tomić M, Paradžik M, Nestić D, Kang H, Humphries MJ, Ambriović-Ristov A. The Tongue Squamous Carcinoma Cell Line Cal27 Primarily Employs Integrin α6β4-Containing Type II Hemidesmosomes for Adhesion Which Contribute to Anticancer Drug Sensitivity. Front Cell Dev Biol 2021; 9:786758. [PMID: 34977030 PMCID: PMC8716755 DOI: 10.3389/fcell.2021.786758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVβ3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVβ3 expressing Cal27-derived cell clone 2B1, αVβ5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6β4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6β4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6β4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVβ3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6β4 not occurred. Taken together, our results identify a key role for α6β4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Junzhe Zha
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kristina Čuljak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Tomić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
31
|
Nyström A, Bruckner-Tuderman L, Kiritsi D. Dystrophic Epidermolysis Bullosa: Secondary Disease Mechanisms and Disease Modifiers. Front Genet 2021; 12:737272. [PMID: 34650598 PMCID: PMC8505774 DOI: 10.3389/fgene.2021.737272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic presentation of monogenetic diseases is determined not only by the nature of the causative mutations but also is influenced by manifold cellular, microenvironmental, and external factors. Here, heritable extracellular matrix diseases, including dystrophic epidermolysis bullosa (DEB), are no exceptions. Dystrophic epidermolysis bullosa is caused by mutations in the COL7A1 gene encoding collagen VII. Deficiency of collagen VII leads to skin and mucosal fragility, which progresses from skin blistering to severe fibrosis and cancer. Clinical and pre-clinical studies suggest that targeting of secondary disease mechanisms or employment of natural disease modifiers can alleviate DEB severity and progression. However, since many of these mechanisms are needed for tissue homeostasis, informed, selective targeting is essential for safe and efficacious treatment. Here, we discuss a selection of key disease modifiers and modifying processes active in DEB, summarize the still scattered knowledge of them, and reflect on ways forward toward their utilization for symptom-relief or enhancement of curative therapies.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Bernasconi R, Thriene K, Romero‐Fernández E, Gretzmeier C, Kühl T, Maler M, Nauroy P, Kleiser S, Rühl‐Muth A, Stumpe M, Kiritsi D, Martin SF, Hinz B, Bruckner‐Tuderman L, Dengjel J, Nyström A. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang-(1-7). EMBO Mol Med 2021; 13:e14392. [PMID: 34459121 PMCID: PMC8495454 DOI: 10.15252/emmm.202114392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.
Collapse
Affiliation(s)
- Rocco Bernasconi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Kerstin Thriene
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Elena Romero‐Fernández
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Christine Gretzmeier
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Tobias Kühl
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Essen University HospitalEssenGermany
| | - Mareike Maler
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Pauline Nauroy
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Svenja Kleiser
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Anne‐Catherine Rühl‐Muth
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Michael Stumpe
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Dimitra Kiritsi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Stefan F Martin
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Boris Hinz
- Laboratory of Tissue Repair and RegenerationFaculty of DentistryUniversity of TorontoTorontoONCanada
| | - Leena Bruckner‐Tuderman
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Jörn Dengjel
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Alexander Nyström
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| |
Collapse
|
33
|
Gretzmeier C, Pin D, Kern JS, Chen M, Woodley DT, Bruckner-Tuderman L, de Souza MP, Nyström A. Systemic Collagen VII Replacement Therapy for Advanced Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2021; 142:1094-1102.e3. [PMID: 34606885 DOI: 10.1016/j.jid.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin blistering disease associated with progressive multiorgan fibrosis. RDEB is caused by biallelic mutations in COL7A1 encoding the extracellular matrix protein collagen VII (C7), which is necessary for epidermal‒dermal adherence. C7 is not simply a structural protein but also has multiple functions, including the regulation of TGFβ bioavailability and the inhibition of skin scarring. Intravenous (IV) administration of recombinant C7 (rC7) rescues C7-deficient mice from neonatal lethality. However, the effect on established RDEB has not been determined. In this study, we used small and large adult RDEB animal models to investigate the disease-modulating abilities of IV rC7 on established RDEB. In adult RDEB mice, rC7 accumulated at the basement membrane zone in multiple organs after a single infusion. Fortnightly IV injections of rC7 for 7 weeks in adult RDEB mice reduced fibrosis of skin and eye. The fibrosis-delaying effect was associated with a reduction of TGFβ signaling. IV rC7 in adult RDEB dogs incorporated in the dermal‒epidermal junction of skin and improved disease by promoting wound healing and reducing dermal‒epidermal separation. In both species, IV C7 was well-tolerated. These preclinical studies suggest that repeated IV administration of rC7 is an option for systemic treatment of established adult RDEB.
Collapse
Affiliation(s)
- Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Didier Pin
- UPSP 2016.A104, VetAgro Sup, Univeristy of Lyon, Marcy l'Étoile, France
| | - Johannes S Kern
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Dermatology Department, Faculty of Medicine, Dentistry and Health Sciences, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Mei Chen
- Department of Dermatology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - David T Woodley
- Department of Dermatology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic disorders for which significant progress has been achieved in the development of molecular therapies in the last few decades. Such therapies require knowledge of mutant genes and specific mutations, some of them being allele specific. A relatively large number of clinical trials are ongoing and ascertaining the clinical efficacy of gene, protein or cell therapies or of repurposed drugs, mainly in recessive dystrophic EB. It is expected that some new drugs may emerge in the near future and that combinations of different approaches may result in improved treatment outcomes for individuals with EB.
Collapse
|
35
|
A Review of Acquired Autoimmune Blistering Diseases in Inherited Epidermolysis Bullosa: Implications for the Future of Gene Therapy. Antibodies (Basel) 2021; 10:antib10020019. [PMID: 34067512 PMCID: PMC8161452 DOI: 10.3390/antib10020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapy serves as a promising therapy in the pipeline for treatment of epidermolysis bullosa (EB). However, with great promise, the risk of autoimmunity must be considered. While EB is a group of inherited blistering disorders caused by mutations in various skin proteins, autoimmune blistering diseases (AIBD) have a similar clinical phenotype and are caused by autoantibodies targeting skin antigens. Often, AIBD and EB have the same protein targeted through antibody or mutation, respectively. Moreover, EB patients are also reported to carry anti-skin antibodies of questionable pathogenicity. It has been speculated that activation of autoimmunity is both a consequence and cause of further skin deterioration in EB due to a state of chronic inflammation. Herein, we review the factors that facilitate the initiation of autoimmune and inflammatory responses to help understand the pathogenesis and therapeutic implications of the overlap between EB and AIBD. These may also help explain whether corrections of highly immunogenic portions of protein through gene therapy confers a greater risk towards developing AIBD.
Collapse
|
36
|
Tartaglia G, Cao Q, Padron ZM, South AP. Impaired Wound Healing, Fibrosis, and Cancer: The Paradigm of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:5104. [PMID: 34065916 PMCID: PMC8151646 DOI: 10.3390/ijms22105104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFβ) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFβ signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.
Collapse
Affiliation(s)
- Grace Tartaglia
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
| | - Zachary M. Padron
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew P. South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, BLSB 406, Philadelphia, PA 19107, USA; (G.T.); (Q.C.); (Z.M.P.)
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
37
|
Signatures of Dermal Fibroblasts from RDEB Pediatric Patients. Int J Mol Sci 2021; 22:ijms22041792. [PMID: 33670258 PMCID: PMC7918539 DOI: 10.3390/ijms22041792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression.
Collapse
|
38
|
Diversity of Mechanisms Underlying Latent TGF-β Activation in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2020; 141:1450-1460.e9. [PMID: 33333127 DOI: 10.1016/j.jid.2020.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Injury- and inflammation-driven progressive dermal fibrosis is a severe manifestation of recessive dystrophic epidermolysis bullosa-a genetic skin blistering disease caused by mutations in COL7A1. TGF-β activation plays a prominent part in progressing dermal fibrosis. However, the underlying mechanisms are not fully elucidated. TGF-β is secreted in a latent form, which has to be activated for its biological functions. In this study, we determined that recessive dystrophic epidermolysis bullosa fibroblasts have an enhanced capacity to activate the latent form. Mechanistic and functional assessment demonstrated that this process depends on multiple latent TGF-β activators, including TSP-1, RGD-binding integrins, matrix metalloproteinases, and ROS, which act in concert, in a self-perpetuating feedback loop to progress fibrosis. Importantly, our study also disclosed keratinocytes as prominent facilitators of fibrosis in recessive dystrophic epidermolysis bullosa. They stimulate microenvironmental latent TGF-β activation through enhanced production of the above mediators. Collectively, our study provides data on the molecular mechanism behind dysregulated TGF-β signaling in recessive dystrophic epidermolysis bullosa, which are much needed for the development of evidence-based fibrosis-delaying treatments.
Collapse
|
39
|
Prodinger C, Bauer JW, Laimer M. Translational perspectives to treat Epidermolysis bullosa-Where do we stand? Exp Dermatol 2020; 29:1112-1122. [PMID: 33043517 PMCID: PMC7756480 DOI: 10.1111/exd.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Epidermolysis bullosa (EB) is the prototypical example of genetic skin fragility disorders. Genotypic heterogeneity, modifier genes, epigenetic, biochemical and environmental factors alter and determine pathogenic traits and, ultimately, the wide and striking phenotypic variability in EB. Besides the primary structural-functional defect, chronic tissue damage with induction and dysregulation of inflammatory pathways is a common pathogenic mechanism in EB. In localized variants, the inflammatory aberrations may mainly affect the micromilieu of lesional skin, while a systemic inflammatory response was shown to contribute to the systemic morbidity in severe EB subtypes with extensive cutaneous involvement. Our continued understanding of the pathophysiology of EB, as well as advances in molecular technologies, has paved the way for translational therapeutic approaches. The spectrum comprises of corrective and symptom-relieving therapies that include innovative therapeutic options garnered from the bench, repurposed drugs approved for other diseases, as well as strategies for gene-, protein- and cell-based therapies. Immunological traits further define new targets of therapy, aimed at improving skin barrier restoration, microbial surveillance and infection control, wound healing and anti-neoplastic effects. Clinical availability and feasibility of these approaches for all EB patients and subtypes are currently limited, reflecting issues of efficacy, specificity, tolerability and safety. A multistep targeting approach and highly individualized, risk-stratified combinatory treatment plans will thus be essential for sustained efficacy and improved overall quality of life in EB.
Collapse
Affiliation(s)
- Christine Prodinger
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Johann W Bauer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Martin Laimer
- Department of Dermatology and AllergologyUniversity Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| |
Collapse
|
40
|
Wally V, Reisenberger M, Kitzmüller S, Laimer M. Small molecule drug development for rare genodermatoses - evaluation of the current status in epidermolysis bullosa. Orphanet J Rare Dis 2020; 15:292. [PMID: 33076941 PMCID: PMC7574495 DOI: 10.1186/s13023-020-01467-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary epidermolysis bullosa (EB) comprises a heterogeneous group of rare genodermatoses, which are caused by mutations in genes involved in the maintenance of the structural and functional integrity of dermo-epidermal adhesion in various stratified epithelia. In severe variants, generalized skin disease, extracutaneous manifestations and multi-organ involvement cause considerable morbidity and mortality. Causal and early treatment by re-expression of a respective mutated gene is the major long-term goal in therapy development. However, characterization and targeted modulation of pathogenic molecular cascades in EB also holds great promise as a symptom-relieving approach to ameliorate phenotype, complications and quality of life. Small molecules are chemical structures of less than 900 Da that can diffuse across cell membranes and interfere with target biomolecules, thus influencing their function at different levels. They constitute the vast majority of active components of all approved drugs. Methods We performed PubMed and Google Scholar search for publications and screened FDA- and EMA-hosted clinical trial registries to identify studies using small molecule-based drugs for epidermolysis bullosa. Upon detailed analysis this resulted in the identification of a total of 84 studies. Results We identified 52 publications and 32 registered trials that investigate small molecules for their safety and efficacy as treatment for different aspects of epidermolysis bullosa. Further, a total of 38 different small molecules clinically used in EB were found. Most frequent outcome measures concerned wound healing, reduction in blister numbers, as well as reduction of itch and pain, predominantly for EBS and RDEB. Conclusion We provide a comprehensive summary of the current status of clinical small molecule development for EB and discuss prospects and limitations in orphan drug development for rare conditions like EB.
Collapse
Affiliation(s)
- Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Manuela Reisenberger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| | - Sophie Kitzmüller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.,Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| |
Collapse
|
41
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
42
|
Abstract
Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.
Collapse
|
43
|
Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol 2020; 236:1628-1637. [PMID: 32780450 DOI: 10.1002/jcp.30005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sheng-Ya Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi-Zhuo Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Sun S, Dong H, Yan T, Li J, Liu B, Shao P, Li J, Liang C. Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC MEDICAL GENETICS 2020; 21:139. [PMID: 32600280 PMCID: PMC7325168 DOI: 10.1186/s12881-020-01073-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Background Published studies present conflicting data regarding the impact of Thrombospondin-1 (TSP-1) expression on prognosis of various cancers. We performed this meta-analysis to illustrate the preliminary predictive value of TSP-1. Methods Twenty-four studies with a total of 2379 patients were included. A comprehensive literature search was performed by using PubMed, Cochrane Library, Web of Science, Embase, and hand searches were also conducted of relevant bibliographies. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were initially identified to explore relationships between TSP-1 expression and patient prognosis. Results A total of 24 eligible studies were included in this meta-analysis. Our results showed that high level of TSP-1 was correlated significantly with poor overall survival (OS) (HR = 1.40, 95% CI: 1.17 ~ 1.68; P<0.001). However, high TSP-1 expression predicted no significant impact on progression-free survival (PFS)/ metastasis-free survival (MFS) (HR = 1.35, 95%CI: 0.87–2.10; P = 0.176) and disease-free survival (DFS)/ recurrence-free survival (RFS) (HR = 1.40, 95%CI: 0.77–2.53; P = 0.271). In addition, we performed subgroup analyses which showed that high TSP-1 expression predicted poor prognosis in breast cancer and gynecological cancer. Additionally, the relatively small number of studies on PFS/MFS and DFS/RFS is a limitation. The data extracted through Kaplan-Meier curves may not be accurate. Moreover, only English articles were included in this article, which may lead to deviations in the results. Conclusions Our findings indicated high TSP-1 expression may act as a promising biomarker of poor prognosis in cancers, especially in breast cancer and gynecological cancer.
Collapse
Affiliation(s)
- Shengjie Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junchen Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Guerrero-Aspizua S, González-Masa A, Conti CJ, García M, Chacón-Solano E, Larcher F, del Río M. Humanization of Tumor Stroma by Tissue Engineering as a Tool to Improve Squamous Cell Carcinoma Xenograft. Int J Mol Sci 2020; 21:ijms21061951. [PMID: 32178458 PMCID: PMC7139348 DOI: 10.3390/ijms21061951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The role of stroma is fundamental in the development and behavior of epithelial tumors. In this regard, limited growth of squamous cell carcinomas (SCC) or cell-lines derived from them has been achieved in immunodeficient mice. Moreover, lack of faithful recapitulation of the original human neoplasia complexity is often observed in xenografted tumors. Here, we used tissue engineering techniques to recreate a humanized tumor stroma for SCCs grafted in host mice, by combining CAF (cancer associated fibroblasts)-like cells with a biocompatible scaffold. The stroma was either co-injected with epithelial cell lines derived from aggressive SCC or implanted 15 days before the injection of the tumoral cells, to allow its vascularization and maturation. None of the mice injected with the cell lines without stroma were able to develop a SCC. In contrast, tumors were able to grow when SCC cells were injected into previously established humanized stroma. Histologically, all of the regenerated tumors were moderately differentiated SCC with a well-developed stroma, resembling that found in the original human neoplasm. Persistence of human stromal cells was also confirmed by immunohistochemistry. In summary, we provide a proof of concept that humanized tumor stroma, generated by tissue engineering, can facilitate the development of epithelial tumors in immunodeficient mice.
Collapse
Affiliation(s)
- Sara Guerrero-Aspizua
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
- Correspondence: ; Tel.: +34-91-624-8206
| | - Andrea González-Masa
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
| | - Claudio J. Conti
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
| | - Marta García
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Esteban Chacón-Solano
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| | - Marcela del Río
- Department of Bioengineering, Universidad Carlos III de Madrid, 28911 Leganés, Spain; (A.G.-M.); (C.J.C.); (M.G.); (E.C.-S.); (F.L.); (M.d.R.)
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, 28040 Madrid, Spain
- Epithelial Biomedicine Division. CIEMAT, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714, 28911 Madrid, Spain
| |
Collapse
|
46
|
Epidermolysis Bullosa-Associated Squamous Cell Carcinoma: From Pathogenesis to Therapeutic Perspectives. Int J Mol Sci 2019; 20:ijms20225707. [PMID: 31739489 PMCID: PMC6888002 DOI: 10.3390/ijms20225707] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited skin disorders determined by mutations in genes encoding for structural components of the cutaneous basement membrane zone. Disease hallmarks are skin fragility and unremitting blistering. The most disabling EB (sub)types show defective wound healing, fibrosis and inflammation at lesional skin. These features expose patients to serious disease complications, including the development of cutaneous squamous cell carcinomas (SCCs). Almost all subjects affected with the severe recessive dystrophic EB (RDEB) subtype suffer from early and extremely aggressive SCCs (RDEB-SCC), which represent the first cause of death in these patients. The genetic determinants of RDEB-SCC do not exhaustively explain its unique behavior as compared to low-risk, ultraviolet-induced SCCs in the general population. On the other hand, a growing body of evidence points to the key role of tumor microenvironment in initiation, progression and spreading of RDEB-SCC, as well as of other, less-investigated, EB-related SCCs (EB-SCCs). Here, we discuss the recent advances in understanding the complex series of molecular events (i.e., fibrotic, inflammatory, and immune processes) contributing to SCC development in EB patients, cross-compare tumor features in the different EB subtypes and report the most promising therapeutic approaches to counteract or delay EB-SCCs.
Collapse
|