1
|
Xu K, Wang L, Lin M, He G. Update on protease-activated receptor 2 in inflammatory and autoimmune dermatological diseases. Front Immunol 2024; 15:1449126. [PMID: 39364397 PMCID: PMC11446762 DOI: 10.3389/fimmu.2024.1449126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Protease-activated receptor 2 (PAR2) is a cell-surface receptor expressed in various cell types, including keratinocytes, neurons, immune and inflammatory cells. Activation of PAR2, whether via its canonical or biased pathways, triggers a series of signaling cascades that mediate numerous functions. This review aims to highlight the emerging roles and interactions of PAR2 in different skin cells. It specifically summarizes the latest insights into the roles of PAR2 in skin conditions such as atopic dermatitis (AD), psoriasis, vitiligo and melasma. It also considers these roles from the perspective of the cutaneous microenvironment in relation to other inflammatory and autoimmune dermatological disorders. Additionally, the review explores PAR2's involvement in associated comorbidities from both cutaneous and extracutaneous diseases. Therefore, PAR2 may serve as a key target for interactions among various cells within the local skin environment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Nobeyama Y. Rosacea in East Asian populations: Clinical manifestations and pathophysiological perspectives for accurate diagnosis. J Dermatol 2024; 51:1143-1156. [PMID: 39126257 DOI: 10.1111/1346-8138.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Rosacea is a chronic inflammatory disorder primarily affecting the facial skin, prominently involving the cheeks, nose, chin, forehead, and periorbital area. Cutaneous manifestations encompass persistent facial erythema, phymas, papules, pustules, telangiectasia, and flushing. The pathogenesis of rosacea is associated with various exacerbating or triggering factors, including microbial infestation, temperature fluctuations, sunlight exposure, physical exertion, emotional stress, consumption of hot beverages and spicy foods, and exposure to airborne pollen. These environmental factors interact with genetic predispositions in the development of rosacea. The roles of the lipophilic microbiome, ultraviolet radiation, nociceptive responses, and vascular alterations have been proposed as significant factors in the pathogenesis. These insights contribute to understanding the anatomical specificity of facial involvement and the progressive nature of rosacea. East Asian skin, predominantly classified as Fitzpatrick skin phototypes III to IV, is characterized by relatively diminished skin barrier function and increased sensitivity to irritants. Airborne pollen exposure may particularly act as a trigger in East Asian individuals, possibly mediated through toll-like receptors. The lack of specificity in objective clinical and histopathological findings leads to diagnostic challenges for individuals with colored skin, including East Asians, particularly when erythema is the sole objective manifestation. An alternative diagnostic scheme may thus be necessary. A diagnostic approach emphasizing vascular manifestations and nociceptive symptoms potentially holds promise for individuals with darker skin tones. More research focusing on potential variations in skin physiology across different racial groups is essential to establish more effective diagnostic schemes applicable to both dark and light skin colors.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Hu XM, Zheng SY, Mao R, Zhang Q, Wan XX, Zhang YY, Li J, Yang RH, Xiong K. Pyroptosis-related gene signature elicits immune response in rosacea. Exp Dermatol 2024; 33:e14812. [PMID: 37086043 DOI: 10.1111/exd.14812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis-related rosacea aggravations. In this study, we evaluated the pyroptosis-related patterns of rosacea by consensus clustering analysis of 45 ferroptosis-related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis-mediated immune response in rosacea using GSE65914 dataset. The co-co-work between PRGs and WGCNA-revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi-transcriptomic and experiment analysis. Based on this, three distinct pyroptosis-related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune-related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune-related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis-immune co-work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Sheng-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Ya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Fisher GW, Travers JB, Rohan CA. Rosacea pathogenesis and therapeutics: current treatments and a look at future targets. Front Med (Lausanne) 2023; 10:1292722. [PMID: 38193038 PMCID: PMC10773789 DOI: 10.3389/fmed.2023.1292722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Rosacea is a chronic inflammatory skin condition associated with a significant health and economic burden from costs and loss of productivity due to seeking medical treatment. The disease encompasses multiple phenotypic manifestations involving a complex and multi-variate pathogenesis. Although the pathophysiology of rosacea is not completely understood, ongoing research is continually elucidating its mechanisms. In this review, current concepts of rosacea pathogenesis will be addressed which involve skin barrier and permeability dysfunction, the innate and adaptive immune systems, and the neurovascular system. More specifically, the cathelicidin pathway, transient potential receptor channels, mast cells, and the NLRP3 inflammasome pathway are various targets of current pharmacologic regimens. Future therapies may seek different mechanisms to act on current treatment targets, like the potential use of JAK/STAT inhibitors in ameliorating skin barrier dysfunction or TLR antagonists in alleviating cathelicidin mediated inflammation. Other potential treatments aim for entirely different molecular targets such as microvesicle particle mediated local and systemic inflammation. Ultimately rosacea is associated with a significant health and economic burden which warrants deeper research into its pathogenesis and resultant new treatment discovery.
Collapse
Affiliation(s)
- Garrett W. Fisher
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine (Dermatology), Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine (Dermatology), Dayton Veterans Administration Medical Center, Dayton, OH, United States
| |
Collapse
|
5
|
Si F, Lu Y, Wen Y, Chen T, Zhang Y, Yang Y. Cathelicidin (LL-37) causes expression of inflammatory factors in coronary artery endothelial cells of Kawasaki disease by activating TLR4-NF-κB-NLRP3 signaling. Immun Inflamm Dis 2023; 11:e1032. [PMID: 37773705 PMCID: PMC10521377 DOI: 10.1002/iid3.1032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a type of vasculitis with an unidentified etiology. Cathelicidin (LL-37) may be involved in the development of the KD process; therefore, further research to investigate the molecular mechanism of LL-37 involvement in KD is warranted. METHODS Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, NLRP3, and LL-37 in the sera of healthy subjects, children with KD, and children with pneumonia. Subsequently, human recombinant LL-37 or/and toll-like receptors 4 (TLR4)-specific inhibitor TAK-242 stimulated human coronary artery endothelial cells (HCAECs), CCK-8 was used to detect cell proliferation, flow cytometry to detect apoptosis, transmission electron microscopy to observe cytoskeletal changes, Transwell to measure cell migration ability, ELISA to detect inflammatory factor levels, Western blot analysis to analyze protein levels of toll-like receptors 4 (TLR4) and NF-κB p-65, and quantitative real-time polymerase chain reaction (qRT-PCR) to determine LL-37, NLRP3 mRNA levels. RESULTS In this study, we found that the level of LL-37 was highly expressed in the serum of children with KD, and after LL-37 stimulation, apoptosis was significantly increased in HCAECs, and the expression levels of TLR4, NLRP3 and inflammatory factors in cells were significantly enhanced. Intervention with the TLR4-specific inhibitor TAK-242 significantly alleviated the LL-37 effects on cellular inflammation, TLR4, NLRP3 promotion effect. CONCLUSIONS Our data suggest that LL-37 induces an inflammatory response in KD coronary endothelial cells via TLR4-NF-κB-NLRP3, providing a potential target for the treatment of KD.
Collapse
Affiliation(s)
- Feifei Si
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yaheng Lu
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yizhou Wen
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tingting Chen
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yingzi Zhang
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yanfeng Yang
- Pediatric Cardiovascular Department, Chengdu Women's and Children's Central Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
6
|
Zhang C, Kang Y, Zhang Z, Liu H, Xu H, Cai W, Gao X, Yang J. Long-Term Administration of LL-37 Can Induce Irreversible Rosacea-like Lesion. Curr Issues Mol Biol 2023; 45:2703-2716. [PMID: 37185701 PMCID: PMC10136735 DOI: 10.3390/cimb45040177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease whose late manifestations have not yet been clearly reported in animal models. The objective of this study is to describe the skin lesions and major histopathological changes in a rosacea-like phenotype in mice induced by prolonged LL-37 administration and furthermore, to assess the potential of long-term LL-37 administration in inducing irreversible rosacea-like skin lesion models. Balb/c mice were continuously injected intradermally with LL-37 every 12 h to induce a rosacea-like phenotype. After LL-37 injections were administered for 20 consecutive days, the area of rosacea-like lesions gradually expanded in the first 13 days, then entered a stable phase. Haematoxylin and eosin (H&E) and Van Gieson's staining showed a high degree of inflammatory cell aggregation, thickening of the epidermis and dermis, and collagen deposition in large quantities. The results of immunofluorescence staining and Western blotting showed that the expression of α-SMA, TNF-α, vimentin, and COL1 in the skin of mice was significantly upregulated. Short-term LL-37 administration induced rosacea-like lesions that only featured the aggregation of inflammatory factors and thickening of the epidermis, whereas no collagen hyperplasia was observed, and a full recovery was noticed. However, rosacea-like skin lesions induced by long-term LL-37 administration did not completely recover. Our study compares rosacea-like lesions induced by short-term versus long-term LL-37 administration, and the results suggest that irreversible rosacea-like lesions can be induced by long-term LL-37 administration.
Collapse
Affiliation(s)
- Chuanxi Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Yumeng Kang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyan Zhang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemin Gao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Jie Yang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|